CAPÍTULO 1 / TEMA 4

Valor posicional

El sistema de numeración decimal es el más usado en todo el mundo. Se caracteriza por ser posicional, es decir, cada cifra toma un valor diferente de acuerdo al lugar que ocupe dentro de un número. Esta característica es conocida como valor posicional, y es aplicable a todos los números incluidos los enteros y decimales.

Valor posicional de cifras hasta 100.000

Como se mencionó al comienzo, las cifras de un número adquieren distinto valor según la posición que ocupen. No es lo mismo una cifra ubicada en la columna de las unidades de mil que la misma localizada en la columna de las decenas. Por ejemplo, la posición que ocupa la cifra 1 en los números 1.524 y 4.314 no tiene el misma valor. En el número 1.524 está en la columna de las unidades de mil y en el número 4.314 ocupa el lugar de las decenas. Aunque es la misma cifra, representa magnitudes diferentes: 1.000 y 10 respectivamente. Por eso se dice que el valor de las cifras depende de la posición que ocupen.

Valores de una cifra

Toda cifra tiene dos valores: uno absoluto y otro relativo. El valor absoluto es el valor de la cifra en sí mismo, es decir, el que tiene por su figura. El valor relativo es el que tiene una cifra de acuerdo a la posición que ocupa dentro de un número. Por ejemplo, en el caso del número 5.050 el valor absoluto de los dos 5 es el mismo, es decir 5. Pero el valor relativo no es igual. Para el primer cinco, el valor relativo es 5.000 por estar en el lugar de las unidades de mil y para el segundo cinco el valor relativo es de 50 por estar ubicado en la columna de las decenas.

¿Sabías qué?
Conocer el valor posicional de un número facilita su descomposición, que es de gran ayuda al momento de realizar operaciones y de escribir en letras un número.

Tabla posicional

Permite ver de manera sencilla la ubicación de las cifras de un número. En la tabla se muestra por columna cada valor posicional correspondiente: centena de mil, decena de mil, unidad de mil, centena, decena y unidad.

La tabla posicional para un número de seis cifras se presenta así:

Representación de números en la tabla posicional

Las cifras de un número se ubican en la tabla posicional en la columna a la que corresponda su valor, de derecha a izquierda. De este modo, si quisiéramos representar el número 195.632 en la tabla posicional, quedaría de la siguiente forma:

Se puede observar el valor posicional de cada cifra:

  • El 1 pertenece a las centenas de mil.
  • El 9 pertenece a las decenas de mil.
  • El 5 pertenece a las unidades de mil.
  • El 6 pertenece a las centenas.
  • El 3 pertenece a las decenas.
  • El 2 pertenece a las unidades.

Es por ello que si se deseas conocer el valor relativo de una cifra es aconsejable emplear la tabla posicional.

¿Sabías qué?
Las centenas de mil, decenas de mil y unidades de mil también son conocidas como centenas de millar, decenas de millar y unidades de millar respectivamente.

Descomposición aditiva de un número

Cualquier número puede expresarse a través de la suma, en lo que se conoce como descomposición aditiva. Este tipo de descomposición expresa en forma de suma el valor posicional de cada una de sus cifras.

Por ejemplo, el número 1.458 se descompone de la siguiente manera:

1.458 = 1.000 + 400 + 50 + 8

Toda esta descomposición parte de que el número 1.458 esta formado por:

  • 1 unidad de mil = 1 x 1.000 = 1.000
  • 4 centenas = 4 x 100 = 400
  • 5 decenas = 5 x 10 = 50
  • 8 unidades = 8 x 1 = 8

Otros ejemplos son:

  • 254.331 = 200.000 + 50.000 + 4.000 + 300 + 30 + 1
  • 85.417 = 80.000 + 5.000 + 400 + 10 + 7
  • 30.154 = 30.000 + 100 + 50 + 4
  • 100.540 = 100.000 + 500 + 40
Los números pueden expresarse a través de la suma en una descomposición aditiva. Este tipo de descomposición no es más que una expresión en la que se representa un número en forma de suma y donde cada sumando corresponde al valor posicional que tenga cada dígito dentro de un número. Para realizar este tipo de descomposición es necesario conocer el valor posicional de las cifras.

¿Sabías qué?
Cuando se descomponen números de forma aditiva las cifras iguales a cero se omiten en los sumandos.

Valor posicional de decimales

La tabla posicional de los decimales es similar a la que se usa en los números enteros, la diferencia es que incluyen las cifras de la parte decimal: las décimas, centésimas y milésimas:

El procedimiento para ubicar los números en la tabla posicional es exactamente igual y se debe verificar que la coma o punto decimal se encuentre en su columna correspondiente.

El número 128.457,639 se expresa en la tabla de la siguiente forma:

En la tabla se puede observar el valor de cada cifra:

El 1 pertenece a las centenas de mil.

El 2 pertenece a las decenas de mil.

El 8 pertenece a las unidades de mil.

El 4 pertenece a las centenas.

El 5 pertenece a las decenas.

El 7 pertenece a las unidades.

El 6 pertenece a las décimas.

El 3 pertenece a las centésimas.

El 9 pertenece a las milésimas.

Descomposición aditiva de decimales

Los números decimales contienen dos partes: la parte entera y la parte decimal. La parte entera se descompone de la misma forma como se descomponen los números enteros; en la parte decimal por ser menor que la unidad se debe considerar el valor posicional que es diferente:

  • 1 décima equivale a 0,1 unidades.
  • 1 centésima a 0,01 unidades.
  • 1 milésima equivale a 0,001 unidades.

Al aplicar esto, la descomposición aditiva del número 0,584 sería: 0,584 = 0,5 + 0,08 + 0,004.

Ejercicios

  1. ¿Qué valor posicional tiene la cifra 2 en el número 125.534?
    Solución
    Decena de mil.
  2.  ¿Qué valor posicional tiene la cifra 5 en el número 24,25?
    Solución
    Centésima.
  3. ¿Qué valor posicional tiene la cifra 1 en el número 102.345?
    Solución
    Centena de mil.
  4. ¿Qué valor posicional tiene la cifra 7 en el número 1.007,468?
    Solución
    Unidad.
  5. Expresa la descomposición aditiva de los siguientes números:
    a) 1.865
    Solución
    1.865 = 1.000 + 800 + 60 + 5
    b) 198.456
    Solución
    198.056 = 100.000 + 90.000 + 8.000 + 50 + 6
    c) 74.600
    Solución
    74.600 = 70.000 + 4.000 + 600
    d) 0,54
    Solución
    0,54 = 0,5 + 0,04
    e) 105.111
    Solución
    105.111 = 100.000 + 5.000 + 100 + 10 + 1
    f) 3.333
    Solución
    3.333 = 3.000 + 300 + 30 + 3
    g) 15.287
    Solución
    15.287 = 10.000 + 5.000 + 200 + 80 +7
    d) 0,025
    Solución
    0,025 = 0,02 + 0,005
RECURSOS PARA DOCENTES

Artículo “Valores absolutos y relativos”

El presente artículo permite ampliar el conocimiento del valor absoluto y relativo de una cifra.

VER

Artículo “Sistemas posicionales de numeración”

En el siguiente artículo se explica qué es un sistema de numeración y se mencionan algunos de los tipos más comunes.

VER

Artículo “Composición y descomposición de números”

Este artículo explica qué es una composición aditiva y su diferencia con la descomposición aditiva, así como la aplicación de esta última en problemas cotidianos.

VER