Los gráficos son representaciones visuales de alguna información numérica resultante de un proceso estadístico. Son muy efectivos para mostrar relaciones entre diferentes valores y permiten comprender fácilmente distintas situaciones de la realidad. Los datos disponibles de una población se presentan de tal manera que los mismos puedan ser visualizados sistemática y resumidamente. Los gráficos pueden ser de barras, circulares o lineales.
INTERPRETACIÓN DE DATOS
Los cuadros, los gráficos y las tablas nos brindan información muy valiosa sobre una población determinada. Sin embargo, cuando la cantidad de datos es muy numerosa conviene buscar un valor característico del conjunto, como las que aportan las medidas de tendencia central. La media aritmética o promedio es igual a cociente entre la suma de todos los valores entre la cantidad de valores; la moda es el valor que se presenta con mayor frecuencia; y la mediana, tal como su nombre lo indica, corresponde a un punto medio, equidistante de los extremos.
PROBABILIDAD
La probabilidad es un mecanismo matemático que nos permite estudiar sucesos aleatorios, es decir, operaciones cuyos resultados no pueden ser anticipados con seguridad, como lanzar un dado, lanzar una moneda o sacar una carta específica de un mazo. A través del cálculo de probabilidad se puede conocer cuántas posibilidades existen de que un fenómeno tenga lugar o no. A cada una de estas posibilidades se las denomina evento o suceso. El conjunto de eventos posibles constituye lo que se denomina espacio muestral.
¿QUÉ ES LA ESTADÍSTICA?
La estadística es una ciencia dentro del área de las matemáticas que se encarga de interpretar los datos obtenidos de la observación de un fenómeno en particular. Busca reunir información sobre determinados individuos o grupos, organizar datos y permitir una correcta interpretación. La finalidad de este proceso es tomar decisiones en base a las predicciones que pueden realizarse.
Existen diversas maneras de recopilar datos, por ejemplo, en un censo demográfico se hacen encuestas a nivel nacional para saber el tamaño de la población y composición del hogar. Cuando la cantidad de datos es numerosa, necesitamos un valor que sea característico de ese conjunto, para eso empleamos la media, la moda y la mediana.
media aritmética
La media aritmética o promedio es utilizada con frecuencia en la vida cotidiana, este sencillo cálculo permite determinar el valor característico de un grupo. Dado un conjunto de números (n): x1, x2, x3,…, xn, la media aritmética es igual a la suma de todos los datos entre la cantidad total de estos. La fórmula es la siguiente:
– Ejemplo 1:
Pedro vendió galletas durante una semana y registró sus ventas en una tabla. ¿Cuántas galletas en promedio vendió Pedro por día?
Días
Galletas vendidas
Lunes
12
Martes
6
Miércoles
7
Jueves
8
Viernes
4
Sábado
7
Domingo
12
Para saber la cantidad de galletas que se vendieron en promedio solo tenemos que aplicar la fórmula. Sumamos todos los valores y dividimos entre la cantidad de días.
En promedio, Pedro vendió 8 galletas diarias.
– Ejemplo 2:
María obtuvo las siguientes calificaciones en cada corte del año: 15, 17, 18 y 16. ¿Cuál es su calificación promedio?
El promedio de calificaciones de María es 16,5 puntos.
¡Es tu turno!
Las estaturas de un grupo de alumnos son: 155 cm, 152 cm, 158 cm, 162 cm, 158 cm y 163 cm. ¿Cuál es la estatura promedio?
Solución
Este grupo de alumnos tiene una estatura promedio de 158 cm.
¿Sabías qué?
Los docentes suelen utilizar el cálculo del promedio o media aritmética para informar las calificaciones finales de sus alumnos.
LA MODA
La moda (Mo) es el valor que se presenta con mayor frecuencia en una muestra, es decir, es el valor que más se repite. Para hallar la moda es recomendable ordenar los datos y verificar la cantidad de veces que aparece cada uno.
– Ejemplo:
En una venta de helados se anotaron los sabores más vendidos durante la semana. El registro está en esta tabla. Obsérvala y responde: ¿cuál es la moda de los sabores?
Sabor del helado
Cantidad de helados vendidos
Fresa
45
Chocolate
56
Vainilla
34
Colita
29
La moda es el valor con mayor frecuencia, en este caso el sabor de helado que más se vendió fue el de chocolate porque 56 > 45 > 34 > 29. Así que:
Mo = 56
¡Es tu turno!
¿Cuál es la moda de los siguientes conjuntos de datos?
8, 5, 7, 8, 6, 10, 9, 7, 2 y 7.
Solución
Mo = 7
8, 10, 6, 10, 2, 5, 7, 8, 10, 10 y 8.
Solución
Mo = 10
Distribución bimodal
La moda es el valor con mayor frecuencia en las distribuciones de los datos y en gráfico estadístico es fácil de distinguir porque representa la punta más alta. Sin embargo, puede suceder que se encuentren dos modas, en este caso la distribución de los datos se llama “bimodal”. En la imagen podemos ver una distribución normal (izquierda) y una bimodal (derecha).
LA MEDIANA
La mediana (Me), tal como su nombre lo indica, corresponde a un punto medio, equidistante de los extremos. Esta corresponde al valor para el cual la cantidad de datos menores y mayores a él es igual. Cuando los elementos del conjunto de datos son un número impar, la mediana queda definida. Si la cantidad de datos es par, la mediana es el promedio entre los dos datos centrales.
– Ejemplo 1:
Las calificaciones de 7 alumnos son: 12, 15, 12, 11, 16, 19 y 12. ¿Cuál es la mediana?
Primero organizamos de menor a mayor los datos, luego ubicamos el valor central.
11, 12, 12, 12, 15, 16, 19
Nota que hay tres valores tanto a la derecha como a la izquierda del centro. Por lo tanto:
Me = 12
– Ejemplo 2:
En un grupo de baile hay 8 alumnos cuyas edades son: 22, 16, 18, 21, 20, 21, 14, 17. ¿Cuál es la mediana?
Organizamos lo datos y ubicamos los valores centrales:
14, 16, 17, 18, 20, 21, 21, 22
Como la cantidad de datos es par, hay dos valores centrales: 18 y 20. Para saber la mediana calculamos la media aritmética de ambos valores:
Por lo tanto,
Me = 19
¡Es tu turno!
14, 16, 12, 12, 10, 18, 20, 14
Solución
Me = 14
12, 13, 14, 15, 16, 17, 18, 19, 20
Solución
Me =16
TABLAS DE DOBLE ENTRADA
Las tablas de doble entrada son un recurso muy útil a la hora de organizar la información. Las mismas posibilitan presentar los datos de forma clara. Se trata de un conjunto de filas y columnas que representan la interacción entre dos o más variables.
– Ejemplo:
Esta tabla muestra la cantidad de veces que Marcos, Pedro y Lucía fueron al museo en tres meses:
Febrero
Marzo
Abril
Marcos
1
2
3
Pedro
4
5
1
Lucía
5
4
2
De la tabla podemos concluir que:
Lucía visitó el museo más veces en febrero.
Pedro visitó el museo más veces en marzo.
Marcos visitó el museo más veces en abril.
¡Es tu turno!
1. Calcula el promedio de las visitas por persona.
Solución
Marcos: {1, 2, 3}
Pedro: {4, 5, 1}
Lucía: {5, 4, 2}
2. Calcula el promedio de las visitas por mes.
Solución
Febrero: {1, 4, 5}
Marzo: {2, 5, 4}
Abril: {3,1, 2}
¡A practicar!
1. Un grupo de 11 alumnos recibió sus calificaciones de música: 7, 2, 5, 6 ,8 ,9 ,6, 5, 4, 6 y 8. ¿Cuál es el promedio, la moda y la mediana?
Solución
2. Las estaturas en centímetros de un grupo de alumnos son las siguientes: 139, 134, 128, 135, 129, 139. ¿Cuál es el promedio, la moda y la mediana?
Solución
RECURSOS PARA DOCENTES
Artículo “Las medidas de tendencia central”
En el siguiente artículo encontrarás detalladas las principales medidas de tendencia central explicadas con ejercicios adecuados para la edad de los alumnos.