CAPÍTULO 1 / TEMA 8 (REVISIÓN)

SISTEMA DE NUMERACIÓN | ¿qUÉ APRENDIMOS?

LECTURA DE NÚMEROS

Los números naturales (\boldsymbol{\mathbb{N}}) son los que utilizamos para contar. Cada número tiene un valor relativo según la posición que ocupe dentro de una cifra y esto permite una correcta lectura de los mismos. Además de los números naturales, existen los números decimales que están formados por una parte entera y otra decimal. También hay sistemas de numeración no posicionales como los números romanos, los cuales constan de siete letras del abecedario latino.

Para leer un número de manera correcta es necesario conocer el valor que ocupa cada una de sus cifras. Para esto podemos usar una tabla posicional.

descomposición de números

Existen distintas formas de descomponer números grandes: la aditiva con combinaciones básicas, la aditiva por medio de valor posicional, la polinómica o la multiplicativa. En la aditiva con combinaciones básicas usamos una o más sumas que expresen el mismo resultado; en la aditiva con valor posicional empleamos los valores posicionales de cada cifra; en la polinómica utilizamos las potencias de base 10; y en la multiplicativa descomponemos la cantidad en sus factores primos.

Estas diferentes maneras de expresar los números permiten resolver situaciones de forma más rápida y sencilla.

números enteros

Los números enteros (\boldsymbol{\mathbb{Z}}) están compuestos por todos los números naturales (\boldsymbol{\mathbb{N}}), sus opuestos negativos y el cero. Los enteros negativos requieren el uso obligatorio del signo (−) a diferencia de los positivos que pueden o no estar acompañados con el signo (+). Estos pueden ser representados en una recta numérica, la cual contiene todos los números reales (\boldsymbol{\mathbb{R}}). Los números enteros se aplican en diversas situaciones de la vida, como para indicar altitudes sobre el nivel del mar, registrar entradas y salidas de dinero de un banco, dibujar el eje de coordenadas, o para indicar temperaturas.

Otra de las tantas aplicaciones que se les da a los números enteros es para señalar los niveles de un edificios, en donde planta baja representa el 0, los niveles superiores los positivos y los niveles inferiores los negativos.

NÚMEROS decimales

Los números decimales están formados por una parte entera y una parte decimal, ambas divididas por una coma. Estos se clasifican en tres tipos según su parte decimal: exactos, periódicos y no periódicos. Los exactos tienen un número limitado de cifras; los periódicos poseen cifras decimales infinitas y, a su vez, estos se dividen en dos tipos: los puros y los mixtos; y los decimales no periódicos no tienen un patrón que se repita infinitamente. Estos números se pueden redondear para reducir la cantidad de cifras decimales y así obtener un valor muy parecido.

Los números decimales pueden ser utilizados en diversas situaciones de la vida, como para indicar la estatura de las personas o los precios de los productos.

sucesiones

Las sucesiones son un grupo de elementos que se ordenan uno detrás de otro. Estos elementos son llamados términos, siguen una regla dentro del conjunto y pueden ser números, letras, figuras o imágenes. En una sucesión, los términos son representados como subíndices (a1, a2, a3, …). Usamos sucesiones cada vez que contamos los días de la semana o las horas del día. También las usamos para ordenar de mayor a menor o de menor a mayor, o para aprender a leer el abecedario. Podemos encontrar sucesiones con operaciones matemáticas como la suma, la resta, la multiplicación, la división o la potencia.

Cuando se ordenan los ganadores de una carrera de automóviles, estos siguen un patrón de acuerdo al tiempo de llegada. Este es un ejemplo de sucesión.

potencias

La potenciación consiste en expresar de manera reducida una multiplicación de factores iguales. Tiene tres elementos: una base, un exponente y la potencia. La base es el número que se multiplicará tantas veces como indica el exponente y la potencia es el resultado de la multiplicación de los factores. Algunas de las propiedades de las potencias son: potencia de exponente 0, potencia de exponente 1, potencia de exponente negativo, multiplicación y división de potencias con igual base y la potencia de una potencia.

Las potencias sirven para aplicar teoremas, expresar notación científica, realizar sucesiones matemáticas y para demostrar problemas de crecimiento exponencial como la multiplicación de virus y bacterias.

raíz de un número

La raíz de un número es la operación inversa a la potencia de un número. Consiste en buscar el número que se ha multiplicado tantas como indica n bajo un operador radical. Los elementos de una raíz son el radicando, el índice, el radical y la raíz. El radicando es el resultado de la multiplicación de la raíz de un número tantas veces como indica el índice de la raíz. El índice indica el grado de una raíz, lo que se traduce en cuántas veces se multiplicó por sí mismo el resultado de la radicación. El radical representa el símbolo de la operación de radicación y la raíz es resultado de la operación matemática.

Todas las operaciones matemáticas poseen una operación inversa que revierte los cálculos realizados.

CAPÍTULO 1 / TEMA 2

vALOR POSICIONAL

En nuestro sistema de numeración utilizamos solo 10 cifras para escribir todos los números, pero cada una de estas cifras puede tener valores distintos según su posición, por ejemplo, en el número 222, el primer 2 de izquierda a derecha vale 200, el segundo 20 y el tercero 2. Esto es lo que llamamos valor posicional y puedes aplicarlo a cualquier número.

¿qué es el Valor posicional?

Estos son los diez dígitos de nuestro sistema de numeración decimal. Con ellos podemos formar cualquier cantidad de números. El valor posicional de cada uno importa porque nos indica el valor total, pues no es lo mismo tener $ 321 que $ 123. A pesar de que tienen las mismas cifras (1, 2 y 3), con $ 321 puedes comprar más cosas que con $ 123.

El valor posicional es el valor que tiene una cifra en un número y depende de su posición o lugar. Estas posiciones se conocen como unidad, decena y centena; y según la clase pueden ser “de miles” o “de millones. Observa estas equivalencias:

  • 1 unidad = 1 U
  • 1 decena = 10 U
  • 1 centena = 100 U
  • 1 unidad de mil = 1.000 U
  • 1 decena de mil = 10.000 U

– Ejemplo 1:

El número 473 tiene tres cifras y cada una ocupa estas posiciones:

 

– Ejemplo 2:

El número 2.984 tiene 4 cifras y cada una ocupa estas posiciones:

¿Sabías qué?
Los valores posicionales tienen estas abreviaturas: U (unidades), D (decenas), C (centenas), UM (unidades de mil) y DM (decenas de mil).

Tabla posicional

Podemos ubicar todas las cifras de un número en una tabla posicional. Esta nos ayuda a ver con facilidad el valor de cada una de las cifras por medio de columnas identificadas.

Esta es una tabla posicional para números de 6 cifras. Observa que en las columnas de color en azul están las unidades, las decenas y las centenas; mientras que en las columnas de color naranja están las unidades de mil, las decenas de mil y las centenas de mil.

¿cómo representar números en la tabla posicional?

Si queremo ubicar las cifras de un número en la tabla posicional tenemos que empezar por la primera cifra de derecha a izquierda, esa será la unidad. La segunda cifra de derecha a izquierda será la decena, la siguiente la centena y así sucesivamente.

– Ejemplo:

Ubica las cifras del número 7.946 en la tabla posicional.

Como la primera cifra de derecha a izquierda es el 6, colocamos el 6 en la casilla de las unidades. Luego el 4 en la de las decenas, el 9 en las centena y el 7 en las unidades de mil.

¡A practicar!

Ubica estos números en la tabla posicional:

  • 8.104
Solución

  • 582
Solución

  • 1.789
Solución

Conocer el valor posicional de las cifras de cada número resulta de gran utilidad cuando manejamos dinero. Por lo general, los billetes y monedas vienen con valores de 1, 10 y 100 unidades. De este modo, si necesitamos pagar una cuenta de $ 483, solo debemos tomar 4 billetes de $ 100, 8 de $ 10 y 3 de $ 1.

– Problema 1

En una pastelería se hacen entregas de donas todas las semanas. El transporte de las donas se hace en cajas de 100, cajas de 10 y otras sueltas. Esta semana se pidieron las siguientes cantidades: 318, 173, 486 y 300. Si el encargado prepara los pedidos, ¿cuántas cajas de 100 y de 10 necesita para cada orden? ¿cuántas donas irán sueltas en cada caso?

  • Primer pedido

El primer pedido es de 318 donas. Lo primero que hacemos es ubicar este número en una tabla posicional.

En la tabla posicional vemos que hay:

  • 3 centenas = 3 veces 100
  • 1 decena = 1 vez 10
  • 8 unidades = 8 veces 1

Hagamos la representación con las cajas y donas:

Por lo tanto, el encargado necesita 3 cajas de 100, 1 caja de 10 y 8 donas sueltas.


  • Segundo pedido

El segundo pedido es de 163 donas. Ubicamos este número en una tabla posicional.

En la tabla posicional vemos que hay:

  • 1 centenas = 1 vez 100
  • 6 decenas = 6 veces 10
  • 3 unidades = 3 veces 1

Hagamos la representación con las cajas y donas:

Para este pedido el encargado necesita 1 caja de 100, 6 cajas de 10 y 3 donas sueltas.

¡Responde!

¿Cómo preparó el encargado los demás pedidos?

  • Tercer pedido
Solución

Este pedido es de 245 donas. Ubicamos este número en una tabla posicional.

En la tabla posicional vemos que hay:

  • 2 centenas = 2 veces 100
  • 4 decenas = 4 veces 10
  • 5 unidades = 5 veces 1

Hagamos la representación con las cajas y donas:

Para este pedido el encargado necesita 2 cajas de 100, 4 cajas de 10 y 5 donas sueltas.

  • Cuarto pedido
Solución

Este pedido es de 300 donas. Ubicamos este número en una tabla posicional.

En la tabla posicional vemos que hay:

  • 3 centenas = 3 veces 100

Hagamos la representación con las cajas y donas:

Para este pedido el encargado necesita 3 cajas de 100.

– Problema 2

En un juego de fichas, cada una de estas figuras indica una cantidad de puntos.

Observa que:

  • 1 cubo azul = 1 unidad
  • 1 barra roja = 1 decena
  • 1 placa verde = 1 centena
  • 1 caja amarilla = 1 unidad de mil

Carla sacó estas fichas, ¿cuántos puntos obtuvo?

  • Hay 2 cajas amarillas → 2 unidades de mil
  • Hay 1 placa verde → 1 centena
  • Hay 3 barras rojas → 3 decenas
  • Hay 8 cubos azules → 8 unidades

En una tabla posicional colocamos cada cifra según el valor que tenga.

Carla obtuvo 2.138 puntos.


Pedro sacó estas fichas, ¿cuántos puntos obtuvo?

  • Hay 5 cajas amarillas → 5 unidades de mil
  • Hay 0 placa verde → 0 centena
  • Hay 2 barras rojas → 2 decenas
  • Hay 3 cubos azules → 3 unidades

En una tabla posicional colocamos cada cifra según el valor que tenga.

Pedro obtuvo 5.023 puntos.

¿Sabías qué?
Hubo dos civilizaciones antiguas que usaron el principio de posición y representaron la ausencia de unidades mediante el cero: los babilonios y los mayas.

Descomposición aditiva de un número

La descomposición aditiva consiste en expresar un número como una suma de dos o más números. Para esta descomposición consideramos los valores posicionales.

Por ejemplo, el número 3.456 se coloca de esta manera en una tabla posicional:

En la tabla vemos que hay:

  • 3 unidades de mil = 3 veces 1.000 = 3.000
  • 4 centenas = 4 veces 100 = 400
  • 5 decenas = 5 veces 10 = 50
  • 6 unidades = 6 veces 1 = 6

Por lo tanto, podemos decir que el número 3.456 es igual a la suma de todos sus valores posicionales. Observa:

3.456 = 3.000 + 400 + 50 + 6

 

El ábaco es uno de los objetos más antiguos utilizados por el hombre para realizar sus operaciones matemáticas y quizás el de mayor distribución a nivel mundial. Esta herramienta o instrumento se utiliza para hacer cálculos manuales por medio de piezas de colores que representan los valores posicionales de una cifra.

¡A practicar!

Escribe la descomposición aditiva de los siguientes números:

  • 7.342
Solución

Valores posicionales

  • 7 unidades de mil = 7 veces 1.000 = 7.000
  • 3 centenas = 3 veces 100 = 300
  • 4 decenas = 4 veces 10 = 40
  • 2 unidades = 2 veces 1 = 2

Descomposición aditiva

7.342 = 7.000 + 300 + 40 + 2

  • 9.716
Solución

Valores posicionales

  • 9 unidades de mil = 9 veces 1.000 = 9.000
  • 7 centenas = 7 veces 100 = 700
  • 1 decena = 1 vez 10 = 10
  • 6 unidades = 6 veces 1 = 6

Descomposición aditiva

9.716 = 9.000 = 700 + 10 + 6

  • 8.053
Solución

Valores posicionales

  • 8 unidades de mil = 8 veces 1.000 = 8.000
  • 5 decenas = 5 veces 10 = 50
  • 3 unidades = 3 veces 1 = 3

Descomposición aditiva

8.053 = 8.000 + 50 + 3

¿Sabías qué?
Cuando el valor de una cifra es cero (0) no se escribe en la descomposición.

¡Hora de practicar!

1. Escribe el valor posicional de los dígitos en color rojo.

216

Solución
Unidad.

1.971

Solución
Centena.

7.031

Solución
Centena.

532

Solución
Decena.

828

Solución
Unidad.

6.220

Solución
Decena.

9.483

Solución
Unidad de mil.

2. Une la descomposición con el numero correspondiente.

Solución

RECURSOS PARA DOCENTES

Artículo “Composición y descomposición de números”

Este artículo explica cómo realizar composiciones y descomposiciones aditivas que ayudarán al alumno a realizar cálculos mentales con números naturales.

VER 

Artículo “Sistemas posicionales de numeración”

En este artículo podrás profundizar sobre la representación de los números en varios sistemas de numeración.

VER

Artículo “Descomposición de números”

Con este recurso tendrás las herramientas necesarias para hacer la descomposición de aditiva de los números naturales.

VER

CAPÍTULO 1 / TEMA 2

DESCOMPOSICIÓN DE NÚMEROS

Usamos los números en muchas situaciones de la vida cotidiana, pero algunas veces necesitamos descomponerlos para que una operación matemática sea más sencilla. Estas separaciones de números se pueden hacer de diversas formas y por medio de sumas, multiplicaciones o combinaciones de estas.

DESCOMPOSICIÓN ADITIVA DE UN NÚMERO

Saber cómo formar números a partir de otros más pequeños puede resultar muy útil en nuestro día a día. Si, por ejemplo, necesitamos pagar una cuenta de $ 150, podemos pagar con un billete de $ 100 y otro billete de $ 50; también podríamos pagar con tres billetes de $ 50. Como verás a continuación, esto es una descomposición aditiva.

Un número se puede descomponer en una suma de varios números más pequeños, para ello existen dos formas de realizarlo:

1. Descomposición aditiva por medio de combinaciones básicas

Consiste en descomponer el número a través de una o más sumas que den como resultado el número original. Por ejemplo, el número 589.478,12 se puede descomponer de muchas maneras. Estas son algunas:

589.478,12 = 156.562,3 + 432.915,82

589.478,12 = 101.102 + 359.349,3 + 129.026,82

589.478,12 = 540.000 + 6.254 + 273,127 + 42.950,993

2. Descomposición aditiva por medio del valor posicional

Consiste en descomponer el número a través de la suma de los valores posicionales de cada cifra. De este modo, si queremos descomponer el número 54.268,2789, lo primero que debemos hacer es ubicar cada uno de sus valores en la tabla posicional. Observa:

Vemos en la tabla que:

  • 5 ocupa la posición de las decenas de mil → 50.000
  • 4 ocupa la posición de las unidades de mil → 4.000
  • 2 ocupa la posición de las centenas → 200
  • 6 ocupa la posición de las decenas → 60
  • 8 ocupa la posición de las unidades → 8
  • 2 ocupa la posición de las décimas → 0,2
  • 7 ocupa la posición de las centésimas → 0,07
  • 6 ocupa la posición de las milésimas → 0,006
  • 9 ocupa la posición de las diezmilésimas → 0,0009

Ahora solo debes sumar todos los valores posicionales:

54.268,2769 = 50.000 + 4.000 + 200 + 60 + 8 + 0,2 + 0,07 + 0,006 + 0,0009

Otro ejemplos:

  • 1.567.423,5916 = 1.000.000 + 500.000 + 60.000 + 7.000 + 400 + 20 + 3 + 0,5 + 0,09 + 0,001 + 0,0006
  • 200.874,95 = 200.000 + 800 + 70 + 4 0,9 + 0,05

Observa que no tomamos en cuenta el dígito cero (0) para la descomposición de números.

DESCOMPOSICIÓN POLINÓMICA DE UN NÚMERO

La descomposición polinómica se hace al combinar la suma y la multiplicación de potencias de base 10. Para descomponer de forma polinómica el número 452.328.465, los pasos son los siguientes:

1. Haz la descomposición aditiva del número. Puedes apoyarte en una tabla posicional como esta:

452.328.465 = 400.000.000 + 50.000.000 + 2.000.000 + 300.000 + 20.000 + 8.000 + 400 + 60 + 5

2. Convierte cada sumando en la multiplicación de la cifra respectiva por la unidad seguida de cero.

452.328.465 = 4 x 100.000.000 + 5 x 10.000.000 + 2 x 1.000.000 + 3 x 100.000 + 2 x 10.000 +       8 x 1.000 + 4 x 100 + 6 x 10 + 5

3. Transforma las unidades seguidas de cero a potencias de base 10.

452.328.465 = 4 x 108 + 5 x 107 + 2 x 106 + 3 x 105 + 2 x 104 + 8 x 103 + 4 x 102 + 6 x 10 + 5 x 100
Potencia de base 10

Potencia igual a la unidad seguida de tantos ceros como exprese el exponente. Estas potencias son muy usadas para representar números grandes.

  • 102 = 10 x 10 = 100
  • 103 = 10 x 10 x 10 = 1.000
  • 104 = 10 x 10 x 10 x 10 = 10.000

¿Sabías qué?
Los mayas utilizaban un sistema de numeración posicional de base 20, es decir, las cantidades se agrupaban de 20 en 20. Dichos valores permitían obtener sumas de números grandes.

DESCOMPOSICIÓN MULTIPLICATIVA DE UN NÚMERO

Las matemáticas han permitido que el ser humano resuelva situaciones de una manera más rápida y sencilla. Una de estas facilidades es expresar un número como una multiplicación de sus factores primos.

Un número se puede expresar de otra manera equivalente al utilizar la multiplicación de factores. Esta técnica matemática se realiza con el uso de los números primos.

¿Qué son los números primos?

Un número primo es aquel que solo puede dividirse por sí mismo y por el número uno. Es decir, que posee solo dos divisores. Los primeros 100 números primos son: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541.

Ejemplo: el número 60 puede descomponerse en distintas multiplicaciones.

60 = 6 x 10

60 = (2 x 3) x (2 x 5)

60 = 2 x 3 x 2 x 5

Observa que el número 6 se descompone en sus factores primos 2 y 3. Sucede lo mismo con el número 10 que se descompone en dos factores primos: 2 y 5. Otras maneras de descomponer el número 60 son estas:

  • 60 = 4 x 15 = 2 x 2 x 3 x 5
  • 60 = 20 x 3 = 2 x 2 x 5 x 3

Para números más grandes, observa estos ejemplos:

  • 221.269 = 409 x 541
  • 147.413.303 =521 523 x 541
  • 1.738.066 = 2 x 11 x 199 x 397
¡A practicar!

1. Escribe la descomposición aditiva por medio del valor posicional de estos números:

  • 4.856.912
Solución
4.856.912 = 4.000.000 + 800.000 + 50.000 + 6.000 + 900 + 10 + 2
  • 73.892.146,965
Solución
73.892.146,965 = 70.000.000 + 3.000.000 + 800.000 + 90.000 + 2.000 + 100 + 40 + 6 + 0,9 + 0,06 + 0,005
  • 5.198.762,4023
Solución
5.198.762,4023= 5.000.000 + 100.000 + 90.000 + 8.000 + 700 + 60 + 2 + 0,4 + 0,002 + 0,0003

2. Escribe la descomposición polinómica de estos números:

  • 20.279.531
Solución
2 x 107 + 2 x 105 + 7 x 104 + 9 x 103 + 5 x 102 + 3 x 101 + 1 x 100
  • 579.348.670
Solución
5 x 108 + 7 x 107 + 9 x 106 + 3 x 105 + 4 x 104 + 8 x 103 + 6 x 102 + 7 x 101
  • 8.671.690
Solución
8.671.690,5364 = 8 x 106 + 6 x 105 + 7 x 104 + 1 x 103 + 6 x 10 2 + 9 x 10

3. Escribe la descomposición multiplicativa de estos números:

  • 99.301
Solución
99.301 = 199 x 499

Hay más opciones, ¡descúbrelas!

  • 29.884.301
Solución
29.884.301 = 307 x 311 x 313

Hay más opciones, ¡descúbrelas!

  • 2.843.858
Solución
2.843.858 = 2 x 23 x 211 x 293

Hay más opciones, ¡descúbrelas!

  • 1.697.658
Solución
1.697.658 = 2 x 3 x 523 x 541

Hay más opciones, ¡descúbrelas!

RECURSOS PARA DOCENTES

Artículo “Descomposición de números”

En este artículo encontrarás mayor ayuda para la enseñanza de la descomposición y el valor posicional de los números.

VER

Artículo “Valores absolutos y relativos”

En este artículo encontrará apoyo para la identificación del valor de los números al descomponerlos.

VER

Tarjetas educativas “Números”

En estas tarjetas educativas podrás encontrar los números del 1 al 100 y sus descomposiciones aditivas y polinómicas.

VER