CAPÍTULO 4 / TEMA 6 (REVISIÓN)

ORDEN Y RELACIONES | ¿QUÉ APRENDIMOS?

RECTA NUMÉRICA

La recta numérica es un gráfico en el que podemos representar cualquier número que pertenezca al conjunto de los números reales (\mathbb{R}). Tiene intervalos que señalan las unidades y siempre tienen la misma distancia entre un número y su consecutivo. Por otra parte, los distintos tipos de relaciones que existen entre los números se pueden mostrar por medio de los símbolos “<” y “>” que significan “menor que” y “mayor que” respectivamente.

Una regla graduada es muy parecida a una recta numérica.

ORDEN DE NÚMEROS NATURALES Y DECIMALES

Para ubicar los números naturales en la recta numérica ubicamos el 0 en una posición arbitraria y luego colocamos el resto de los números naturales en intervalos regulares. Si deseamos comparar números naturales usamos los símbolos < y > o la recta numérica, pues todo número que esté más a la derecha en la recta siempre será el mayor. Para ubicar números decimales en la recta numérica, debemos agregar subdivisiones entre los números enteros. Cuando queremos compararlos, primero tomamos en cuenta la parte entera y luego comparamos las cifras decimales de izquierda a derecha.

Sí bien algunos expertos afirman que el número cero (0) no pertenece al conjunto de los números naturales, otros aseguran que sí forma parte.

ORDEN DE FRACCIONES

Las fracciones también tiene un lugar en la recta numérica, para esto tenemos que considerar si la fracción es propia o impropia. De ser propia dividimos a la unidad en tantos segmentos como indique el denominador y contamos tantos segmentos como indique el numerador, luego marcamos la fracción. Si la fracción es impropia, tenemos que convertirla primero en un número mixto, en este caso, seguimos el procedimiento anterior pero a partir de la parte entera que tenga el número mixto.

Si comparamos fracciones con igual numerador y diferente denominador, será mayor aquella que tenga menor denominador.

PROPORCIONALIDAD

La proporcionalidad es una relación que existe entre dos magnitudes que podemos medir, y puede ser directa o inversa. Dos cantidades son directamente proporcionales si cuando una aumenta la otra aumenta o si cuando una disminuye la otra también lo hace. Por otro lado, al convertir medidas lo hacemos por medio de una regla de tres, un método muy útil para saber un valor desconocido entre 2 relaciones.

Siempre que vamos a un kiosco, sabemos que mientras más compremos, más tendremos que pagar; eso es porque la “cantidad que compramos” y la “cantidad que debemos pagar” tienen una relación directamente proporcional.

RELACIONES DE TIEMPO

El tiempo es quizás la magnitud más usada y medida diariamente. Sus unidades son variadas y van desde las menores a un día, como los segundos, los minutos y las horas; hasta las que sobrepasan al día como los meses, años y décadas. Si usamos una regla de tres podemos convertir una unidad a otra sin dificultad. También podemos hacer cálculos de suma y resta con el tiempo, esto nos ayuda a saber cuando empezó un partido de fútbol o qué hora salió un tren, por ejemplo.

Los calendarios o agendas son útiles para planificar las actividades a realizar a lo largo del día.

CAPÍTULO 5 / TEMA 6

Aplicación de la geometría

La geometría se encuentra inmersa dentro de diferentes ciencias y situaciones de la vida. Muchos desarrollos de la actualidad no se habrían logrado sin los aportes de la geometría. La astronomía, la computación y la cartografía son algunos de los muchos campos donde la geometría es empleada. 

Cálculo de área de una superficie

Para el cálculo de superficies usamos las fórmulas de área de las principales figuras geométricas. Las principales fórmulas son las siguientes:

Nombre Figura Área
Cuadrado \boldsymbol{A = l^{2}}

 

Donde:

A = área

l = lado

Rectángulo \boldsymbol{A = a\times b}

 

Donde:

A = área

a = altura

b = base

Triángulo \boldsymbol{A = \frac{b\times h}{2}}

 

Donde:

A = área

b = base

h = altura

Rombo \boldsymbol{A = \frac{D\times d}{2}}

 

Donde:

A = área

D = diagonal mayor

d = diagonal menor

Paralelogramo \boldsymbol{A = b\times h}

 

Donde:

A = área

b = base

h = altura

Trapecio \boldsymbol{A = \left (\frac{a+ b}{2} \right )\times h}

 

Donde:

a = base menor

b = base mayor

h = altura

Círculo \boldsymbol{A = \pi \times r^{2}}

 

Donde:

A = área

π = número pi

r = radio

Polígono regular \boldsymbol{A = \frac{n\times b\times Ap}{2}}

 

Donde:

A = área

n = número de lados regulares

b = longitud de un lado

Ap = apotema

Las figuras compuestas

Una figura compuesta es aquella que está formada por dos o más figuras geométricas más simples. Para calcular el área de estas figuras se suelen calcular las áreas de las figuras más simples por separado y la sumatoria de estas será el área total de la figura. Por otra parte, para el cálculo de perímetro suelen usarse ecuaciones trigonométricas, y teoremas como el de Pitágoras para calcular las longitudes de los lados de la figura.

Ejercicios

– Una cancha de fútbol mide 105 metros de largo y 68 metros de ancho. ¿Cuántos metros cuadrados de césped artificial se necesitarían para cubrir toda la cancha?

Es un problema de área porque al calcular los metros cuadrados de césped artificial que se necesitan, se calcula la superficie. Como todos sabemos, una cancha de fútbol tiene una forma rectangular, por lo tanto se debe aplicar la fórmula del rectángulo:

A = a\times b
A = 105\, m\times 68\, m
A = \mathbf{7.140\, m^{2}}

Por lo tanto, para cubrir toda la cancha se necesitarían 7.140 m2 de césped artificial.


– La siguiente figura muestra el plano de una casa. ¿Cuántos metros cuadrados de cerámica se necesitan para cubrir el piso?

El piso de la casa forma una figura compuesta. Por lo tanto, antes de resolver el problema debemos separarlo en formas geométricas más simples:

La figura 1 corresponde a un rectángulo y la figura 2 a un cuadrado (ya que sus cuatro lados miden lo mismo). El área total del piso será igual a:

A_{t} = A_{1}+A_{2}

Donde:

At = área total del piso

A1 = área de la figura 1

A2 = área de la figura 2

Por lo tanto, para calcular el problema tenemos que resolver las áreas por separado:

En la figura 1 se cumple que:

A_{1} = a\times b

A_{1} = 13\, m\times 5\, m

A_{1} = 65\, m^{2}

En la figura 2 se cumple que:

A_{2} = l^{2}

A_{2} = (10\, m)^{2}

A_{2} = 100\, m^{2}

Al reemplazar los valores de A1 y A2 se tiene que:

A_{t} = 65\, m^{2}+100\, m^{2}

A_{t} = \mathbf{165\, m^{2}}

Por lo tanto, el piso de la casa necesita 165 m2 de cerámica para cubrirlo.

¿Sabías qué?
La hectárea (ha) es una medida de área que equivale a 10.000 m2.

Cálculo de volumen de un cuerpo

Todo cuerpo ocupa un lugar en el espacio. Se denomina volumen. Como ya sabemos, los principales cuerpos geométricos se calculan a través de fórmulas:

Nombre Figura Fórmula de volumen
Cubo \boldsymbol{V=l^{3}}

 

 

Donde:

V = volumen

l = lado

Prisma \boldsymbol{V = A_{b}\times h}

 

 

Donde:

V = volumen

Ab = área basal

h = altura

Pirámide \boldsymbol{V = \frac{A_{b}\times h}{3}}

 

 

Donde:

V = volumen

Ab = área basal

h = altura

Cilindro \boldsymbol{V =\pi \times r^{2}\times h}

 

 

Donde:

V = volumen

π = número pi (3,14…)

r = radio

h = altura

Cono \boldsymbol{V =\frac{\pi \times r^{2}\times h}{3}}

 

 

Donde:

V = volumen

π = número pi (3,14…)

r = radio

h = altura

Esfera \boldsymbol{V =\frac{4}{3}\times \pi \times r^{3}}

 

 

Donde:

V = volumen

π = número pi (3,14…)

r = radio

En el caso de las pirámides y los primas, las formas de sus bases pueden ser diferentes.

Estas ecuaciones pueden aplicarse a figuras similares para resolver diferentes problemas.

Ejercicios

– Calcula el volumen de la Gran Pirámide de Guiza, cuya base es un cuadrado de aproximadamente 230 m cada lado y de altura mide aproximadamente 186 m.

La fórmula para calcular el volumen de una pirámide es la siguiente:

V = \frac{A_{b}\times h}{3}

Lo primero es calcular el valor de Ab que es el área de la base. En este caso, su base es un cuadrado de 230 metros de cada lado. Por lo tanto:

A_{b} = l^{2}

A_{b} = (230\, m)^{2}

A_{b} = 52.900 \, m^{2}

Reemplazamos el valor del área de la base y el de la altura (que es 186 m) en la fórmula:

V = \frac{52.900\, m^{2}\times 186\, m}{3}

V = \frac{9.839.400\, m^{3}}{3}

V = \mathbf{3.279.800\, m^{3}}

El volumen aproximado de la pirámide de Guiza es de 3.279.800 m3 (si se considera la pirámide como un cuerpo rígido sin cámaras interiores).


– Calcula el volumen de una canica de 2 centímetros de diámetro.

La forma de una canica es igual a la de una esfera por lo tanto se utiliza la siguiente ecuación:

V =\frac{4}{3}\times \pi \times r^{3}

El problema nos dice que el diámetro de la canica es de 2 cm, pero la fórmula está expresada en función del radio. Como ya sabemos, el radio es la mitad del diámetro, por lo tanto, el radio de la canica es de 1 cm.

V =\frac{4}{3}\times \3,14 \times (1\, cm)^{3}

V =\frac{4}{3}\times \3,14 \times 1\, cm^{3}

V =\mathbf{4,18\, cm^{3}}

La leyenda de la corona

Hay una leyenda popular que cuenta cómo el rey Hieron II de Siracusa le encomendó al reconocido matemático griego Arquímedes que comprobara si la corona que había mandado a hacer era de oro puro o no. Arquímedes pasó mucho tiempo sin resolver el misterio y estaba frustrado hasta que un día, al meterse a la bañera, se percató que el agua que se desplazaba tenía el mismo volumen de su cuerpo. Enseguida dio un salto al tiempo que decía la frase “¡Eureka!”.

Posteriormente le demostró al rey que el volumen desplazado por la corona debía ser el mismo que el desplazado por un lingote de oro puro de la misma masa. Cuando realizó el experimento, la cantidad de agua desplazada no fue la misma y concluyó que la corona no era de oro puro.

Otros usos

Desde su aparición, la geometría ha permitido al ser humano destacarse en varios campos como la arquitectura, la escultura, la pintura y, por su puesto, en las ciencias aplicadas como la física o la química. Disciplinas como la ingeniería aplican la geometría para el cálculo de ángulo y otras medidas. La química emplea la geometría para entender las estructuras moleculares, la agrupación de los átomos y la forma de los cristales de algunos compuestos, entre otros usos.

En el ámbito de la cartografía y la agronomía, se aplica la geometría para determinar áreas, calcular perímetros y planos de terrenos. La astronomía y la computación son otras áreas que emplean conocimientos geométricos.

La geometría y la arquitectura

La arquitectura clásica no habría podido lograr obras de singular belleza o armonía sin hacer uso de conocimientos geométricos. En la actualidad, los arquitectos emplean la geometría para lograr estructuras que se vean bien estéticamente, que permitan un ahorro de materiales y un mejor aprovechamiento de los espacios.

¡A practicar!

1. Una fábrica de quesos compró una granja de 14.300 m2. ¿Cuáles son las medidas de la granja?

a) 150 m × 100 m
b) 130 m × 110 m
c) 40 m × 10 m
d) 280 m × 100 m

Solución
b) 130 m × 110 m

2. Un tablero de ajedrez mide 44 cm de alto y 44 cm de ancho, ¿cuál es el área del tablero?

a) 88 cm2
b) 1.936 cm2
c) 4.404 cm2
d) 3.854 cm2

Solución
b) 1.936 cm2

3. Una empresa inmobiliaria trabaja con propiedades que no superan los 20.000 m2. ¿Cuál de las siguientes propiedades no cumple con este requisito de la empresa inmobiliaria?

a) Casa de playa de 155 m de ancho por 84 m de alto.
b) Departamento en la ciudad de 18 m de ancho por 14 m de alto.
c) Cabaña en la montaña de 320 m de ancho por 124 m de alto.
d) Chalet de 24 m de ancho por 20 m de alto.

Solución
c) Cabaña en la montaña de 320 m de ancho por 124 m de alto. El área de esta propiedad es de 39.680 m2, por lo tanto, supera los 20.000 m2 aceptados por la inmobiliaria.

4. Una pelota de fútbol tiene 22 cm de diámetro, ¿cuál es su volumen?

a) 2026,34 cm3
b) 44 cm3
c) 220 cm3
d) 5.572,45 cm3

Solución
d) 5.572,45 cm3

5. Una lata de tomates es cilíndrica y tiene una altura de 9 cm y un radio de 3 cm, ¿cuál es su volumen?

a) 384,35 cm3
b) 127,17 cm3
c) 954.44 cm3
d) 506,58 cm3

Solución
c) 254.34 cm3

RECURSOS PARA DOCENTES

Artículo “Los números ocultos en el universo”

El artículo trata de mostrar cómo la mayoría de los fenómenos del universo pueden explicarse a través de los números. También explica algunas formas geométricas que podemos encontrar en nuestro planeta.

VER

Enciclopedia “Nana y Enriqueta en el país de las matemáticas”

En este tomo, se platean los principales elementos de la geometría de una manera didáctica y sencilla. También se dan ejemplos y aplicaciones de la geometría.

VER

Artículo “Superficies de figuras geométricas”

El artículo plantea el cálculo de superficie de las principales figuras geométricas. También resuelve una serie de ejercicios y muestra al final algunos problemas propuestos.

VER

CAPÍTULO 1 / TEMA 3

SERIES Y RELACIONES

UNA SERIE ES UNA SUCESIÓN DE ELEMENTOS O NÚMEROS QUE SIGUEN UNA REGLA O PATRÓN. CREAMOS SERIES CADA VEZ QUE ORGANIZAMOS NUESTROS CRAYONES POR COLOR, HACEMOS FILA EN LA ESCUELA POR ESTATURA, O CONTAMOS CON NUESTROS DEDOS. COMO VES, LAS SERIES ESTÁN EN CADA ASPECTO DE NUESTRO DÍA A DÍA.

SERIES Y PATRONES

OBSERVA ESTA IMAGEN, ¿QUÉ FIGURAS VES?, ¿TIENEN UN ORDEN PARTICULAR?

HAY CÍRCULOS Y TRIÁNGULOS. SÍ TIENEN UN ORDEN: HAY UN CÍRCULO AZUL Y LUEGO UN TRIÁNGULO AMARILLO, DESPUÉS VIENE OTRO CÍRCULO AZUL Y OTRO TRIÁNGULO AMARILLO. ESTE ES UN EJEMPLO DE SERIE.

UNA SERIE ES UNA SECUENCIA DE ELEMENTOS QUE SIGUEN UNA REGLA QUE LLAMAMOS PATRÓN.

 

– EJEMPLO:

OBSERVA ESTA SERIE, ¿CUÁL ES EL PATRÓN?

PARA IDENTIFICAR EL PATRÓN VEMOS FIGURA POR FIGURA:

  • PRIMERO: SOL
  • SEGUNDO: CÍRCULO
  • TERCERO: TRIÁNGULO

DESPUÉS SE REPITEN LAS MISMAS FIGURAS, ASÍ QUE EL PATRÓN ES SOL-CÍRCULO-TRIÁNGULO.

 

– OTRO EJEMPLO:

OBSERVA ESTA IMAGEN, ¿CUÁL ES EL PATRÓN?

EL PATRÓN ES CUADRADO-TRIÁNGULO-CÍRCULO.

SERIES NUMÉRICAS

LAS SERIES NO SOLO SE PUEDEN HACER CON OBJETOS Y FIGURAS, TAMBIÉN LAS PODEMOS CREAR CON NÚMEROS. DE HECHO, CADA VEZ QUE CONTAMOS DE 1 EN 1 HACEMOS UNA SERIE NUMÉRICA CON UN PATRÓN IGUAL A +1, PUES CADA NÚMERO ES UNA UNIDAD MAYOR AL ANTERIOR.

SERIES ASCENDENTES Y DESCENDENTES

LAS SERIES PUEDEN IR DE MAYOR A MENOR O DE MENOR A MAYOR.

SERIES ASCENDENTES

CUANDO EN LA SERIE UBICAMOS ELEMENTOS CON PATRONES QUE VAN DE MENOR A MAYOR, DECIMOS LA QUE LA SERIE ES ASCENDENTE. POR EJEMPLO:

ESTA ES UNA SERIE DE FIGURAS GEOMÉTRICAS. LA PRIMERA TIENE 3 LADOS, LA SEGUNDA TIENE 4 LADOS, LAS TERCERA TIENE 5 LADOS Y LA CUARTA FIGURA TIENE 6 LADOS. ASÍ QUE EL PATRÓN ES + 1 LADO.

 

TAMBIÉN SUCEDE CON LOS NÚMEROS, POR EJEMPLO:

1   2   3   4   5   6   7   8   9   10   11   12   13   14   15

ESTA ES UNA SERIE NUMÉRICA ASCENDENTE PORQUE CADA NÚMERO ES MAYOR AL ANTERIOR Y EL PATRÓN ES + 1.

SERIE DESCENDENTE

CUANDO EN LA SERIE UBICAMOS ELEMENTOS CON PATRONES QUE VAN DE MAYOR A MENOR, DECIMOS LA QUE LA SERIE ES DESCENDENTE. POR EJEMPLO:

ESTA ES UNA SERIE DE RECTÁNGULOS EN LOS QUE CADA UNO ES MÁS PEQUEÑO EN TAMAÑO QUE EL ANTERIOR. EL SEGUNDO DE IZQUIERDA A DERECHA ES MÁS PEQUEÑO QUE EL ANTERIOR, EL TERCERO MÁS PEQUEÑO QUE LOS ANTERIORES, Y ASÍ SUCESIVAMENTE.

 

TAMBIÉN HAY SERIES NUMÉRICAS DESCENDENTES, POR EJEMPLO:

15   14   13   12   11   10   9   8   7   6   5   4   3   2   1

ESTA ES UNA SERIE NUMÉRICA DESCENDENTE PORQUE CADA NÚMERO ES MENOR AL ANTERIOR Y EL PATRÓN ES − 1.

¡ES TU TURNO!

OBSERVA ESTAS SERIES, ¿CUÁL ES EL PATRÓN?

SOLUCIÓN
PATRÓN: CÍRCULO AZUL-CÍRCULO ROJO

 

SOLUCIÓN
PATRÓN: TRIÁNGULO-SOL-CUADRADO
TODOS LOS NÚMEROS TIENEN UN ORDEN, Y EN SU FUNCIÓN DE REPRESENTAR CANTIDADES, HAY UNOS QUE SON MAYORES QUE OTROS. SI TENEMOS QUE AGRUPAR FIGURAS, NOS DAMOS CUENTA QUE 4 ES MAYOR QUE 2; 5 ES MAYOR QUE 2; 3 ES MENOR QUE 4; O 3 ES MENOR QUE 5. ESTAS RELACIONES LAS MOSTRAMOS CON SIGNOS DE RELACIÓN COMO MENOR QUE “<” O MAYOR QUE “>”.

RELACIONES DE MENOR Y MAYOR QUE

OBSERVA ESTA IMAGEN, ¿CUÁL ÁRBOL TIENE MAYOR ALTURA?

EL ÁRBOL DE LA DERECHA TIENE UNA ALTURA MAYOR QUE EL DE LA IZQUIERDA.

LO MISMO SUCEDE CON LOS NÚMEROS Y PARA ESO USAMOS LOS SIGNOS DE RELACIÓN < Y >.

MENOR QUE “< “

CON ESTE SÍMBOLO < INDICAMOS QUE EL NÚMERO DE LA IZQUIERDA ES MENOR QUE EL DE LA DERECHA. POR EJEMPLO:

  • 3 < 5 SE LEE “TRES ES MENOR QUE CINCO”.
  • 8 < 10 SE LEE “OCHO ES MENOR QUE DIEZ”.
  • 1 < 9 SE LEE “UNO ES MENOR QUE NUEVE”.

MAYOR “>”

CON ESTE SÍMBOLO < INDICAMOS QUE EL NÚMERO DE LA IZQUIERDA ES MAYOR QUE EL DE LA DERECHA. POR EJEMPLO:

  • 7 > 1 SE LEE “SIETE ES MAYOR QUE UNO”.
  • 10 > 8 SE LEE “DIEZ ES MAYOR QUE OCHO”.
  • 5 > 4 SE LEE “CINCO ES MAYOR QUE CUATRO”.

USO DE ORDINALES PARA LA UBICACIÓN DE OBJETOS

LOS NÚMEROS ORDINALES SIRVEN PARA SABER LA POSICIÓN Y ORDEN DE LOS ELEMENTOS EN UN CONJUNTO. PUEDEN SER FEMENINOS Y MASCULINOS Y SE REPRESENTAN CON UN SÍMBOLO DEL LADO DERECHO. OBSERVA LA SIGUIENTE TABLA CON LOS PRIMEROS DIEZ NÚMERO ORDINALES:

MASCULINO FEMENINO
1.º PRIMERO 1.ª PRIMERA
2.º SEGUNDO 2.ª SEGUNDA
3.º TERCERO 3.ª TERCERA
4.º CUARTO 4.ª CUARTA
5.º QUINTO 5.ª QUINTA
6.º SEXTO 6.ª SEXTA
7.º SÉPTIMO 7.ª SÉPTIMA
8.º OCTAVO 8.ª OCTAVA
9.º NOVENO 9.ª NOVENA
10.º DÉCIMO 10.ª DÉCIMA

– EJEMPLO:

ESTOS NIÑOS ESTÁN ORGANIZADOS SEGÚN SU ESTATURA, ¿REPRESENTAN UNA SERIE?

SÍ, ES UNA SERIE DESCENDENTE PORQUE VAN DE MAYOR A MENOR. JUAN ES EL PRIMERO Y EL MÁS ALTO; DIEGO ES EL DÉCIMO Y EL MÁS BAJO.

¡ES TU TURNO!

OBSERVA LA IMAGEN Y ESCRIBE EL ORDEN DE LAS PERSONAS.

SOLUCIÓN
  • EL LUGAR DE JUAN ES EL PRIMERO
  • EL LUGAR DE LOLO ES EL SEGUNDO.
  • EL LUGAR DE ANA ES EL TERCERO.
  • EL LUGAR DE SOFÍA ES EL CUARTO.
  • EL LUGAR DE NICO ES EL QUINTO.
  • EL LUGAR DE MAXI ES EL SEXTO.
  • EL LUGAR DE REINA ES EL SÉPTIMO.
  • EL LUGAR DE PABLO ES EL OCTAVO.
  • EL LUGAR DE LUNA ES EL NOVENO.
  • EL LUGAR DE DIEGO ES EL DÉCIMO.

 

¡A PRACTICAR!

1. COMPLETA LOS PATRONES.

SOLUCIÓN

 

2. COMPLETA LA SERIE NUMÉRICA. ¿CUÁL ES EL PATRÓN?

SOLUCIÓN

EL PATRÓN ES + 1.

 

3. COLOCA EL SIGNO > O < SEGÚN CORRESPONDA.

  • 10 ____ 5
SOLUCIÓN
10 > 5
  • 14 ____ 6
SOLUCIÓN
14 > 6
  • 16 ____ 11
SOLUCIÓN
16 > 11
  • 7 ____ 10
SOLUCIÓN
7 < 10 
  • 7 ____ 20
SOLUCIÓN
7 < 20
  • 11 ____ 10
SOLUCIÓN
11 > 10
  • 4 ____ 2
SOLUCIÓN
4 > 2
  • 11 ____ 9
SOLUCIÓN
11 > 9
RECURSOS PARA DOCENTES

Artículo “Comparar y ordenar números”

Este artículo detalla cómo comprar y ordenar números por medio de los símbolos de relación.

VER

CAPÍTULO 1 / TEMA 7

RELACIONES

LOS NÚMEROS NATURALES SON LOS QUE USAMOS PARA CONTAR, POR EJEMPLO, LA CANTIDAD DE JUGUETES QUE TENEMOS O LAS HORAS QUE FALTAN PARA SALIR A JUGAR. TODOS ELLOS TIENEN UNA RELACIÓN CON LOS DEMÁS NÚMEROS. PARA ESCRIBIR ESTAS RELACIONES USAMOS ALGUNOS SÍMBOLOS ESPECIALES QUE APRENDERÁS HOY.

RELACIONES ENTRE NÚMEROS

TODOS LOS NÚMEROS NATURALES TIENEN UNA RELACIÓN. EN LA IMAGEN VEMOS UN ORDEN DE 1 EN 1 PORQUE CADA NÚMERO A LA DERECHA TIENE UNA UNIDAD MÁS QUE EL ANTERIOR. SI QUEREMOS SABER QUÉ NÚMERO ES MAYOR O MENOR QUE OTRO PODEMOS UTILIZAR UNA RECTA NUMÉRICA. MIENTRAS MÁS A LA DERECHA DE LA RECTA ESTÉ EL NÚMERO, MAYOR SERÁ SU VALOR.

HAY NÚMEROS QUE REPRESENTAN MÁS CANTIDAD QUE OTROS Y POR LO TANTO, TAMBIÉN HAY NÚMEROS QUE REPRESENTAN MENOS CANTIDAD QUE OTROS. ESTA RELACIÓN SE LLAMA ORDEN Y LA USAMOS CADA VEZ QUE CONTAMOS O COMPARAMOS CIFRAS.

ENTRE DOS NÚMEROS, UNO PUEDE SER MAYOR QUE OTRO, IGUAL A OTRO O MENOR QUE OTRO. CADA RELACIÓN TIENE UN SÍMBOLO ÚNICO PARA QUE PUEDAS DIFERENCIARLO.

MAYOR QUE

CUANDO ESCRIBIMOS NÚMEROS PODEMOS VER QUE UNOS REPRESENTAN MÁS CANTIDADES QUE OTROS. POR EJEMPLO:

  • ¿CUÁNTOS CANGREJOS HAY EN LA CAJA ROJA?

HAY 24 CANGREJOS.

  • ¿CUÁNTO CANGREJOS HAY EN LA CAJA AZUL?

HAY 12 CANGREJOS.

  • ¿CUÁL CAJA TIENE MAYOR CANTIDAD DE CANGREJOS?

LA CAJA ROJA TIENE MAYOR CANTIDAD DE CANGREJOS PORQUE 24 ES MAYOR QUE 12.

 

ESTA RELACIÓN ENTRE DOS NÚMEROS LA PODEMOS ESCRIBIR CON EL SÍMBOLO > QUE SIGNIFICA “MAYOR QUE”.

24 > 12

SI UBICAMOS CADA NÚMERO EN LA RECTA NUMÉRICA TENEMOS QUE:

EL NÚMERO 24 ES MAYOR QUE 12 PORQUE SE ENCUENTRA MÁS A LA DERECHA EN LA RECTA NUMÉRICA.


OTRO EJEMPLO:

OBSERVA ESTOS NÚMEROS, ¿CUÁL ES MAYOR?

365            357

PARA RESPONDER LA PREGUNTA DEBEMOS REPRESENTAR EN LA RECTA NUMÉRICA CADA NÚMERO Y COMPARARLOS:

COMO EL 365 ESTÁ MÁS A LA DERECHA EN LA RECTA, 365 ES MAYOR QUE 357. ENTONCES:

365 > 357

¡A ORDENAR NÚMEROS!

ORDENA DE MAYOR A MENOR ESTOS NÚMEROS. USA EL SÍMBOLO “MAYOR QUE” PARA REPRESENTAR LA RELACIÓN ENTRE CADA UNO DE ELLOS.

125 – 89 – 856 – 632

SOLUCIÓN

856 > 632 > 125 > 89

IGUAL QUE

ES POSIBLE QUE DOS CANTIDADES SEAN IGUALES. POR EJEMPLO:

  • CADA CAJA TIENE CARACOLAS MARINAS, ¿CUÁNTAS HAY EN LA CAJA ROJA?, ¿CUÁNTAS HAY EN LA CAJA AZUL?

EN LAS DOS CAJAS HAY LO MISMO: 15 CARACOLAS MARINAS.

 

CUANDO DOS NÚMEROS SON IGUALES USAMOS EL SÍMBOLO = QUE SIGNIFICA “IGUAL A “.

15 = 15

EL SÍMBOLO DE IGUALDAD TAMBIÉN SIRVE PARA DEMOSTRAR QUE UN NÚMERO ES IGUAL A LA SUMA DE OTROS. EJEMPLO:

15 = 10 + 5

15 = 5 + 5 + 5

15 = 2 + 3 + 2 + 3 + 2 + 3

SI BUSCAMOS REPRESENTAR LA IGUALDAD EN UNA RECTA NUMÉRICA, LOS DOS NÚMEROS SERÁN REPRESENTADOS EN EL MISMO LUGAR.

¡COMPAREMOS NÚMEROS!

INDICA SI ESTAS IGUALDADES SON CORRECTAS:

  • 543 = 500 + 40 + 3
SOLUCIÓN
CORRECTO.
  • 123 = 10 + 2 + 3
SOLUCIÓN
INCORRECTO. LA DESCOMPOSICIÓN ADITIVA DE 123 = 100 + 20 + 3.

LA IGUALDAD

SIEMPRE QUE DOS EXPRESIONES SEAN IGUALES DECIMOS QUE HAY UNA IGUALDAD MATEMÁTICA. EL SIGNO USADO ES =. ESTE SIGNO FUE CREADO POR ROBERT RECORDE EN 1557. ÉL USÓ DOS RECTAS PARALELAS PARA REPRESENTARLO.

MENOR QUE

ALGUNOS NÚMEROS REPRESENTAN MENOS CANTIDADES QUE OTROS. POR EJEMPLO:

  • ¿CUÁNTOS PECES HAY EN LA CAJA ROJA?

HAY 18 PECES.

  • ¿CUÁNTOS PECES HAY EN LA CAJA AZUL?

HAY 21 PECES.

  • ¿CUÁL CAJA TIENE MENOR CANTIDAD DE PECES?

LA CAJA ROJA TIENE MENOR CANTIDAD DE PECES PORQUE 18 ES MENOR QUE 21.

 

ESTA RELACIÓN ENTRE DOS NÚMEROS LA PODEMOS ESCRIBIR CON EL SÍMBOLO QUE SIGNIFICA “MENOR QUE”.

18 < 21

SI UBICAMOS CADA NÚMERO EN LA RECTA NUMÉRICA TENEMOS QUE:

EL NÚMERO 18 ES MENOR QUE 21 PORQUE SE ENCUENTRA MÁS A LA IZQUIERDA EN LA RECTA NUMÉRICA.


OTRO EJEMPLO:

OBSERVA ESTOS NÚMEROS, ¿CUÁL ES MENOR?

433            448

PARA RESPONDER LA PREGUNTA DEBEMOS REPRESENTAR EN LA RECTA NUMÉRICA CADA NÚMERO Y COMPARARLOS:

COMO EL 433 ESTÁ MÁS A LA IZQUIERDA EN LA RECTA, 433 ES MENOR QUE 448. ENTONCES:

433 < 448

¿SABÍAS QUÉ?
LA ABERTURA DE LOS SÍMBOLOS < Y > SIEMPRE IRÁ HACIA EL NÚMERO MAYOR, Y LA PUNTA IRÁ HACIA EL NÚMERO MENOR.

¡A ORDENAR NÚMEROS!

ORDENA DE MENOR A MAYOR ESTOS NÚMEROS. USA EL SÍMBOLO “MENOR QUE” PARA REPRESENTAR LA RELACIÓN ENTRE CADA UNO DE ELLOS.

489 – 511 – 263 – 384

SOLUCIÓN

263 < 384 < 489 < 511

LOS SÍMBOLOS DE RELACIÓN SIRVEN PARA QUE COMPAREMOS CANTIDADES. ES POSIBLE QUE NO NOS DEMOS CUENTA, PERO SIEMPRE LOS USAMOS. POR EJEMPLO, MIENTRAS MÁS AÑOS TENEMOS, MÁS ALTOS SOMOS. SI MARCAMOS EN LA PARED NUESTRA ESTATURA VEREMOS QUE CADA AÑO LA MEDIDA ES MAYOR QUE LA ANTERIOR, O VISTO DE OTRO MODO, QUE LA ESTATURA ANTERIOR ES MENOR QUE LA ACTUAL.

 

¡A PRACTICAR!

1. COLOCA EL SÍMBOLO DE RELACIÓN QUE CORRESPONDA:

  • 64 ___ 89
SOLUCIÓN
64 < 89 
  • 159 ___ 685
SOLUCIÓN
159 < 685
  • 745 ___ 700 + 40 + 5
SOLUCIÓN
745 = 700 + 40 + 5
  • 4 + 40 ___ 20 + 7
SOLUCIÓN
4 + 40 = 44 > 27 = 20 + 7
  • 999 ___ 654
SOLUCIÓN
999 > 654
  • 80 + 4 ___ 84
SOLUCIÓN
80 + 4 = 84

 

2. ESCRIBE SI LA RELACIÓN ES VERDADERA O FALSA.

  • 5 = 8
SOLUCIÓN
FALSO. 5 < 8
  • 85 < 85
SOLUCIÓN
FALSO. 85 = 85
  • 196 < 852
SOLUCIÓN
VERDADERO.
  • 458 > 655
SOLUCIÓN
FALSO. 458 < 655
  • 351 < 536
SOLUCIÓN
VERDADERO.
  • 758 = 663
SOLUCIÓN
FALSO. 758 > 663

 

3. ORDENA DE MENOR A MAYOR:

78 – 96 – 499 – 164 – 8 – 968 – 781 – 63 – 19 – 82

SOLUCIÓN
8 < 19 < 63 < 78 < 82 < 96 < 164 < 499 < 781 < 968
RECURSOS PARA DOCENTES

Artículo “Comparar y ordenar números”

En el siguiente artículo hay más ejercicios para la práctica de la relación de números: mayor que y menor que.

VER

CAPÍTULO 4 / TEMA 1

RECTA NUMÉRICA

Todos los números representan una determinada cantidad. Por ejemplo, con $ 100 no compramos lo mismo que podemos comprar con $ 1.000, porque esas cantidades de dinero son distintas. Por ese motivo es de gran importancia saber cómo comparar cifras, y una herramienta muy útil para hacerlo es la recta numérica: una línea recta que tiene puntos con valores específicos.

¿Qué es la recta numérica?

La recta numérica es una herramienta en la que podemos representar de manera gráfica distintos números. Consiste en una línea recta marcada a intervalos regulares, a los cuales se le asigna un número. Estos intervalos no son más que las separaciones entre un número y otro.

Las rectas numéricas pueden incluir cualquier número que pertenezca al conjunto de los números reales (\mathbb{R}). En este ejemplo, la recta numérica abarca los números enteros (\mathbb{Z}) desde el −7 hasta el +7, incluido el cero (0).

¿Sabías qué?
El primero en utilizar una recta numérica fue el matemático inglés John Wallis. Él la utilizó para representar gráficamente los números naturales (\mathbb{N}). 
Una regla graduada es muy parecida a una recta numérica. Este instrumento de medición tiene divisiones con valores asignados en centímetros o pulgadas. Gracias a ella sabemos la longitud de objetos pequeños, como la de un lápiz o un borrador. Además nos ayuda a dibujar líneas rectas.

¿Cómo construir una RECTA NUMÉRICA?

Para construir una recta numérica lo primero que debemos hacer es trazar una línea recta con flechas en sus extremos.

Luego colocamos los intervalos y marcamos sus extremos con un punto o con una pequeña línea vertical. Es importante que todos los intervalos sean del mismo tamaño para conservar la escala.

Una vez trazada la línea recta y los intervalos, colocamos los números sobre cada una de las pequeñas líneas verticales. Los números irán de menor a mayor, de izquierda a derecha.

Intervalos en la recta numérica

Los intervalos utilizados para construir una recta numérica deben ser siempre iguales entre un número y su consecutivo, pero pueden variar en cuanto a su valor.

Por ejemplo, podemos construir una recta numérica en la que cada intervalo entre un número y su consecutivo corresponda a un entero, es decir, de 1 en 1:

Pero también podemos construir rectas numéricas en las que cada intervalo corresponda a dos enteros, es decir, de 2 en 2:

¿Qué números se pueden incluir en una recta numérica?

Si bien, en un principio solo se ubicaban números naturales en la recta numérica (desde el cero hasta el infinito positivo), hoy día todos los números reales \mathbb{R} pueden representarse en ella. Estos incluyen a los números naturales (\mathbb{N}), los números enteros (\mathbb{Z}), los números racionales (\mathbb{Q}) y los números irracionales (\mathbb{I}).

Representación de decimales y fracciones en la recta numérica

Los números decimales son aquellos formados por una parte entera y una parte menor a la unidad, y también pueden ser mostrados como fracciones. En la recta numérica podemos representar este tipo de números si subdividimos los enteros ya ubicados. Por ejemplo, entre 1 y 2 hay pequeños intervalos más pequeños que señalan a los decimales desde el 0,1 hasta el 0,9. También podemos mostrarlos en escalas de 2 en 2 décimas. Observa esta recta:

Dado que para cada fracción hay un número decimal equivalente, podemos representar ambas cantidades en una recta numérica. Por ejemplo, las fracción 1/5 = 0,2 y 8/5 = 1,6. 

¡A practicar!

Realiza una recta numérica y luego marca en la misma los siguientes números:

  • 0
  • 2
  • 2,8
  • 4/5
Solución

SÍMBOLOS DE RELACIÓN

Los números de la recta numérica tienen relaciones entre sí. Los distintos tipos de relaciones que existen son los siguientes.

TIPO DE RELACIÓN SIGNIFICADO SÍMBOLO
“Mayor que” Se utiliza para indicar que un número es mayor que otro. >
“Igual a” Se utiliza para indicar que un número es igual a otro. =
“Menor que” Se utiliza para indicar que un número es menor que otro. <

Veamos algunos ejemplos:

  • Para indicar que el 3 es mayor que el 2, escribimos: 3 > 2
  • Para indicar que el 4 es igual que el 4, escribimos: 4 = 4
  • Para indicar que el 5 es menor que el 8, escribimos: 5 < 8

 

Todos los números tienen algún otro número mayor que él y otro menor. Todos los números guardan una relación con los demás. Para compararlos podemos utilizar los símbolos de relación, los cuales muestran cuando entre dos cantidades la primera es mayor que la segunda (>), menor que la segunda (<) o igual a la segunda (=).

 

Relaciones entre los números de la recta numérica

Si prestamos atención, notaremos que en una recta numérica siempre ocurre lo siguiente: entre dos números, el que se encuentra más a la derecha en la recta numérica será el mayor.

Por ejemplo, entre el 3 y el −5, el 3 se encuentra más a la derecha, entonces, podemos afirmar que 3 > −5. O al encontrarse el −5 más a la derecha que el −7, podemos afirmar que −5 > −7.

¡A practicar!

Coloca el símbolo de relación que corresponda en cada caso:

  • 3,5 ____ 5,3
  • 4,0 ____ 0,4
  • 1 ____ −1
  • 2 ____ 2
  • 2,2 ____ 2,02
  • 8,001 ____ 8,01
Solución
  • 3,5 < 5,3
  • 4,0 > 0,4
  • > −1
  • 2 = 2
  • 2,2 > 2,02
  • 8,001 < 8,01

RECURSOS PARA DOCENTES

Artículo “La recta numérica”

Este artículo te permitirá profundizar sobre el concepto de recta numérica y los conjuntos numéricos que pueden ser representados en la misma.

VER

Artículo “Recta numérica”

En este artículo podrás detallar el procedimiento a realizar para poder ubicar números decimales y fracciones en la recta numérica.

VER

CAPÍTULO 1 / TEMA 5

SERIES NUMÉRICAS

CADA VEZ QUE ORGANIZAMOS OBJETOS LO HACEMOS SEGÚN UN CRITERIO. PUEDE SER POR TAMAÑO, COLOR O FORMA. ESTO SE CONOCE COMO SERIE Y TAMBIÉN APLICA A LOS NÚMEROS, YA QUE CUANDO HACEMOS CUENTAS DE DOS EN DOS O DE TRES EN TRES, SEGUIMOS UN PATRÓN NUMÉRICO. TAMBIÉN PODEMOS CREAR NUESTROS PROPIOS PATRONES Y HACER UNA GRAN VARIEDAD DE SERIES.

¿QUÉ ES UNA SERIE NUMÉRICA?

UNA SERIE NUMÉRICA ES UNA CONJUNTO DE NÚMEROS ORDENADOS QUE SIGUEN UN PATRÓN O UNA REGLA DETERMINADA.

POR EJEMPLO, ESTOS NÚMEROS FORMAN UNA SERIE Y CADA UNO ES TRES UNIDADES MAYOR AL ANTERIOR.

 

EL PATRÓN ES: +3. POR LO TANTO, ESTA SERIE NUMÉRICA VA DE 3 EN 3.

LAS SERIES NO SOLO PUEDEN TENER NÚMEROS, TAMBIÉN EXISTEN SERIES DE OBJETOS O ELEMENTOS. TODAS TIENEN ALGO EN COMÚN Y ES QUE SIGUEN UN PATRÓN. POR EJEMPLO, EN ESTA IMAGEN VEMOS UNA SERIE DE ENVASES CON PINTURA QUE SIGUEN UN PATRÓN POR COLORES: UN ENVASE CON PINTURA AMARILLA, UN ENVASE CON PINTURA ROJA Y UN ENVASE CON PINTURA AZUL.

CARACTERÍSTICAS DE LAS SERIES NUMÉRICAS

LAS SERIES NUMÉRICAS PUEDEN SER PROGRESIVAS O REGRESIVAS. EN LAS SERIES PROGRESIVAS LOS NÚMEROS VAN DE MENOR A MAYOR, MIENTRAS QUE EN LAS SERIES REGRESIVAS LOS NÚMEROS VAN DE MAYOR A MENOR.

 

SERIE PROGRESIVA

DE 2 EN 2:

PATRÓN: + 2

 

DE 5 EN 5:

PATRÓN: + 5

 

DE 10 EN 10:

PATRÓN: + 10

 

SERIE REGRESIVA

DE 2 EN 2:

PATRÓN: − 2

 

DE 5 EN 5:

PATRÓN: − 5

 

DE 10 EN 10:

PATRÓN: − 10

 

¿SABÍAS QUÉ?

LAS SERIES PROGRESIVAS TAMBIÉN SON LLAMADAS SERIES ASCENDENTES, Y LAS SERIES REGRESIVAS SON CONOCIDAS COMO SERIES DESCENDENTES.

IDENTIFICAR EL PATRÓN EN UNA SERIE NUMÉRICA

PARA PODER IDENTIFICAR EL PATRÓN DE LA SERIE NUMÉRICA ES NECESARIO:

  • OBSERVAR LA SERIE.
  • IDENTIFICAR LA RELACIÓN ENTRE LOS NÚMERO.

OBSERVA ESTA SERIE, ¿QUÉ TIPO DE SERIE ES?, ¿CUÁL ES EL PATRÓN?

ESTA SERIE ES PROGRESIVA PORQUE VA DE MENOR A MAYOR. VA DE 7 EN 7. EL PATRÓN ES: + 7.

 

– OTRO EJEMPLO:

 

LA SERIE ES REGRESIVA PORQUE VA DE MAYOR A MENOR. VA DE 12 EN 12. EL PATRÓN ES: − 12.

¡A PRACTICAR!

1. ¿CUAL ES EL PATRÓN DE LAS SIGUIENTES SERIES NUMÉRICAS?

  • 9, 18, 27, 36, 45, 54
SOLUCIÓN

LA SERIE ES ASCENDENTE DE 9 EN 9. EL PATRÓN ES: + 9.

  • 100, 75, 50, 25
SOLUCIÓN

LA SERIE ES DESCENDENTE DE 25 EN 25. EL PATRÓN ES: − 25.

  • 80, 60, 40, 20
SOLUCIÓN

LA SERIE ES DESCENDENTE DE 20 EN 20. EL PATRÓN ES: − 20.

  • 14, 21, 28, 35
SOLUCIÓN

LA SERIE ES ASCENDENTE DE 7 EN 7. EL PATRÓN ES: + 7.

CONSTRUCCIÓN DE SERIES

PARA PODER CONSTRUIR SERIES NUMÉRICAS ASCENDENTES PODEMOS UTILIZAR LAS TABLAS DE MULTIPLICAR, ESTAS SON UN RECURSO MUY ÚTIL QUE AYUDARÁ A ESTABLECER UNA RELACIÓN CON LOS TÉRMINOS DE LA SUCESIÓN. POR EJEMPLO, SI QUEREMOS EMPLEAR LAS TABLAS DEL 6, PODEMOS CONSTRUIR UNA SERIE ASCENDENTE DE 6 EN 6 Y LA MISMA SERÁ ASÍ: 6, 12, 18, 24, 30, 36, 42, 48, 54.

PARA CONSTRUIR SERIES ES NECESARIO ESTABLECER LO SIGUIENTE:

  • SI ES ASCENDENTE O DESCENDENTE.
  • EL PATRÓN.
  • UN INICIO Y UN FINAL.

– EJEMPLO:

CONSTRUYE UNA SERIE NUMÉRICA ASCENDENTE DE 15 EN 15, DESDE EL 15 HASTA EL 90.

ACTIVIDAD

1. ESCRIBIR UNA SERIE NUMÉRICA PARA CADA RELACIÓN:

  • ASCENDENTE DE 2 EN 2. DESDE 22 Y HASTA 32.
SOLUCIÓN
22, 24, 26, 28, 30, 32
  • DESCENDENTE DE 10 EN 10. DESDE 80 Y HASTA 20.
SOLUCIÓN
80, 70, 60, 50, 40, 30, 20
  • ASCENDENTE DE 5 EN 5. DESDE 5 HASTA 35.
RESPUESTAS
5, 10, 15, 20, 25, 30, 35
  • DESCENDENTE DE 2 EN 2. DESDE 20 HASTA 10.
SOLUCIÓN
20, 18, 16, 14, 12, 10

 

2. COMPLETA LAS SIGUIENTES SERIES:

  • 44, ___, 56, 62, 68, 74, ___
SOLUCIÓN
44, 50, 56, 62, 68, 74, 80
  • 10, ___, 20, 25, 30, ___, ___
RESPUESTAS
10, 15, 20, 25, 30, 35, 40
  • 83, 80, ___, 74, ___. 68, ___
RESPUESTAS
83, 80, 77, 74, 71, 68, 65
RECURSOS PARA DOCENTES

Artículo “Sucesiones y series”

En el siguiente artículo encontraras un desarrollo de teoría más avanzado de las series numéricas y la sucesión de términos.

VER

 

CAPÍTULO 3 / TEMA 4

Orden de Fracción

Las fracciones forman parte del conjunto de números racionales. Estos números pueden ser expresados como cociente de un número entero y un número natural. Todos los números siguen una secuencia, por lo tanto, es posible ordenarlos en la recta numérica y determinar cuál número es mayor, menor o igual a otro.

Ordenar fracciones en la recta numérica

La recta numérica es un recurso muy útil para comparar números. Consiste en un gráfico en forma de línea en el que se ordenan los números de menor a mayor en sentido de izquierda a derecha.

Las fracciones propias (las que tienen el numerador menor que el denominador) son las más fáciles de graficar porque solo tienes que dividir la unidad en tantos segmentos iguales como indique el denominador y luego, según el numerador, contar los segmentos y ubicar la fracción en la recta.

Por ejemplo, si queremos graficar la fracción \frac{5}{6}, tenemos que dividir la unidad en seis segmentos iguales:

Para ubicar la fracción contamos los segmentos que nos indique el numerador, como en este caso el numerador es cinco (5), se cuentan cinco segmentos a partir del cero:

Por medio del diagrama anterior también podemos graficar la fracción \frac{1}{6} , que es una fracción que comparte el mismo denominador con la fracción \frac{5}{6} ya ubicada en la gráfica. Al seguir los mismos pasos anteriores se obtiene:

Las fracciones con el mismo denominador se pueden comparar fácilmente, la que tenga el numerador mayor será también la mayor fracción. Es por eso que \frac{5}{6} es mayor que \frac{1}{6}.

¿Sabías qué?
En la recta numérica, un número es mayor a los números ubicados a su izquierda y menor a los ubicados a su derecha.

¿Qué hacer si tenemos dos fracciones con denominadores diferentes?

Cuando existan dos fracciones con denominadores diferentes multiplicamos el numerador y denominador de la primera fracción por el denominador de la segunda fracción, y así, tendremos una fracción equivalente. Luego se hace lo mismo con la segunda fracción pero se multiplica su numerador y denominador por el denominador de la primera fracción.

Las dos fracciones obtenidas tendrán el mismo denominador y de esta manera, solo queda ubicar la fracción en la recta tal como se explicó en el punto anterior.

Por ejemplo, si queremos ubicar las fracciones \frac{1}{2} y \frac{3}{4} en la recta numérica, no podemos dividir la recta en segmentos iguales porque no comparten el mismo denominador. Entonces determinamos fracciones equivalentes de cada una, es decir, calculamos fracciones que con diferente valor de numerador y denominador representan la misma cantidad.

Para calcular la fracción equivalente de \frac{1}{2} multiplicamos su numerador y denominador por el denominador de la segunda fracción que es cuatro (4):

\frac{1\times 4}{2\times 4}= \frac{4}{8}

En este sentido, la fracción \frac{4}{8} es equivalente a \frac{1}{2}.

Calculamos ahora la fracción equivalente de \frac{3}{4} que se obtiene al multiplicar su numerador y denominador por el denominador de la primera fracción que es dos (2).

\frac{3\times 2}{4\times 2}= \frac{6}{8}

De esta manera obtenemos la fracción \frac{6}{8} que es equivalente con \frac{3}{4}.

Las fracciones \frac{4}{8} y \frac{6}{8} son equivalentes con las fracciones anteriores. Observemos que tienen el mismo denominador y para poder ubicarlas en la recta numérica debemos dividir la unidad en 8 segmentos iguales, después escribimos cada fracción en el número de segmento que indique su respectivo numerador. El gráfico quedaría:

Como \frac{4}{8} representa la misma cantidad que \frac{1}{2}, y \frac{6}{8} representa la misma cantidad que \frac{3}{4}. Estas fracciones pueden ser sustituidas en la recta numérica anterior:

De la imagen anterior se puede que concluir que \frac{3}{4} es mayor que \frac{1}{2} por estar ubicado a su derecha.

La recta numérica es una herramienta muy usada para ordenar y observar de manera más sencilla los datos. Este simple gráfico, además de los números naturales, permite ubicar números negativos, números racionales y números irracionales. Hay disciplinas como la física que emplean este tipo de diagrama para resolver problemas de cuerpos en movimiento.

¿Qué hacer si la fracción es impropia?

Si la fracción es impropia (aquella que su numerador es mayor que el denominador) se debe transformar a un número mixto: un número formado por una parte entera y una fracción. En la gráfica, la fracción impropia estará ubicada entre el número entero del número mixto y el número siguiente de la recta. La ubicación exacta la proporciona la parte fraccionaria y la graficamos como se explicó en los casos anteriores.

Pasos para transformar una fracción impropia a un número mixto

1. Divide el numerador entre el denominador.

2. Escribe el cociente de la división anterior, el mismo será la parte entera del número mixto.

3. Escribe al lado de la parte entera la fracción del número mixto. En esta, el numerador será igual al resto de la división y el denominador será el mismo de la fracción original.

– Grafiquemos la fracción \frac{5}{3}

Lo primero es transformar la fracción a número mixto, para esto solo debes dividir el numerador entre el denominador:

El número mixto será 1\frac{2}{3}. Observa que:

  • La parte entera es el cociente de la división: 1.
  • El numerador de la parte fraccionaria es el resto: 2.
  • El denominador de la parte fraccionaria es el mismo de la fracción original: 3.

Ahora que tenemos nuestro número mixto sabemos que la fracción se encuentra ubicada entre el 1 y el 2 de la recta numérica, pero no sabemos en qué lugar. Para ello debemos hacer los mismos pasos que hicimos inicialmente para graficar fracciones, es decir, dividir el entero o unidad (que en este caso será el intervalo comprendido entre 1 y 2. Como el divisor es tres (3) entonces dividimos el intervalo en tres segmentos iguales:

Luego ubicamos la fracción de acuerdo a la cantidad de segmentos que indique el numerador. De esta manera, el número mixto que es igual a la fracción original se ubicaría así:

Relación de orden entre fracciones y naturales

Los números que se representan en la recta numérica cumplen el mismo criterio: los números de la izquierda de un número son menores a este y los de su derecha son mayores. Es por ello que representar las fracciones en la recta es de gran utilidad, pues permite relacionar los números de manera más fácil.
En el ejemplo anterior, la fracción \frac{5}{3} se ubica en la gráfica entre el número 1 y el número 2. De esta manera, la fracción es mayor a 1 por estar a su derecha pero es menor que 2 por estar a su izquierda.

Uso de los símbolos “>” y “<“

Hay números naturales o fraccionarios que representan una mayor cantidad que otros. Por ejemplo, no es lo mismo decir 3 computadoras que decir 1.500 computadoras. Esta relación entre los números se denomina orden y nos permite diferenciar números mayores o menores.

En la práctica se emplean los símbolos “>” y “<” para denotar el orden de los números:

Símbolo Significado
> Mayor que
< Menor que

Por ejemplo, el 5 es mayor que el 2, entonces, se puede expresar como 5> 2. Por otro lado, el número 3 es menor que el 9, en este caso se expresaría como 3<9.

La misma teoría es aplicada a las fracciones. De los ejemplos anteriores tenemos que:

a) \frac{3}{4}> \frac{1}{2}

b) \frac{5}{3}<2

¿Cómo reconocer cuando una fracción es menor o mayor que otra?

Si las fracciones tienen el mismo denominador, se comparan los numeradores, el numerador mayor corresponde a la fracción mayor. Por ejemplo:

a) \frac{5}{2}> \frac{3}{2}

b) \frac{2}{7}< \frac{6}{7}

Si las fracciones tienen denominadores diferentes, se convierten ambas en fracciones equivalentes con el mismo denominador. Por ejemplo, las fracciones \frac{3}{5} y \frac{5}{2}

\frac{3}{5}\rightarrow \frac{3\times 2}{5\times 2}= {\color{Red} \frac{6}{10}}

\frac{5}{2}\rightarrow \frac{5\times 5}{2\times 5}= {\color{Red} \frac{25}{10}}

En este ejemplo, como \frac{6}{10}< \frac{25}{10}, entonces \frac{3}{5}< \frac{5}{2}.

 

Las fracciones equivalentes son aquellas que aunque tengan diferente numerador y denominador, representan la misma cantidad. Son útiles para comparar fracciones y también para simplificar operaciones, como la suma de fracciones con diferentes denominadores. Existen varias formas de calcularlas, como el método del mínimo común múltiplo.
¡A practicar!

1. ¿Qué fracción representa la siguiente gráfica?

a) \frac{6}{2}

b) \frac{3}{1}

c) \frac{3}{6}

d) \frac{3}{2}

Solución
c) \frac{3}{6}

2. ¿Cuál de las siguientes imágenes representa la gráfica de la fracción \frac{5}{9}?
a)

b)

c)

d)

Solución
c)

3. ¿Cuál de las siguientes fracciones es mayor?

a) \frac{9}{10} y \frac{7}{10}

Solución
\frac{9}{10}

b) \frac{3}{2} y \frac{1}{4}

Solución
\frac{3}{2}

4. ¿Cuál de las siguientes fracciones es menor?

a) \frac{2}{5} y \frac{1}{2}

Solución
\frac{2}{5}

b) \frac{7}{4} y \frac{9}{6}

Solución
\frac{9}{6}

5. Completa la expresión con los símbolos “>” y “<“.

a) \frac{3}{2}\sqsubset \sqsupset \frac{1}{2}

Solución
>

b) \frac{5}{9}\sqsubset \sqsupset \frac{8}{9}

Solución
<

c) \frac{5}{2}\sqsubset \sqsupset \frac{7}{4}

Solución
>

d) \frac{1}{9}\sqsubset \sqsupset \frac{3}{8}

Solución
<

RECURSOS PARA DOCENTES

Artículo “La recta numérica”

En este artículo destacado se explica con mayor detalle qué es la recta numérica y cómo representar en ella varios tipos de números como los fraccionarios.

VER

Artículo “Comparar y ordenar números”

El presente artículo permite conocer los símbolos usados en la comparación de números y muestra una serie de ejemplos de acuerdo a la cantidad de dígitos o cifras.

VER

CAPÍTULO 4 / TEMA 2

COMPARACIÓN DE CANTIDADES

Día a día comparamos números. Lo hacemos al ver que un precio es más bajo que otro, que los grados aumentan o disminuyen en el termómetro de acuerdo a la temperatura, o que un compañero tuvo una calificación diferente a la nuestra. Todos los números pueden compararse entre sí y para hacerlo existen algunas reglas y símbolos especiales.

Los números de nuestro sistema decimal poseen valores absolutos y relativos. El valor absoluto no considera la posición de la cifra, mientras que el relativo sí. De este modo, y en su función de representar cantidades, podemos hallar números que son mayores que otros. Esta relación nos permite establecer un orden entre ellos.

USO DE LOS SÍMBOLOS DE RELACIÓN

¿Qué son los símbolos de relación?

Son aquellos que permiten comparar números según el valor que estos tengan. Así, al observar dos cantidades podemos determinar si una es mayor, menor o igual que la otra. Para indicar estas relaciones colocamos los siguientes símbolos:

  • >, se lee “mayor que”.
  • <, se lee “menor que”.
  • =, se lee “igual a”.

Mayor que (>)

Todo número ubicado a la izquierda del símbolo “> será mayor que el número ubicado a su derecha, entonces, si el símbolo se encuentra entre dos números, significa que el primero es mayor que el segundo.

Menor que (<)

Todo número ubicado a la izquierda del símbolo “< será menor que el número ubicado a su derecha, entonces, si el símbolo se encuentra entre dos números, significa que el primero es menor que el segundo.

Igual a (=)

Los números ubicados tanto a la derecha como a la izquierda del símbolo “=” son iguales.

¿Sabías qué?
El matemático inglés Robert Recorde fue quien inventó el símbolo de igualdad. Le dio esta forma porque decía que “dos cosas no pueden ser más iguales que dos rectas paralelas”.
Existe una manera sencilla de memorizar los símbolos de relación y su función, consiste en fijarse en sus extremos. “Mayor que” y “menor que” apuntan su parte más ancha y abierta hacia el número mayor y su parte más cerrada y fina hacia el número menor. Ya que leemos de izquierda a derecha, el primero de los dos extremos que veamos nos dirá cuál símbolo es.

ESTABLECER ORDEN ENTRE DIFERENTES CANTIDADES

Orden de los números naturales

Los números naturales son los números que usamos para contar y con los que estamos más familiarizados. El orden de estos números comienza con sus unidades básicas, que se distribuyen de la siguiente manera:

Posterior al número 9 comienzan los números de dos cifras, formados por decenas y unidades:

El orden de los números naturales continúa en crecimiento hasta alcanzar el número 100, momento en el que se llega a las 3 cifras y aparece la primera centena de la sucesión:

El proceso se repite mientras se suman más y más cifras a la izquierda del número, cada una en representación de un valor mayor:

Esto indica que mientras más cifras tenga un número natural, mayor será su valor. Sin embargo, si dos números poseen la misma cantidad de cifras, hay que diferenciar los valores de cada dígito.

Observa estos ejemplos:

– Compara los números 110 y 120.

Primero vemos sus centenas. En este caso, las dos centenas son iguales (1), así que pasamos a las decenas. Estas son distintas y, por lo tanto, comparamos esos dos dígitos. Como 1 es menor que 2, entonces 110 es menor que 120.

– Compara los números 122 y 123.

Estos números tienen centenas y decenas iguales, así que pasamos a comparar las unidades. Como 2 es menor que 3, decimos que 122 es menor que 123.

– Compara los números 5.392.897 y 5.403.121.

La primera cifra corresponde a las unidades de millón y es la misma en los dos números. Comparamos entonces la siguiente cifra: la centena de mil. Como 3 es menor que 4, decimos que 5.392.897 es menor que 5.403.121.

– Compara los números 25.072.518 y 25.072.523.

Al igual que los casos anteriores, comparamos de izquierda a derecha cada cifra hasta ubicar las que tienen distinto valor. En este ejemplo, las decenas son distintas. Como 1 es menor que 2, decimos que 25.072.518 es menor que 25.072.523.

¡Es tu turno!

– Compara estos números.

  • 9.854.125.369 y 9.854.311.003

Solución
9.854.125.369 < 9.854.311.003
  • 658.899.157.021 y 658.899.157.001

Solución
658.899.157.021 > 658.899.157.001
Desigualdades

Las desigualdades, también llamadas inecuaciones, son expresiones algebraicas que contienen incógnitas y emplean símbolos para expresar la relación entre las partes. Los símbolos usados son:

 menor que

>   mayor que

   menor o igual que

   mayor o igual que

   no es igual a

Orden de los números enteros

Los números enteros están formados por los números naturales y los números negativos. Los números negativos poseen una peculiaridad que los diferencia de los positivos: sus valores actúan de forma completamente opuesta. A partir de cero hacia la derecha, los números naturales se hacen cada vez mayores; en cambio, a partir de cero hacia la izquierda, los números negativos se hacen cada vez menores.

Esto quiere decir que si 2 es mayor que 1, −2 es menor que −1.

Es así como los números negativos siguen las mismas reglas de jerarquía que los naturales, pero de forma opuesta. Por ejemplo:

Los dos números tienen la misma cantidad de centenas y de decenas, pero las unidades son distintas. Como −4 es menor que −3, decimos que −424 es menor que −423.

 ¡Colócalos en orden!

– Ordena los siguientes números enteros de menor a mayor y utiliza el símbolo correspondiente.

4, 26, −26, 572, 54, −175, 274, −265, 675, 345, −98, 213, 0, 9, 73, −44

Solución
−265 < −175 < −98 < −44 < −26 < 0 < 4 < 9 < 26 < 54 < 73 < 213 < 274 < 345 < 572 < 675

El orden entre los números decimales

Los números decimales son aquellos que tienen una parte entera y una parte decimal, es decir, una cantidad inferior a la unidad. Ambas partes son separadas por una coma.

El orden que siguen los números decimales es parecido a los explicados anteriormente. Observa este ejemplo:

1,4 es menor que 2,4 porque solo se consideraron sus partes enteras.

Si la parte entera de los números es la misma, empezamos a considerar la parte decimal, la cual se divide en cifras con nombres específicos: décimas, centésimas y milésimas. Estas tres unidades decimales son las más comunes, pero la cantidad de cifras puede extenderse hasta el infinito.

Lo más importante a saber para poder ordenar números decimales es que las décimas tienen mayor valor que las centésimas, y estas, a su vez, valen más que las milésimas. Observa las equivalencias:

  • 1 décima = 0,1 unidades
  • 1 centésima = 0,01 unidades
  • 1 milésima = 0,001 unidades

Por lo tanto: 0,1 > 0,01 > 0,001

Ejemplo:

– Compara los números 2,3462 y 2,35.

La parte entera del número es la misma, así que pasamos a la parte decimal. Las décimas son iguales, pero las centésimas no. Como 4 es menor que 5, decimos que 2,3462 es menor que 2,35.

¿Sabías qué?
A diferencia de los números enteros, la cantidad de decimales no determina el valor del número.

¡Colócalos en orden!

– Ordena los siguientes números decimales de menor a mayor y utiliza el símbolo correspondiente.

2,4398; 57,3; 42,45; 17,58; 17,123; 17,982; 17,512; 17,244935; 4,87; 17,983

Solución
2,4398 < 4,87 < 17,123 < 17,244935 < 17,512 < 17,58 < 17,982 < 17,983 < 42,45 < 57,3

Orden de números fraccionarios

Los números fraccionarios o fracciones son aquellos números que representan una división o la separación de algo en varias partes. Están formados por un numerador y denominador, ambos separados por una barra horizontal.

VER INFOGRAFÍA

La comparación de fracciones dependerá del numerador y el denominador. Los casos pueden ser los siguientes:

  • Fracciones con igual denominador.
  • Fracciones con igual numerador.
  • Fracciones con diferentes numeradores y denominadores.

Fracciones con igual denominador

Si dos fracciones tienen el mismo denominador, la mayor fracción será aquella con mayor numerador. Por ejemplo:

¿Por qué \frac{2}{8} es menor que \frac{4}{8}?

Observa las gráficas:

Las dos gráficas están divididas en 8 partes, como lo indica el denominador. En la primera tomamos 2 partes de las 8 (2/8), y en la segunda tomamos 4 partes (4/8). Hay más partes tomadas en la segunda gráfica.

Puedes comprobarlo por medio de divisiones:

\frac{2}{8} = 2 : 8 = \mathbf{0,25}

\frac{4}{8} = 4 : 8 = \mathbf{0,5}

Si comparamos estos números decimales, tenemos que:

0,25 < 0,5

Que es igual a:

\frac{2}{8}< \frac{4}{8}

Fracciones con igual numerador

Si dos fracciones tienen el mismo numerador, la mayor fracción será aquella con menor denominador. Por ejemplo:

¿Por qué \frac{2}{6} es menor que \frac{2}{4}?

Observa las gráficas:

En las dos gráficas tomamos 2 partes, como lo indica el numerador. La primera se dividió en 6 partes totales y la otra en 4 partes totales. A pesar de que el número 6 es mayor que 4, aquí el 6 indica una mayor cantidad de divisiones y esto le resta valor a la fracción.

Puedes comprobarlo por medio de divisiones:

\frac{2}{6} = 2 : 6 = 0,\bar{\mathbf{33}}

\frac{2}{4} = 2 : 4 = \mathbf{0,5}

Si comparamos estos números decimales, tenemos que:

0,\bar{33} < 0,5

Que es igual a:

\frac{2}{6}< \frac{2}{4}

Si tienes dificultades para encontrar el orden de las fracciones, puedes probar este otro método: simplemente divide el numerador entre el denominador, y obtendrás un número entero o un número decimal. Luego sólo tienes que ordenar estos resultados. Su orden será el mismo que el de las fracciones iniciales.

Fracciones con diferente numerador y denominador

Para conocer el orden que tienen estas fracciones no basta con observarlas a simple vista. Para lograrlo debemos seguir dos pasos:

  1. Hallar una fracción equivalente a la que deseamos comparar. Ambas deben tener el mismo denominador.
  2. Comparar las fracciones resultantes según el método ya explicado para las fracciones con igual denominador.

¿Cómo comparar estas fracciones: \frac{8}{5} \frac{5}{9}?

1. Calcula el mínimo común múltiplo de los denominadores. Para ello, debes descomponer cada número en sus factores primos.

m.c.m (5; 9) = 5 x 32 = 5 x 9 = 45

2. Multiplica el denominador por un número cuyo producto sea el m.c.m. Luego multiplica el numerador por ese mismo número. El resultado será su fracción equivalente.

\frac{8\times {\color{Red} 9}}{5\times {\color{Red} 9}}= \frac{72}{\mathbf{45}}

 

\frac{5\times {\color{Red} 5}}{9\times {\color{Red} 5}} = \frac{25}{\mathbf{45}}

 

Observa que en la primera fracción 5 x 9 = 45. Por eso, toda la fracción se multiplica por 9/9. Lo mismo sucede con la fracción 5/9, como 9 x 5 = 45, toda la fracción se multiplica por 5/5.

3. Compara las nuevas fracciones con igual denominador. La mayor fracción será aquella con mayor numerador, y como 72 > 25, entonces:

\frac{72}{45}> \frac{25}{45}

Ejercicios

1. Coloca el símbolo correcto entre los siguientes números.

  1. 10 ____ 9
  2. 4 ____ 4
  3. 8 ____ 27
  4. 46 ____ 6
  5. 59 ____ 59
  6. 40 ____ 70
  7. 2 ____ 22
  8. 100 ____ 1
  9. 23 ____ 32
  10. 85 ____ 85
Solución
  1. 10 > 9
  2. 4 = 4
  3. 8 < 27
  4. 46 > 6
  5. 59 = 59
  6. 40 < 70
  7. 2 < 22
  8. 100 > 1
  9. 23 < 32
  10. 85 = 85

2. Ordena los siguientes números naturales de menor a mayor y utiliza el símbolo correspondiente para ello.

3.546, 12, 53, 4.080, 25.892, 634, 4, 824, 1.450, 234, 73, 896. 111, 724, 1.898, 246, 1, 11, 4.800, 424, 125, 353, 55, 2.

Solución

1 < 2 < 4 < 11 < 12 < 53 < 55 < 73 < 125 < 234 < 246 < 353 < 424 < 634 < 724 < 824 < 1.450 < 1.898 < 3.546 < 3.643 < 4.080 < 4.800 < 25.892 < 896.111

3. Compara estas fracciones. Coloca el signo que corresponda en cada caso.

  • \frac{35}{4} y \frac{24}{8}
Solución

\frac{35}{4} > \frac{24}{8}

  • \frac{3}{7} y \frac{12}{28}
Solución

\frac{3}{7} = \frac{12}{28}

  • \frac{13}{12} y \frac{2}{6}
Solución

\frac{13}{12} > \frac{2}{6}

  • \frac{11}{4} y \frac{11}{6}
Solución

\frac{11}{4}> \frac{11}{6}

  • \frac{64}{89} y \frac{56}{48}
Solución

\frac{64}{89} < \frac{56}{48}

  • \frac{25}{8} y \frac{25}{9}
Solución

\frac{25}{8}> \frac{25}{9}

RECURSOS PARA DOCENTES

Artículo destacado “Comparar y ordenar números”

Este recurso, orientado hacia los más pequeños de la casa, es ideal para repasar las bases de lo explicado aquí.

VER