EL HOMBRE SIEMPRE HA TENIDO LA NECESIDAD DE CONTAR Y POR ESO INVENTÓ LOS SISTEMAS DE NUMERACIÓN. NOSOTROS USAMOS EL SISTEMA DECIMAL QUE SOLO TIENE DIEZ CIFRAS CON LAS QUE PODEMOS FORMAR CUALQUIER CANTIDAD DE NÚMEROS. PERO ¿CÓMO HACERLO? DEBEMOS SABER EL VALOR DE CADA CIFRA DENTRO DEL NÚMERO, ES DECIR, SU VALOR POSICIONAL.
¿QUÉ ES EL VALOR POSICIONAL?
ES EL VALOR QUE TIENE UNA CIFRA SEGÚN SU POSICIÓN EN EL NÚMERO. ESTAS POSICIONES TIENEN UN NOMBRE Y PUEDEN SER UNIDADES, DECENAS O CENTENAS. OBSERVA Y RESPONDE:
PARA SABER LOS VALORES DE CADA CIFRA EN UN NÚMERO USAMOS UNA TABLA DE VALOR POSICIONAL COMO ESTA:
EL NÚMERO 468 TIENE:
8 UNIDADES.
6 DECENAS.
4 CENTENAS.
¡CAMBIEMOS POSICIONES!
LA POSICIÓN DE UNA CIFRA EN UN NÚMERO INDICAN UN VALOR. SI UNA DE LAS CIFRAS CAMBIA DE POSICIÓN, ENTONCES SE CONVIERTE EN OTRO NÚMERO. OBSERVA ESTOS EJEMPLOS EN LOS QUE CAMBIAMOS LAS POSICIONES DE TRES CIFRAS: 4, 6 Y 8.
NÚMERO
VALOR POSICIONAL
SE LEE
468
4 CENTENAS
6 DECENAS
8 UNIDADES
CUATROCIENTOS SESENTA Y OCHO.
486
4 CENTENAS
8 DECENAS
6 UNIDADES
CUATROCIENTOS OCHENTA Y SEIS.
864
8 CENTENAS
6 DECENAS
4 UNIDADES
OCHOCIENTOS SESENTA Y CUATRO.
846
8 CENTENAS
4 DECENAS
6 UNIDADES
OCHOCIENTOS CUARENTA Y SEIS.
684
6 CENTENAS
8 DECENAS
4 UNIDADES
SEISCIENTOS OCHENTA Y CUATRO.
648
6 CENTENAS
4 DECENAS
8 UNIDADES
SEISCIENTOS CUARENTA Y OCHO.
DESCOMPOSICIÓN DE NÚMEROS
CONSISTE EN CONVERTIR UN NÚMERO EN UNA SUMA DE SUS VALORES POSICIONALES.
– EJEMPLO:
EL NÚMERO 183 TIENE:
1 CENTENA = 1 VEZ 100 = 100 UNIDADES
8 DECENAS = 8 VECES 10 = 80 UNIDADES
3 UNIDADES = 3 VECES 1 = 3 UNIDADES
ENTONCES, LA DESCOMPOSICIÓN DEL NÚMERO 183 ES LA SIGUIENTE:
183 = 1 C + 8 D + 3 U
183 = 100 + 80 + 3
¡A PRACTICAR!
REALIZA LA DESCOMPOSICIÓN ADITIVA DE LOS SIGUIENTES NÚMEROS:
642
SOLUCIÓN
642 = 6 C + 4 D + 2 U
642 = 600 + 40 + 2
789
SOLUCIÓN
789 = 7 C + 8 D + 9 U
789 = 700 + 80 + 9
453
SOLUCIÓN
453 = 4 C + 5 D + 3 U
453 = 400 + 50 + 3
998
SOLUCIÓN
998 = 9 C + 9 D + 8 U
998 = 900 + 90 + 8
¿SABÍAS QUÉ?
LA DESCOMPOSICIÓN DEL NÚMERO 1.000 TIENE UNA UNIDAD DE MIL Y SE ESCRIBE “1 UM”.
UBICACIÓN EN LA RECTA NUMÉRICA
ES UNA LÍNEA RECTA EN LA QUE UBICAMOS LOS NÚMEROS. EL 0 ES EL COMIENZO DE LA RECTA, LUEGO VAN LOS NÚMEROS DE 1 EN 1 DE MENOR A MAYOR.
– EJEMPLO:
– EJEMPLO:
LAS EDADES DE CINCO HERMANOS SON LAS SIGUIENTES:
JUAN: 2 AÑOS; INÉS: 5 AÑOS; ALDO: 9 AÑOS; CARLA: 12 AÑOS; y LUCÍA: 18 AÑOS.
SI DESEAMOS UBICAR EN UNA RECTA NUMÉRICA LAS EDADES DE LOS HERMANOS SEGUIMOS ESTOS PASOS:
1) DIBUJAMOS UNA RECTA CON LAS FLECHAS EN LOS EXTREMOS, HACEMOS DIVISIONES DE IGUAL DISTANCIA Y UBICAMOS EL 0.
2) EN ESTE CASO HICIMOS 20 DIVISIONES PARA UBICAR TODAS LAS EDADES.
3) COLOCAMOS UN PUNTO EN EL VALOR DE LAS EDADES.
OBSERVA QUE MIENTRAS MÁS AVANZA HACIA LA DERECHA, MAYORES SON LOS NÚMEROS.
¡A PRACTICAR!
1. REALIZA LA DESCOMPOSICIÓN DE ESTOS NÚMEROS.
275
SOLUCIÓN
275 = 2 C + 7 D + 5 U = 200 + 70 + 5
638
SOLUCIÓN
638 = 6 C + 3 D + 8 U = 600 + 30 + 8
996
SOLUCIÓN
996 = 9 C + 9 D + 6 U = 900 + 90 + 6
47
SOLUCIÓN
47 = 4 D + 7 U = 40 + 7
546
SOLUCIÓN
546 = 500 + 40 + 6
87
SOLUCIÓN
87 = 80 + 7
788
SOLUCIÓN
788 = 700 + 80 + 8
9 D + 2 U =
SOLUCIÓN
92 = 90 + 2
2. UBICA EN ESTA RECTA NUMÉRICA LOS SIGUIENTES NÚMEROS: 0, 3, 10, 15 Y 20.
SOLUCIÓN
RECURSOS PARA DOCENTES
Composición y descomposición de números
El siguiente artículo destacado te permitirá trabajar con los alumnos la composición y descomposición aditiva de números.
El sistema de numeración decimal es el más usado en todo el mundo. Se caracteriza por ser posicional, es decir, cada cifra toma un valor diferente de acuerdo al lugar que ocupe dentro de un número. Esta característica es conocida como valor posicional, y es aplicable a todos los números incluidos los enteros y decimales.
Valor posicional de cifras hasta 100.000
Como se mencionó al comienzo, las cifras de un número adquieren distinto valor según la posición que ocupen. No es lo mismo una cifra ubicada en la columna de las unidades de mil que la misma localizada en la columna de las decenas. Por ejemplo, la posición que ocupa la cifra 1 en los números 1.524 y 4.314 no tiene el misma valor. En el número 1.524 está en la columna de las unidades de mil y en el número 4.314 ocupa el lugar de las decenas. Aunque es la misma cifra, representa magnitudes diferentes: 1.000 y 10 respectivamente. Por eso se dice que el valor de las cifras depende de la posición que ocupen.
Valores de una cifra
Toda cifra tiene dos valores: uno absoluto y otro relativo. El valor absoluto es el valor de la cifra en sí mismo, es decir, el que tiene por su figura. El valor relativo es el que tiene una cifra de acuerdo a la posición que ocupa dentro de un número. Por ejemplo, en el caso del número 5.050 el valor absoluto de los dos 5 es el mismo, es decir 5. Pero el valor relativo no es igual. Para el primer cinco, el valor relativo es 5.000 por estar en el lugar de las unidades de mil y para el segundo cinco el valor relativo es de 50 por estar ubicado en la columna de las decenas.
¿Sabías qué?
Conocer el valor posicional de un número facilita su descomposición, que es de gran ayuda al momento de realizar operaciones y de escribir en letras un número.
Tabla posicional
Permite ver de manera sencilla la ubicación de las cifras de un número. En la tabla se muestra por columna cada valor posicional correspondiente: centena de mil, decena de mil, unidad de mil, centena, decena y unidad.
La tabla posicional para un número de seis cifras se presenta así:
Representación de números en la tabla posicional
Las cifras de un número se ubican en la tabla posicional en la columna a la que corresponda su valor, de derecha a izquierda. De este modo, si quisiéramos representar el número 195.632 en la tabla posicional, quedaría de la siguiente forma:
Se puede observar el valor posicional de cada cifra:
El 1 pertenece a las centenas de mil.
El 9 pertenece a las decenas de mil.
El 5 pertenece a las unidades de mil.
El 6 pertenece a las centenas.
El 3 pertenece a las decenas.
El 2 pertenece a las unidades.
Es por ello que si se deseas conocer el valor relativo de una cifra es aconsejable emplear la tabla posicional.
¿Sabías qué?
Las centenas de mil, decenas de mil y unidades de mil también son conocidas como centenas de millar, decenas de millar y unidades de millar respectivamente.
Descomposición aditiva de un número
Cualquier número puede expresarse a través de la suma, en lo que se conoce como descomposición aditiva. Este tipo de descomposición expresa en forma de suma el valor posicional de cada una de sus cifras.
Por ejemplo, el número 1.458 se descompone de la siguiente manera:
1.458 = 1.000 + 400 + 50 + 8
Toda esta descomposición parte de que el número 1.458 esta formado por:
1 unidad de mil = 1 x 1.000 = 1.000
4 centenas = 4 x 100 = 400
5 decenas = 5 x 10 = 50
8 unidades = 8 x 1 = 8
Otros ejemplos son:
254.331 = 200.000 + 50.000 + 4.000 + 300 + 30 + 1
85.417 = 80.000 + 5.000 + 400 + 10 + 7
30.154 = 30.000 + 100 + 50 + 4
100.540 = 100.000 + 500 + 40
¿Sabías qué?
Cuando se descomponen números de forma aditiva las cifras iguales a cero se omiten en los sumandos.
Valor posicional de decimales
La tabla posicional de los decimales es similar a la que se usa en los números enteros, la diferencia es que incluyen las cifras de la parte decimal: las décimas, centésimas y milésimas:
El procedimiento para ubicar los números en la tabla posicional es exactamente igual y se debe verificar que la coma o punto decimal se encuentre en su columna correspondiente.
El número 128.457,639 se expresa en la tabla de la siguiente forma:
En la tabla se puede observar el valor de cada cifra:
El 1 pertenece a las centenas de mil.
El 2 pertenece a las decenas de mil.
El 8 pertenece a las unidades de mil.
El 4 pertenece a las centenas.
El 5 pertenece a las decenas.
El 7 pertenece a las unidades.
El 6 pertenece a las décimas.
El 3 pertenece a las centésimas.
El 9 pertenece a las milésimas.
Descomposición aditiva de decimales
Los números decimales contienen dos partes: la parte entera y la parte decimal. La parte entera se descompone de la misma forma como se descomponen los números enteros; en la parte decimal por ser menor que la unidad se debe considerar el valor posicional que es diferente:
1 décima equivale a 0,1 unidades.
1 centésima a 0,01 unidades.
1 milésima equivale a 0,001 unidades.
Al aplicar esto, la descomposición aditiva del número 0,584 sería: 0,584 = 0,5 + 0,08 + 0,004.
Ejercicios
¿Qué valor posicional tiene la cifra 2 en el número 125.534?
Solución
Decena de mil.
¿Qué valor posicional tiene la cifra 5 en el número 24,25?
Solución
Centésima.
¿Qué valor posicional tiene la cifra 1 en el número 102.345?
Solución
Centena de mil.
¿Qué valor posicional tiene la cifra 7 en el número 1.007,468?
Solución
Unidad.
Expresa la descomposición aditiva de los siguientes números:
a) 1.865
Solución
1.865 = 1.000 + 800 + 60 + 5
b) 198.456
Solución
198.056 = 100.000 + 90.000 + 8.000 + 50 + 6
c) 74.600
Solución
74.600 = 70.000 + 4.000 + 600
d) 0,54
Solución
0,54 = 0,5 + 0,04
e) 105.111
Solución
105.111 = 100.000 + 5.000 + 100 + 10 + 1
f) 3.333
Solución
3.333 = 3.000 + 300 + 30 + 3
g) 15.287
Solución
15.287 = 10.000 + 5.000 + 200 + 80 +7
d) 0,025
Solución
0,025 = 0,02 + 0,005
RECURSOS PARA DOCENTES
Artículo “Valores absolutos y relativos”
El presente artículo permite ampliar el conocimiento del valor absoluto y relativo de una cifra.
Artículo “Composición y descomposición de números”
Este artículo explica qué es una composición aditiva y su diferencia con la descomposición aditiva, así como la aplicación de esta última en problemas cotidianos.
Hay ocasiones en las que los números enteros no son útiles para expresar ciertas magnitudes; los números decimales, en cambio, permiten indicar una cantidad ubicada entre dos enteros y por este motivo son usados a diario en diversas situaciones, como por ejemplo en los precios de los productos y la lectura de la temperatura del cuerpo.
¿Qué son los números decimales?
Son números formados por una parte entera y otra parte menor que la unidad. Los números decimales generalmente se representan con una coma (,) para indicar la separación entre la parte entera que puede ser igual a cero y la parte menor a la unidad.
Los decimales de un número pueden ser finitos o infinitos.
Por ejemplo:
– El número 3,15 es un decimal con un número finito de decimales.
– El número pi es un número con infinitos decimales: 3,1415926535… Al observar sus decimales se puede apreciar que no son periódicos, por lo tanto no siguen un patrón de repetición, a este tipo de números se lo conoce como número irracional.
Los puntos suspensivos (…) son usados para indicar que los decimales de un número son infinitos.
Elementos de un decimal
Como ya sabemos, los números decimales están formados por una parte entera y otra menor a la unidad (conocida también como parte decimal), la parte entera se ubica a la izquierda y la parte decimal a la derecha de la coma.
La parte entera puede ser igual a cero, como por ejemplo 0,5, que es la mitad del número 1.
La parte decimal es conocida también como parte fraccionaria, y siempre representa cantidades menores a la unidad.
Lectura de decimales
Antes de aprender a leer números decimales es importante conocer los conceptos de décima, centésima y milésima.
Décima: es el resultado de dividir la unidad en diez partes iguales. En la tabla de valor posicional se muestra con la letra d minúscula.
Centésima: es el resultado de dividir la unidad en cien partes iguales. En la tabla de valor posicional se muestra con la letra c minúscula. La centésima es menor que la décima.
Milésima: es el resultado de dividir la unidad en mil partes iguales. En la tabla de valor posicional se muestra con la letra m minúscula. La milésima es menor que la centésima.
La tabla de valor posicional para un número decimal es:
Para leer un número decimal debes seguir estos pasos:
Lee su parte entera de la misma forma como se hace en la lectura de números enteros en el siguiente orden: centena de mil, decena de mil, unidad de mil, centena, decena, unidad.
Agrega la palabra “unidades” o “enteros”.
Coloca una coma.
Lee la parte decimal de la misma manera en la que se leen los enteros y al final nombra el orden decimal que ocupa la última cifra (décimas, centésimas o milésimas).
Por ejemplo, 535,42 se lee: “quinientas treinta y cinco unidades, cuarenta y dos centésimas“.
En el ejemplo anterior, el 2 corresponde a la última cifra y ocupa el orden de las centésimas por eso se agrega dicho orden al final del número.
Si el decimal tiene una parte entera igual a cero solo se nombra la parte decimal de acuerdo al orden de la última cifra. Por ejemplo, 0,579 se lee: “quinientas setenta y nueve milésimas“.
¿Sabías qué?
Cuando un número decimal termina en cero este número puede omitirse sin alterar su valor. Así, 1,50 es igual a 1,5.
Utilidad de los decimales
Gracias a que permiten expresar números menores a la unidad, uno de sus principales usos son en las mediciones, desde la lectura de la temperatura hasta la determinación del tamaño de una bacteria, por ejemplo. Por esta razón, los decimales son indispensables en los cálculos empleados en disciplinas como la arquitectura, la medicina, la ingeniería y muchas otras más.
¿Se usa punto o coma?
La respuesta es simple: ¡cualquiera de las dos! La diferencia en usar una u otra radica en el lugar en donde te encuentres. La coma y el punto son usados como separadores de los números decimales y ambos son válidos. En gran parte de Europa y América del Sur se emplea la coma, pero algunos países como Estados Unidos, Canadá, México y Reino Unido emplean el punto.
Sumas y restas de decimales
Las sumas y restas de números decimales se hacen del mismo modo que con los números enteros. En estos casos se deben colocar los números que se vayan a sumar o restar uno debajo del otro, de manera tal que las cifras del mismo orden se encuentren en la misma columna, es decir, las centenas con las centenas, las decenas con las decenas, las unidades con las unidades, las décimas con las décimas y así sucesivamente. De igual forma, las comas deben estar ubicadas en la misma columna.
Observa la manera correcta de sumar los números 124,32 + 267,11:
Luego, la suma se realiza como una suma normal sin considerar la coma, al final, la coma en el resultado estará ubicada en la columna correspondiente.
Si las cifras que se suman no tiene la misma cantidad de decimales, se completa con cero la cifra de menor número de decimales. Por ejemplo, 74,874 +41,41 se calcula de la siguiente manera:
En el caso de una resta se cumplen los mismos pasos para restar enteros y las cifras se ubican una debajo de la otra de acuerdo a su valor posicional. Si es necesario se agregan ceros en la parte decimal de forma tal que los números tengan la misma cantidad de decimales.
Por ejemplo, al realizar la resta de 945,5 − 307,182 el procedimiento sería:
¡A practicar!
¿Cómo se leen los siguientes números decimales?
a) 457,5
Solución
Cuatrocientas cincuenta y siete unidades, 5 décimas.
b) 8,742
Solución
Ocho unidades, setecientas cuarenta y dos milésimas.
c) 0,92
Solución
Noventa y dos centésimas.
d) 100,102
Solución
Cien unidades, ciento dos milésimas.
Calcula el resultado de las siguientes sumas:
a) 178,45 + 278,73
Solución
457,18
b) 14,2 + 29,178
Solución
43,378
c) 402,745 + 61,45
Solución
464,195
d) 652,314 + 174,074
Solución
826,388
Calcula el resultado de las siguientes restas:
a) 279,3 − 142,1
Solución
137,2
b) 542,22 − 419,1
Solución
123,12
c) 547,943 − 390,451
Solución
157,492
d) 482,1 − 125,748
Solución
356,352
RECURSOS PARA DOCENTES
Artículo “Números decimales”
El siguiente artículo profundiza la información sobre los números decimales y explica su relación con las fracciones.
El video muestra ejemplos de sumas y restas de números decimales, así como los elementos a tener en cuenta durante la realización de este tipo de ejercicios.
Los números pueden parecer muy difíciles si tienen muchas cifras, pero no son tan complicados cuando conoces la posición de los dígitos y el valor relativo de cada uno. Con unos pasos muy sencillos podrás leerlos, ya sea que pertenezcan a nuestro sistema de numeración decimal o al sistema de numeración romano.
Lectura de números naturales
Los números naturales son aquellos que usas para contar. Inician desde el cero (0) y siguen hasta el infinito. Este conjunto de números fue el primero que se utilizó para calcular y por definición matemática se representan así:
Estos son los que más empleas día a día. Con ellos das la hora, tu fecha de cumpleaños o tu número de identificación. En cualquier caso, la ubicación de cada cifra cumple un valor relativo. Así, en el número 25.651, el 5 se ubica en dos posiciones: en las decenas y en las unidades de mil. El valor relativo de cada cifra es:
Y el número se lee: veinticinco milseiscientos cincuenta y uno.
Las posiciones de cada cifra permiten la correcta lectura de los números, en especial, cuando los números son grandes. Para leer un número natural, lo primero que debes hacer es escribirlo correctamente. Esto se logra por medio de agrupación de dígitos. Para leer el número 123604785219, los pasos son los siguientes:
Coloca un punto cada tres dígitos. Empieza de derecha a izquierda.
Cada punto rojo, de derecha a izquierda, representará la palabra “mil”.
Cada punto azul, de derecha a izquierda, representará en orden ascendente la secuencia: millones, billones, trillones, cuatrillones, quintillones, etc.
Por último, se lee el número de izquierda a derecha: ciento veintitrés mil seiscientos cuatro millones setecientos cincuenta y ocho mil doscientos diecinueve.
¿Cómo se leen estos números?
121.568.265
Solución
Ciento veintiún millones quinientos sesenta y ocho mil doscientos sesenta y cinco.
923.645.687.156
Solución
Novecientos veintitrés mil seiscientos cuarenta y cinco millones seiscientos ochenta y siete mil ciento cincuenta y seis.
216.035.548.665.021
Solución
Doscientos dieciséis billones treinta y cinco mil quinientos cuarenta y ocho millones seiscientos sesenta y cinco mil veintiuno.
¿Sabías qué?
El número de Graham es el número más grande que se ha representado matemáticamente. Su símbolo es la letra G y requirió el uso de símbolos y la notación flecha de Knuth para su representación.
LECTURA DE NÚMEROS DECIMALES
Los números decimales se componen de una parte entera y una parte decimal que va separada por una coma. Estos números están presentes en nuestro día a día: en nuestro peso, cuando usamos el termómetro o en los precios de los productos.
Para el número 325,086 el valor relativo de cada cifra se representa así:
Según el lugar que ocupe el decimal se representará en orden ascendente la secuencia: décima, centésima, milésima, diezmilésima, cienmilésima, milmilésima, etc. Todos estos son valores más pequeños que uno (1). Observa la tabla:
Décimas
Centésimas
Milésimas
La décima parte de la unidad es
La centésima parte de la unidad es
La milésima parte de la unidad es
1 U = 10 d
1 U = 100 c
1 d = 10 c
1 U = 1.000 m
1 d = 100 m
1 c = 10 m
Donde:
U: unidad
d: décimas
c: centésimas
m: milésimas
De centenas a milésimas
Para leer un número decimal debes seguir estos pasos:
Lee la parte entera de izquierda a derecha seguida de la palabra “enteros”.
Lee toda la parte decimal como se lee la parte entera.
Menciona la posición en la que se encuentra la última cifra decimal.
Entonces, la lectura del número 122,96 es: ciento veintidós enterosnoventa y seis centésimas.
Existe otra forma de leer números decimales, los pasos son los siguientes:
Lee la parte entera de izquierda a derecha seguida de la palabra “coma”.
Lee toda la parte decimal como se lee la parte entera.
De este modo, la lectura del número 122,96 también es: ciento veintidós coma noventa y seis.
¿Cómo se leen estos números?
2,364
Solución
Dos enteros trescientos sesenta y cuatro milésimas.
5.879.009,587
Solución
Cinco millones ochocientos setenta y nueve mil nueve enteros quinientos ochenta y siete milésimas.
175.756,2
Solución
Ciento setenta y cinco mil setecientos cincuenta y seis enteros dos décimas.
¿Sabías qué?
El número pi (π) es un número con decimales infinitos y es una de las constantes matemáticas más utilizadas. Relaciona el perímetro de una circunferencia con la amplitud de su diámetro.
LECTURA DE NÚMEROS ROMANOS
La numeración romana tiene siete símbolos representados por siete letras del abecedario latino:
Número romano
I
V
X
L
C
D
M
Número arábigo
1
5
10
50
100
500
1.000
Por ejemplo, el número XVI es igual a 16 porque:
XVI = 10 + 5 + 1 = 16
Para poder realizar la lectura de los números romanos de pocas o muchas cifras necesitas conocer las siguientes reglas:
1. Regla de la suma
Si a la derecha de una número romano tenemos otro de menor valor, entonces las cifras se suman.
CL = 100 + 50 = 150
XXIII = 10 + 10 + 3 = 23
2. Regla de la resta
I solo puede colocarse delante de V y X.
IV = 5 − 1 = 4
IX = 10 − 1 = 9
X solo puede restar a L y C.
XL = 50 − 10 = 40
XC = 100 − 10 = 90
C solo puede restar a D y M.
CD = 500 − 100 = 400
CM = 1.000 − 100 = 900
V, L y D nunca pueden usarse para restar otros números.
3. Regla de la repetición
Podemos repetir I, X, C y M un máximo de tres veces. En cambio, V, L y D no se pueden repetir.
III = 1 + 1 + 1 = 3
MMM = 1.000 + 1.000 + 1.000 = 3.000
4. Regla de la multiplicación
Después de 3.999 el sistema es diferente y se coloca una raya horizontal encima del número romano, esto significa que se ha multiplicado por 1.000. Si se colocan dos rayas, el número será multiplicado por 1.000.000.
Al descomponer un número natural puedes encontrar el equivalente a su número romano. Para ello, solo debes usar los números 1, 5, 10, 50, 100, 500 o 1.000 en la descomposición. Las sumas y restas están permitidas.
Por ejemplo, el número romano equivalente a 279 se encuentra por medio de esta descomposición:
¿Estos números romanos son correctos?
VIIII
Solución
No. El número romano I solo puede repetirse un máximo de tres veces. Si deseas escribir el número 9 en números romanos lo correcto es:
IX = 10 − 1 = 9
VX
Solución
No. El número romano X solo puede restar a L y C. Si deseas escribir el número 15 en número romano lo correcto es:
XV = 10 + 5 = 15
DDD
Solución
No. El número romano D no puede repetirse. Si deseas escribir el número 1.500 en número romanos, lo correcto es:
MD = 1.000 + 500 = 1.500
VALOR POSICIONAL DE CIFRAS
El sistema de numeración decimal es el más usado en el mundo, se caracteriza por:
Estar conformado por 10 cifras: 0, 1, 2, 3, 4, 5, 6, 7, 8 y 9.
Ser posicional, es decir, cada cifra tiene un valor de acuerdo a su posición dentro del número.
Mismos números, distintas posiciones
Con tres dígitos, como 8, 3 y 5, se pueden formar varios números, sin embargo, no todos tendrán el mismo valor posicional.
Según la posición que ocupe un dígito en un número su valor será diferente. Por ejemplo, el dígito 3 ocupa distintos puestos en el número 53.412.130.004.322,18, y por lo tanto, cada uno tiene un valor diferente. Observa la tabla de valores posicionales:
En este número, el dígito 3 ocupa tres posiciones:
Unidad de billón, que equivale a 1.000.000.000.000 unidades, entonces:
3 x 1.000.000.000.000 = 3.000.000.000.000
Decena de millón, equivalente a 10.000.000 unidades, entonces:
3 x 10.000.000 = 30.000.000
Centena, que equivale a 100 unidades, entonces:
3 x 100 = 300
Este número se lee: cincuenta y tres billones cuatrocientos doce mil ciento treinta millones cuatro mil trescientos veintidós enteros dieciocho centésimas.
Tabla de equivalencias
1 unidad = 1 unidad
1 decena = 10 unidades
1 centena = 100 unidades
1 unidad de mil (millar) = 1.000 unidades
1 decena de mil (millar) = 10.000 unidades
1 centena de mil (millar) = 100.000 unidades
1 unidad de millón = 1.000.000 unidades
1 decena de millón = 10.000.000 unidades
1 centena de millón = 100.000.000 unidades
1 unidad de millar de millón = 1.000.000.000 unidades
1 decena de millar de millón = 10.000.000.000 unidades
1 centena de millar de millón = 100.000.000.000 unidades
1 unidad de billón = 1.000.000.000.000 unidades
1 decena de billón = 10.000.000.000.000 unidades
1 centena de billón = 100.000.000.000.000 unidades
¿Qué valor posicional tienen los números marcados en rojo?
587.124.687,7956
Solución
Decena.
8.147.561,115
Solución
Unidad de millón.
64.789,185948
Solución
Milésima.
189.547.963.004.279
Solución
Centena de billón.
Ejercicios
1. Lee y escribe en letras los siguientes números:
3465268
Solución
3.465.268 = tres millones cuatrocientos sesenta y cinco mil doscientos sesenta y ocho.
12563,158
Solución
12.563,158 = doce mil quinientos sesenta y tres enteros ciento cincuenta y ocho milésimas.
684812313
Solución
684.812.313 = seiscientos ochenta y cuatro millones ochocientos doce mil trescientos trece.
Solución
Sesenta y cinco mil.
MM
Solución
Dos mil.
165,5346821
Solución
Ciento sesenta y cinco enteros cinco millones trescientos cuarenta y seis mil ochocientos veintiún diezmillonésimas.
Solución
Tres millones cien mil.
Solución
Quinientos once mil.
RECURSOS PARA DOCENTES
Artículo “Números grandes: lectura y escritura”
El siguiente artículo le permitirá ampliar información sobre la lectura y escritura de números grandes.