Orden de Fracción
Las fracciones forman parte del conjunto de números racionales. Estos números pueden ser expresados como cociente de un número entero y un número natural. Todos los números siguen una secuencia, por lo tanto, es posible ordenarlos en la recta numérica y determinar cuál número es mayor, menor o igual a otro.
Ordenar fracciones en la recta numérica
La recta numérica es un recurso muy útil para comparar números. Consiste en un gráfico en forma de línea en el que se ordenan los números de menor a mayor en sentido de izquierda a derecha.
Las fracciones propias (las que tienen el numerador menor que el denominador) son las más fáciles de graficar porque solo tienes que dividir la unidad en tantos segmentos iguales como indique el denominador y luego, según el numerador, contar los segmentos y ubicar la fracción en la recta.
Por ejemplo, si queremos graficar la fracción , tenemos que dividir la unidad en seis segmentos iguales:
Para ubicar la fracción contamos los segmentos que nos indique el numerador, como en este caso el numerador es cinco (5), se cuentan cinco segmentos a partir del cero:
Por medio del diagrama anterior también podemos graficar la fracción , que es una fracción que comparte el mismo denominador con la fracción ya ubicada en la gráfica. Al seguir los mismos pasos anteriores se obtiene:
Las fracciones con el mismo denominador se pueden comparar fácilmente, la que tenga el numerador mayor será también la mayor fracción. Es por eso que es mayor que .
¿Qué hacer si tenemos dos fracciones con denominadores diferentes?
Cuando existan dos fracciones con denominadores diferentes multiplicamos el numerador y denominador de la primera fracción por el denominador de la segunda fracción, y así, tendremos una fracción equivalente. Luego se hace lo mismo con la segunda fracción pero se multiplica su numerador y denominador por el denominador de la primera fracción.
Las dos fracciones obtenidas tendrán el mismo denominador y de esta manera, solo queda ubicar la fracción en la recta tal como se explicó en el punto anterior.
Por ejemplo, si queremos ubicar las fracciones y en la recta numérica, no podemos dividir la recta en segmentos iguales porque no comparten el mismo denominador. Entonces determinamos fracciones equivalentes de cada una, es decir, calculamos fracciones que con diferente valor de numerador y denominador representan la misma cantidad.
Para calcular la fracción equivalente de multiplicamos su numerador y denominador por el denominador de la segunda fracción que es cuatro (4):
En este sentido, la fracción es equivalente a .
Calculamos ahora la fracción equivalente de que se obtiene al multiplicar su numerador y denominador por el denominador de la primera fracción que es dos (2).
De esta manera obtenemos la fracción que es equivalente con .
Las fracciones y son equivalentes con las fracciones anteriores. Observemos que tienen el mismo denominador y para poder ubicarlas en la recta numérica debemos dividir la unidad en 8 segmentos iguales, después escribimos cada fracción en el número de segmento que indique su respectivo numerador. El gráfico quedaría:
Como representa la misma cantidad que , y representa la misma cantidad que . Estas fracciones pueden ser sustituidas en la recta numérica anterior:
De la imagen anterior se puede que concluir que es mayor que por estar ubicado a su derecha.
¿Qué hacer si la fracción es impropia?
Si la fracción es impropia (aquella que su numerador es mayor que el denominador) se debe transformar a un número mixto: un número formado por una parte entera y una fracción. En la gráfica, la fracción impropia estará ubicada entre el número entero del número mixto y el número siguiente de la recta. La ubicación exacta la proporciona la parte fraccionaria y la graficamos como se explicó en los casos anteriores.
1. Divide el numerador entre el denominador.
2. Escribe el cociente de la división anterior, el mismo será la parte entera del número mixto.
3. Escribe al lado de la parte entera la fracción del número mixto. En esta, el numerador será igual al resto de la división y el denominador será el mismo de la fracción original.
– Grafiquemos la fracción
Lo primero es transformar la fracción a número mixto, para esto solo debes dividir el numerador entre el denominador:
El número mixto será . Observa que:
- La parte entera es el cociente de la división: 1.
- El numerador de la parte fraccionaria es el resto: 2.
- El denominador de la parte fraccionaria es el mismo de la fracción original: 3.
Ahora que tenemos nuestro número mixto sabemos que la fracción se encuentra ubicada entre el 1 y el 2 de la recta numérica, pero no sabemos en qué lugar. Para ello debemos hacer los mismos pasos que hicimos inicialmente para graficar fracciones, es decir, dividir el entero o unidad (que en este caso será el intervalo comprendido entre 1 y 2. Como el divisor es tres (3) entonces dividimos el intervalo en tres segmentos iguales:
Luego ubicamos la fracción de acuerdo a la cantidad de segmentos que indique el numerador. De esta manera, el número mixto que es igual a la fracción original se ubicaría así:
Relación de orden entre fracciones y naturales
Los números que se representan en la recta numérica cumplen el mismo criterio: los números de la izquierda de un número son menores a este y los de su derecha son mayores. Es por ello que representar las fracciones en la recta es de gran utilidad, pues permite relacionar los números de manera más fácil.
En el ejemplo anterior, la fracción se ubica en la gráfica entre el número 1 y el número 2. De esta manera, la fracción es mayor a 1 por estar a su derecha pero es menor que 2 por estar a su izquierda.
Uso de los símbolos “>” y “<“
Hay números naturales o fraccionarios que representan una mayor cantidad que otros. Por ejemplo, no es lo mismo decir 3 computadoras que decir 1.500 computadoras. Esta relación entre los números se denomina orden y nos permite diferenciar números mayores o menores.
En la práctica se emplean los símbolos “>” y “<” para denotar el orden de los números:
Símbolo | Significado |
> | Mayor que |
< | Menor que |
Por ejemplo, el 5 es mayor que el 2, entonces, se puede expresar como . Por otro lado, el número 3 es menor que el 9, en este caso se expresaría como .
La misma teoría es aplicada a las fracciones. De los ejemplos anteriores tenemos que:
a)
b)
¿Cómo reconocer cuando una fracción es menor o mayor que otra?
Si las fracciones tienen el mismo denominador, se comparan los numeradores, el numerador mayor corresponde a la fracción mayor. Por ejemplo:
a)
b)
Si las fracciones tienen denominadores diferentes, se convierten ambas en fracciones equivalentes con el mismo denominador. Por ejemplo, las fracciones y
En este ejemplo, como , entonces .
1. ¿Qué fracción representa la siguiente gráfica?
a)
b)
c)
d)
2. ¿Cuál de las siguientes imágenes representa la gráfica de la fracción ?
a)
b)
c)
d)
3. ¿Cuál de las siguientes fracciones es mayor?
a) y
b) y
4. ¿Cuál de las siguientes fracciones es menor?
a) y
b) y
5. Completa la expresión con los símbolos “>” y “<“.
a)
b)
c)
d)