CAPÍTULO 3 / TEMA 4

fracciones y otros números

Todos los días utilizamos distintos números. Los que usamos para contar, se llaman números naturales. Los que utilizamos en los precios, se llaman números decimales. Todos ellos pueden combinarse con las fracciones en las distintas operaciones. A continuación, verás cómo solucionar problemas de este tipo.

Las fracciones están presentes en la mayoría de las situaciones de nuestra vida cotidiana. Por ejemplo, cuando vamos al mercado y pedimos un cuarto de kilo de una fruta. También usamos fracciones cuando decimos la hora: “Son las tres y cuarto”. O cuando picamos o partimos alimentos, como en la imagen, en la que vemos medio aguacate.

operaciones de fracciones con otros números

Supongamos que compramos 3 barras de chocolate. Si nos comemos 1 chocolate y 2/3 de otro, y nuestro amigo se come 1 chocolate y 1/4 de otro, ¿nos sobró algo de chocolate?

Para resolver esta situación tenemos que sumar primero lo que nos comimos y restarlo a los chocolates que compramos. En este caso, convertimos los números mixtos a sus fracciones impropias equivalentes y luego sumamos.

1\frac{2}{3}+1\frac{1}{4}= \frac{5}{3}+\frac{5}{4}

\frac{5}{3}+\frac{5}{4}=\frac{(5\times 4)+(3\times 5)}{3\times4 }=\frac{20+15}{12}=\boldsymbol{\frac{35}{12}}

Luego de tener la fracción equivalente a lo que comimos, podemos restarla a la cantidad total de chocolate comprado (3). Recuerda que todo número entero puede ser representado como una fracción con denominador igual a 1.

\frac{3}{1}-\frac{35}{12}=\frac{(3\times 12)-(1\times 35)}{1\times 12}=\frac{36-35}{12}=\boldsymbol{\frac{1}{12}}

Ahora sabemos que nos sobró \frac{1}{12} de chocolate.

A diario nos encontramos con situaciones en las que podemos combinar distintos tipos de números. En estos casos, aplicamos las propiedades de cada operación para cada tipo de número.

¡Es tu turno!

  • \left ( 1-\frac{3}{5} \right )\times \frac{3}{2}
Solución

\left ( \frac{1}{1}-\frac{3}{5} \right ) \times \frac{3}{2}=\left ( \frac{5}{5}-\frac{3}{5} \right ) \times \frac{3}{2}=\frac{2}{5} \times \frac{3}{2}=\frac{6}{10}=\boldsymbol{\frac{3}{5}}

  • \frac{9}{5} \div 3+\frac{9}{2}
Solución

\frac{9}{5} \div \frac{3}{1}+\frac{9}{2}=\frac{9}{5} \times \frac{1}{3}+\frac{9}{2}=\frac{9}{15}+\frac{9}{2}=\frac{3}{5}+\frac{9}{2}=\boldsymbol{\frac{51}{10}}

  • 4\frac{1}{3}-\frac{2}{5}+1=
Solución

\frac{13}{3}-\frac{2}{5}+\frac{1}{1}=\frac{65}{15}-\frac{6}{15}+\frac{15}{15}=\boldsymbol{\frac{74}{15}}

¿cómo transformar una fracción a un número decimal?

Para poder transformar una fracción en un número decimal debemos recordar que una fracción es una división en partes. Por lo tanto, lo que debemos hacer es dividir el numerador por el denominador y así convertimos una fracción en un número decimal. Veamos algunos ejemplos:

\frac{3}{4}=0,75

\frac{9}{4}=2,25

Existe otra manera de pasar las fracciones a números decimales pero esta forma no siempre es posible. Para poder utilizarla debemos buscar una fracción equivalente a la dada con denominador igual a 10, 100, 1.000, etc. Si amplificamos la fracción × 25, es decir, si multiplicamos tanto el numerador como el denominador por 25, tenemos que:

\frac{3}{4}=\frac{75}{100}

75/100 es la fracción decimal equivalente de 3/4. Ahora, si recordamos cómo se divide por potencias de 10, vemos que debemos correr la coma de derecha a izquierda tantos lugares como ceros haya en el denominador. Por lo tanto,

\frac{3}{4}=\frac{75}{100}=0,75

Hacemos lo mismo con el segundo ejemplo:

\frac{9}{4}=\frac{225}{100}=2,25

La conversión de una fracción a un decimal consiste en escribir dicha fracción como su número decimal equivalente mediante distintos métodos. Podemos dividir el numerador y el denominador para tener el cociente decimal. También podemos amplificar, es decir, multiplicar tanto el numerador como el denominador hasta tener un denominador igual a 10, 100, 1.000…

¡Es tu turno!

Pasar las siguientes fracciones a número decimal:

  • \frac{1}{25}

Solución

\frac{1}{25}=\frac{4}{100}=0,04

Amplificación: × 4

  • \frac{3}{5}

Solución

\frac{3}{5}=\frac{60}{100}=0,6

Amplificación: × 20

  • \frac{5}{4}

Solución

\frac{5}{4}=\frac{125}{100}=1,25

Amplificación: × 25

¿Sabías qué?
Los números decimales fueron utilizados por primera vez por Stevin que, para escribirlos, lo hacía de una forma particular. Por ejemplo, si quería escribir el número 43,527, la notación era 43⓪5①2②7③. El ⓪ representaba a los enteros, el ① a las décimas, el ② a las centésimas y así sucesivamente.

transformación de un número decimal a fracción

En el caso anterior, para pasar de fracción a número decimal, intentamos hacer fracciones decimales, que son las que poseen denominador igual a una potencia de 10. A partir de ahí, corrimos la coma en el numerador a la izquierda según la cantidad de ceros que había en el denominador.

Ahora vamos a seguir los mismos pasos pero al revés, así que, si tenemos un número decimal, vamos a contar los lugares decimales, que son los que se encuentran a la derecha de la coma. Estos lugares nos indicarán cuántos ceros deberá tener el denominador y el numerador de la fracción será el número decimal, pero sin escribir la coma. Observa este ejemplo:

Sea el número 2,378, da su fracción decimal:

  1. Contamos los lugares que hay a la derecha de la coma \rightarrow hay 3 lugares, por lo tanto, el denominador será un 1 seguido de tres ceros: 1.000.
  2. Para el numerador escribimos el número, pero sin coma \rightarrow 2.378.
  3. Ahora escribimos la fracción correspondiente \rightarrow \frac{2.378}{1.000}.
  4. Si es posible, simplificamos la fracción \rightarrow \frac{1.189}{500}.
Cuando convertimos un número decimal a una fracción reescribimos dicho decimal como su fracción equivalente por medio de la amplificación por unidades seguidas de cero. Para esto escribimos primero el decimal sobre 1 y luego amplificamos y simplificamos. Por ejemplo, 0,5 = 5/10. Luego simplificamos y 5/10 = 1/2.

Clasificación de los números decimales

Los números decimales se pueden clasificar en:

  • Exactos: su parte decimal es finita. Por ejemplo: 0,345, 1,0235, etc.
  • Periódicos puros: su parte decimal es infinita y se repiten uno o varios números. Se suele representar el período con un arco. Por ejemplo: 2,3333…, 0,121212…, etc.
  • Periódico mixto: su parte decimal tiene una parte pura y una periódica. Por ejemplo: 2,1655555…, 0,01222222…, etc.

¡A practicar!

1. Convierte los siguientes números decimales a fracciones y luego, si es posible, simplifica:

  • 5,75
Solución

\frac{575}{100}=\frac{23}{4}

  • 2,03
Solución

\frac{203}{100}

  • 7,5
Solución

\frac{75}{10}

2. Resuelve los siguientes cálculos. Convierte los números decimales a fracciones.

  • 0,2+0,6\: \times \, \frac{5}{2}
Solución

\frac{2}{10}+\frac{6}{10}\: \times \, \frac{5}{2}=\frac{1}{5}+\frac{3}{5}\: \times \, \frac{5}{2}=\frac{1}{5}+\frac{15}{10}=\frac{2}{10}+\frac{15}{10}=\frac{17}{10}

  • 0,25\: \times \, \left ( 1,5-\frac{2}{3} \right )
Solución

\frac{25}{100}\: .\, \left ( \frac{15}{10}-\frac{2}{3} \right )=\frac{1}{4}\: .\, \left ( \frac{3}{2}-\frac{2}{3} \right )=\frac{1}{4}\: .\, \left ( \frac{9}{6}-\frac{4}{6} \right )=\frac{1}{4}\: .\, \frac{5}{6}=\frac{5}{24}

  • 1-0,4\: \times \, \frac{3}{4}
Solución

\frac{1}{1}-\frac{4}{10}\: \times \, \frac{3}{4}=\frac{1}{1}-\frac{2}{5}\: \times \, \frac{3}{4}=\frac{1}{1}-\frac{6}{20}=\frac{1}{1}-\frac{3}{10}=\frac{10}{10}-\frac{3}{10}=\frac{7}{10}

RECURSOS PARA DOCENTES

Video “Fracciones y números decimales. Ejercicio 3”

En este video podrá ver qué pasa si la fracción es impropia

VER

CAPÍTULO 1 / TEMA 2

vALOR POSICIONAL

En nuestro sistema de numeración utilizamos solo 10 cifras para escribir todos los números, pero cada una de estas cifras puede tener valores distintos según su posición, por ejemplo, en el número 222, el primer 2 de izquierda a derecha vale 200, el segundo 20 y el tercero 2. Esto es lo que llamamos valor posicional y puedes aplicarlo a cualquier número.

¿qué es el Valor posicional?

Estos son los diez dígitos de nuestro sistema de numeración decimal. Con ellos podemos formar cualquier cantidad de números. El valor posicional de cada uno importa porque nos indica el valor total, pues no es lo mismo tener $ 321 que $ 123. A pesar de que tienen las mismas cifras (1, 2 y 3), con $ 321 puedes comprar más cosas que con $ 123.

El valor posicional es el valor que tiene una cifra en un número y depende de su posición o lugar. Estas posiciones se conocen como unidad, decena y centena; y según la clase pueden ser “de miles” o “de millones. Observa estas equivalencias:

  • 1 unidad = 1 U
  • 1 decena = 10 U
  • 1 centena = 100 U
  • 1 unidad de mil = 1.000 U
  • 1 decena de mil = 10.000 U

– Ejemplo 1:

El número 473 tiene tres cifras y cada una ocupa estas posiciones:

 

– Ejemplo 2:

El número 2.984 tiene 4 cifras y cada una ocupa estas posiciones:

¿Sabías qué?
Los valores posicionales tienen estas abreviaturas: U (unidades), D (decenas), C (centenas), UM (unidades de mil) y DM (decenas de mil).

Tabla posicional

Podemos ubicar todas las cifras de un número en una tabla posicional. Esta nos ayuda a ver con facilidad el valor de cada una de las cifras por medio de columnas identificadas.

Esta es una tabla posicional para números de 6 cifras. Observa que en las columnas de color en azul están las unidades, las decenas y las centenas; mientras que en las columnas de color naranja están las unidades de mil, las decenas de mil y las centenas de mil.

¿cómo representar números en la tabla posicional?

Si queremo ubicar las cifras de un número en la tabla posicional tenemos que empezar por la primera cifra de derecha a izquierda, esa será la unidad. La segunda cifra de derecha a izquierda será la decena, la siguiente la centena y así sucesivamente.

– Ejemplo:

Ubica las cifras del número 7.946 en la tabla posicional.

Como la primera cifra de derecha a izquierda es el 6, colocamos el 6 en la casilla de las unidades. Luego el 4 en la de las decenas, el 9 en las centena y el 7 en las unidades de mil.

¡A practicar!

Ubica estos números en la tabla posicional:

  • 8.104
Solución

  • 582
Solución

  • 1.789
Solución

Conocer el valor posicional de las cifras de cada número resulta de gran utilidad cuando manejamos dinero. Por lo general, los billetes y monedas vienen con valores de 1, 10 y 100 unidades. De este modo, si necesitamos pagar una cuenta de $ 483, solo debemos tomar 4 billetes de $ 100, 8 de $ 10 y 3 de $ 1.

– Problema 1

En una pastelería se hacen entregas de donas todas las semanas. El transporte de las donas se hace en cajas de 100, cajas de 10 y otras sueltas. Esta semana se pidieron las siguientes cantidades: 318, 173, 486 y 300. Si el encargado prepara los pedidos, ¿cuántas cajas de 100 y de 10 necesita para cada orden? ¿cuántas donas irán sueltas en cada caso?

  • Primer pedido

El primer pedido es de 318 donas. Lo primero que hacemos es ubicar este número en una tabla posicional.

En la tabla posicional vemos que hay:

  • 3 centenas = 3 veces 100
  • 1 decena = 1 vez 10
  • 8 unidades = 8 veces 1

Hagamos la representación con las cajas y donas:

Por lo tanto, el encargado necesita 3 cajas de 100, 1 caja de 10 y 8 donas sueltas.


  • Segundo pedido

El segundo pedido es de 163 donas. Ubicamos este número en una tabla posicional.

En la tabla posicional vemos que hay:

  • 1 centenas = 1 vez 100
  • 6 decenas = 6 veces 10
  • 3 unidades = 3 veces 1

Hagamos la representación con las cajas y donas:

Para este pedido el encargado necesita 1 caja de 100, 6 cajas de 10 y 3 donas sueltas.

¡Responde!

¿Cómo preparó el encargado los demás pedidos?

  • Tercer pedido
Solución

Este pedido es de 245 donas. Ubicamos este número en una tabla posicional.

En la tabla posicional vemos que hay:

  • 2 centenas = 2 veces 100
  • 4 decenas = 4 veces 10
  • 5 unidades = 5 veces 1

Hagamos la representación con las cajas y donas:

Para este pedido el encargado necesita 2 cajas de 100, 4 cajas de 10 y 5 donas sueltas.

  • Cuarto pedido
Solución

Este pedido es de 300 donas. Ubicamos este número en una tabla posicional.

En la tabla posicional vemos que hay:

  • 3 centenas = 3 veces 100

Hagamos la representación con las cajas y donas:

Para este pedido el encargado necesita 3 cajas de 100.

– Problema 2

En un juego de fichas, cada una de estas figuras indica una cantidad de puntos.

Observa que:

  • 1 cubo azul = 1 unidad
  • 1 barra roja = 1 decena
  • 1 placa verde = 1 centena
  • 1 caja amarilla = 1 unidad de mil

Carla sacó estas fichas, ¿cuántos puntos obtuvo?

  • Hay 2 cajas amarillas → 2 unidades de mil
  • Hay 1 placa verde → 1 centena
  • Hay 3 barras rojas → 3 decenas
  • Hay 8 cubos azules → 8 unidades

En una tabla posicional colocamos cada cifra según el valor que tenga.

Carla obtuvo 2.138 puntos.


Pedro sacó estas fichas, ¿cuántos puntos obtuvo?

  • Hay 5 cajas amarillas → 5 unidades de mil
  • Hay 0 placa verde → 0 centena
  • Hay 2 barras rojas → 2 decenas
  • Hay 3 cubos azules → 3 unidades

En una tabla posicional colocamos cada cifra según el valor que tenga.

Pedro obtuvo 5.023 puntos.

¿Sabías qué?
Hubo dos civilizaciones antiguas que usaron el principio de posición y representaron la ausencia de unidades mediante el cero: los babilonios y los mayas.

Descomposición aditiva de un número

La descomposición aditiva consiste en expresar un número como una suma de dos o más números. Para esta descomposición consideramos los valores posicionales.

Por ejemplo, el número 3.456 se coloca de esta manera en una tabla posicional:

En la tabla vemos que hay:

  • 3 unidades de mil = 3 veces 1.000 = 3.000
  • 4 centenas = 4 veces 100 = 400
  • 5 decenas = 5 veces 10 = 50
  • 6 unidades = 6 veces 1 = 6

Por lo tanto, podemos decir que el número 3.456 es igual a la suma de todos sus valores posicionales. Observa:

3.456 = 3.000 + 400 + 50 + 6

 

El ábaco es uno de los objetos más antiguos utilizados por el hombre para realizar sus operaciones matemáticas y quizás el de mayor distribución a nivel mundial. Esta herramienta o instrumento se utiliza para hacer cálculos manuales por medio de piezas de colores que representan los valores posicionales de una cifra.

¡A practicar!

Escribe la descomposición aditiva de los siguientes números:

  • 7.342
Solución

Valores posicionales

  • 7 unidades de mil = 7 veces 1.000 = 7.000
  • 3 centenas = 3 veces 100 = 300
  • 4 decenas = 4 veces 10 = 40
  • 2 unidades = 2 veces 1 = 2

Descomposición aditiva

7.342 = 7.000 + 300 + 40 + 2

  • 9.716
Solución

Valores posicionales

  • 9 unidades de mil = 9 veces 1.000 = 9.000
  • 7 centenas = 7 veces 100 = 700
  • 1 decena = 1 vez 10 = 10
  • 6 unidades = 6 veces 1 = 6

Descomposición aditiva

9.716 = 9.000 = 700 + 10 + 6

  • 8.053
Solución

Valores posicionales

  • 8 unidades de mil = 8 veces 1.000 = 8.000
  • 5 decenas = 5 veces 10 = 50
  • 3 unidades = 3 veces 1 = 3

Descomposición aditiva

8.053 = 8.000 + 50 + 3

¿Sabías qué?
Cuando el valor de una cifra es cero (0) no se escribe en la descomposición.

¡Hora de practicar!

1. Escribe el valor posicional de los dígitos en color rojo.

216

Solución
Unidad.

1.971

Solución
Centena.

7.031

Solución
Centena.

532

Solución
Decena.

828

Solución
Unidad.

6.220

Solución
Decena.

9.483

Solución
Unidad de mil.

2. Une la descomposición con el numero correspondiente.

Solución

RECURSOS PARA DOCENTES

Artículo “Composición y descomposición de números”

Este artículo explica cómo realizar composiciones y descomposiciones aditivas que ayudarán al alumno a realizar cálculos mentales con números naturales.

VER 

Artículo “Sistemas posicionales de numeración”

En este artículo podrás profundizar sobre la representación de los números en varios sistemas de numeración.

VER

Artículo “Descomposición de números”

Con este recurso tendrás las herramientas necesarias para hacer la descomposición de aditiva de los números naturales.

VER