CAPÍTULO 6 / TEMA 5 (REVISIÓN)

estadística y probabilidad | ¿qué aprendimos?

REPRESENTACIÓN GRÁFICA DE DATOS

Los gráficos son representaciones visuales de alguna información numérica resultante de un proceso estadístico. Son muy efectivos para mostrar relaciones entre diferentes valores y permiten comprender fácilmente distintas situaciones de la realidad. Los datos disponibles de una población se presentan de tal manera que los mismos puedan ser visualizados sistemática y resumidamente. Los gráficos pueden ser de barras, circulares o lineales.

Los gráficos son una gran herramienta visual, porque captan la atención, dan información puntual de los datos y permiten una comparación eficaz.

INTERPRETACIÓN DE DATOS

Los cuadros, los gráficos y las tablas nos brindan información muy valiosa sobre una población determinada. Sin embargo, cuando la cantidad de datos es muy numerosa conviene buscar un valor característico del conjunto, como las que aportan las medidas de tendencia central. La media aritmética o promedio es igual a cociente entre la suma de todos los valores entre la cantidad de valores; la moda es el valor que se presenta con mayor frecuencia; y la mediana, tal como su nombre lo indica, corresponde a un punto medio, equidistante de los extremos.

Un conjunto de datos sin el análisis adecuado solo son valores o números. Requieren de lectura e interpretación adecuada para volverse útiles.

PROBABILIDAD

La probabilidad es un mecanismo matemático que nos permite estudiar sucesos aleatorios, es decir, operaciones cuyos resultados no pueden ser anticipados con seguridad, como lanzar un dado, lanzar una moneda o sacar una carta específica de un mazo. A través del cálculo de probabilidad se puede conocer cuántas posibilidades existen de que un fenómeno tenga lugar o no. A cada una de estas posibilidades se las denomina evento o suceso. El conjunto de eventos posibles constituye lo que se denomina espacio muestral.

Las probabilidades no predicen el futuro, únicamente valoran las diferentes posibilidades de un evento. Esta valoración es producto de un cálculo matemático que va de 0 (imposible) a 1 (totalmente posible).

¿QUÉ ES LA ESTADÍSTICA?

La estadística es una ciencia dentro del área de las matemáticas que se encarga de interpretar los datos obtenidos de la observación de un fenómeno en particular. Busca reunir información sobre determinados individuos o grupos, organizar datos y permitir una correcta interpretación. La finalidad de este proceso es tomar decisiones en base a las predicciones que pueden realizarse.

Los procedimientos estadísticos se hacen sobre el total de una población o sobre una muestra. Por ejemplo, cuando nos hacen un análisis de sangre no toman toda nuestra sangre, solo un poco de esta, es decir, una muestra.

CAPÍTULO 6 / TEMA 3

PROBABILIDAD

Si lanzas un dado, ¿cuáles son los posibles resultados? ¡6! Esto es así porque los dados tienen 6 caras; no obstante, no sabemos con certeza cuál de esos números saldrá. Esto es lo que se conoce como experimento aleatorio, y gracias a la probabilidad podemos medir la posibilidad de que este ocurra o no ocurra.

Los juegos de azar son aquellos cuyo resultado es aleatorio y dependen principalmente de la casualidad, sin que la habilidad del jugador sea un factor importante. La mayoría de estos involucra apuestas y mientras menor sea la probabilidad de ganar, mayor será el premio obtenido. El bingo, la ruleta y las quinielas son algunos ejemplos de juegos de azar.

VER INFOGRAFÍA

experimento determinista y aleatorio

Todos los fenómenos que ocurren en nuestra vida pueden ser catalogados como deterministas o aleatorios.

Los experimentos o fenómenos deterministas son los que suceden con seguridad, es decir, al repetirlos en las mismas condiciones se obtiene el mismo resultado; por ejemplo:

  • El agua se congela a 0 °C.
  • Al multiplicar 2 × 2 el resultado es 4.

Los experimentos o fenómenos aleatorios suceden al azar, no es posible predecir su resultado; por ejemplo:

  • Sacar una carta de un mazo de naipes.
  • Lanzar una moneda.
Lanzar un dado es un experimento aleatorio que podrías analizar por medio de cálculos de probabilidad. Aquí las variables aleatorias pueden tomar dos o más valores que no se pueden anticipar con certeza. Por ejemplo, al arrojar un dado los posibles resultados son 1, 2, 3, 4, 5 y 6. Sabemos qué valores pueden salir, pero no podemos asegurar cuál de ellos será.

TIPOS DE EVENTOS aleatorios

Los eventos aleatorios pueden ser seguros, posiblesimposibles. 

  • Los eventos imposibles no pueden ocurrir nunca; por ejemplo, lanzar un dado y que salga el número mayor a 7.
  • Los eventos posibles ocurren algunas veces; por ejemplo, lanzar un dado y que salga el número 3.
  • Los eventos seguros ocurren siempre y coinciden con el espacio muestral; por ejemplo, lanzar un dado y que salga un número menor a 7.

¿Qué es el espacio muestral?

Es el conjunto que contiene a todos los resultados posibles de un experimento aleatorio. Lo representamos con E. Se denomina “suceso elemental” a cada uno de los posibles resultados. Por ejemplo:

Experimento Espacio muestral
Lanzar un dado E = {1, 2, 3, 4, 5, 6}
Lanzar una moneda E = {cara, cruz}

PROBABILIDAD DE UN EVENTO

La probabilidad de un resultado o acontecimiento es la proporción de las veces en que ocurrirán. En otras palabras, la probabilidad es el mecanismo matemático a través del cual pueden estudiarse sucesos aleatorios, es decir, operaciones cuyos resultados no pueden ser anticipados con seguridad, como el lanzamiento de un dado, la tirada de ruleta o un juego de cartas.

En los casos donde las posibilidades de obtener uno u otro resultado no son iguales, se analizan las probabilidades por medio de la definición del matemático francés Pierre de Laplace: La probabilidad de un acontecimiento es igual al cociente entre el número de casos favorables y el número de casos igualmente posibles”.

P=\frac{casos \: favorables}{casos\: posibles}

– Ejemplo 1:

En un bolillero hay 24 bolas, 20 rojas y 4 azules, ¿cuál es la probabilidad de extraer una bola roja?,

Casos favorables Casos posibles Casos favorables/Casos posibles
20 24 20/24 = 5/6

La probabilidad de que salga una bola roja es de 5/6.

Podemos expresar la probabilidad como una fracción, un número decimal o porcentaje. Por lo tanto, para este caso podemos decir que:

P = 5/6

P = 0,83

P = 83,33 %

¿Sabías qué?
Para transformar la probabilidad en fracción a porcentaje basta con multiplicar el cociente entre el numerador y el denominador por 100.

– Ejemplo 2:

Al lanzar un dado, ¿cuál es la probabilidad de obtener un número mayor que 4?

Casos favorables Casos posibles Casos favorables/Casos posibles
2

{5, 6}

6

{1, 2, 3, 4, 5, 6}

2/6 = 1/3

La probabilidad de obtener un número mayor que 4 es de 1/3. También podemos expresarlo de la siguiente manera:

P = 1/3

P = 0,33

P = 33,33 %

Baraja francesa

Es un conjunto de cartas divididas en cuatro palos: corazones, picas, tréboles y rombos. De cada palo hay 13 cartas, por lo tanto, el mazo está formado por 52 cartas totales. Los corazones y los rombos son de color rojo, y los tréboles y las picas son de color negro. Estos naipes son ampliamente utilizados en juegos de mesa y azar. Si tuviésemos que sacar una carta del mazo sin ver tendríamos las siguientes probabilidades:

Evento Probabilidad (fracción) Probabilidad (número decimal) Probabilidad (porcentaje)
Sacar una carta de corazones 13/52 = 1/4 0,25 25 %
Sacar el 4 de tréboles 1/52 0,02 2 %
Sacar una carta con dos palos 0 0 0 %
Sacar una carta roja 26/52 = 1/2 0,5 50 %

árbol de probabilidades

Los diagramas de árbol se utilizan en matemática principalmente para identificar formas de agrupar elementos o para indicar los factores que conforman un determinado número. Sin embargo, también pueden aplicarse a experimentos probabilísticos de distinto tipo en la que las formas de ordenar se llamarán “casos posibles”.

– Ejemplo:

Si lanzamos una moneda tres veces, ¿cuántos resultados posibles tendríamos?

En este diagrama de árbol observamos que hay 8 casos posibles u 8 posibles combinaciones de resultados si lanzamos una moneda tres veces.

– Ejemplo 2:

Observa de nuevo el diagrama, ¿cuál es la probabilidad de obtener tres veces cara al lanzar una moneda tres veces seguidas?

Para responder esta pregunta debemos ver todas las posibles opciones. Como solo una cumple este requerimiento y los posibles casos son 8, decimos que la probabilidad de obtener tres veces cara al lanzar una moneda tres veces seguidas es:

P = 1/8

P = 0,125

P = 12,5 %

¡A practicar!

Expresa en fracción, número decimal y porcentaje la probabilidad de que ocurran los siguientes eventos:

  • Lanzar un dado y que salga un número impar.
Solución

P = 3/6 = 1/2

P = 0,5

P = 50 %

  • Sacar una carta con número par de un grupo de 10 cartas numeradas del 1 al 10.
Solución

P = 5/10 = 1/2

P = 0,5

P = 50 %

  • Sacar una bola verde de una urna que tiene 3 bolas rojas, 5 bolas verdes y 3 bolas amarillas.
Solución

P= 5/11

P = 0,45

P = 45,5 %

  • Sacar una carta de tréboles de un mazo de baraja francesa.
Solución

P = 13/52 = 1/4

P = 0,25

P = 25 %

RECURSOS PARA DOCENTES

Artículo “Probabilidad”

Con este artículo se podrá profundizar sobre el concepto de probabilidad. Además hay algunos ejercicios para poner en práctica lo aprendido.

VER