CAPÍTULO 1 / TEMA 2

vALOR POSICIONAL

En nuestro sistema de numeración utilizamos solo 10 cifras para escribir todos los números, pero cada una de estas cifras puede tener valores distintos según su posición, por ejemplo, en el número 222, el primer 2 de izquierda a derecha vale 200, el segundo 20 y el tercero 2. Esto es lo que llamamos valor posicional y puedes aplicarlo a cualquier número.

¿qué es el Valor posicional?

Estos son los diez dígitos de nuestro sistema de numeración decimal. Con ellos podemos formar cualquier cantidad de números. El valor posicional de cada uno importa porque nos indica el valor total, pues no es lo mismo tener $ 321 que $ 123. A pesar de que tienen las mismas cifras (1, 2 y 3), con $ 321 puedes comprar más cosas que con $ 123.

El valor posicional es el valor que tiene una cifra en un número y depende de su posición o lugar. Estas posiciones se conocen como unidad, decena y centena; y según la clase pueden ser “de miles” o “de millones. Observa estas equivalencias:

  • 1 unidad = 1 U
  • 1 decena = 10 U
  • 1 centena = 100 U
  • 1 unidad de mil = 1.000 U
  • 1 decena de mil = 10.000 U

– Ejemplo 1:

El número 473 tiene tres cifras y cada una ocupa estas posiciones:

 

– Ejemplo 2:

El número 2.984 tiene 4 cifras y cada una ocupa estas posiciones:

¿Sabías qué?
Los valores posicionales tienen estas abreviaturas: U (unidades), D (decenas), C (centenas), UM (unidades de mil) y DM (decenas de mil).

Tabla posicional

Podemos ubicar todas las cifras de un número en una tabla posicional. Esta nos ayuda a ver con facilidad el valor de cada una de las cifras por medio de columnas identificadas.

Esta es una tabla posicional para números de 6 cifras. Observa que en las columnas de color en azul están las unidades, las decenas y las centenas; mientras que en las columnas de color naranja están las unidades de mil, las decenas de mil y las centenas de mil.

¿cómo representar números en la tabla posicional?

Si queremo ubicar las cifras de un número en la tabla posicional tenemos que empezar por la primera cifra de derecha a izquierda, esa será la unidad. La segunda cifra de derecha a izquierda será la decena, la siguiente la centena y así sucesivamente.

– Ejemplo:

Ubica las cifras del número 7.946 en la tabla posicional.

Como la primera cifra de derecha a izquierda es el 6, colocamos el 6 en la casilla de las unidades. Luego el 4 en la de las decenas, el 9 en las centena y el 7 en las unidades de mil.

¡A practicar!

Ubica estos números en la tabla posicional:

  • 8.104
Solución

  • 582
Solución

  • 1.789
Solución

Conocer el valor posicional de las cifras de cada número resulta de gran utilidad cuando manejamos dinero. Por lo general, los billetes y monedas vienen con valores de 1, 10 y 100 unidades. De este modo, si necesitamos pagar una cuenta de $ 483, solo debemos tomar 4 billetes de $ 100, 8 de $ 10 y 3 de $ 1.

– Problema 1

En una pastelería se hacen entregas de donas todas las semanas. El transporte de las donas se hace en cajas de 100, cajas de 10 y otras sueltas. Esta semana se pidieron las siguientes cantidades: 318, 173, 486 y 300. Si el encargado prepara los pedidos, ¿cuántas cajas de 100 y de 10 necesita para cada orden? ¿cuántas donas irán sueltas en cada caso?

  • Primer pedido

El primer pedido es de 318 donas. Lo primero que hacemos es ubicar este número en una tabla posicional.

En la tabla posicional vemos que hay:

  • 3 centenas = 3 veces 100
  • 1 decena = 1 vez 10
  • 8 unidades = 8 veces 1

Hagamos la representación con las cajas y donas:

Por lo tanto, el encargado necesita 3 cajas de 100, 1 caja de 10 y 8 donas sueltas.


  • Segundo pedido

El segundo pedido es de 163 donas. Ubicamos este número en una tabla posicional.

En la tabla posicional vemos que hay:

  • 1 centenas = 1 vez 100
  • 6 decenas = 6 veces 10
  • 3 unidades = 3 veces 1

Hagamos la representación con las cajas y donas:

Para este pedido el encargado necesita 1 caja de 100, 6 cajas de 10 y 3 donas sueltas.

¡Responde!

¿Cómo preparó el encargado los demás pedidos?

  • Tercer pedido
Solución

Este pedido es de 245 donas. Ubicamos este número en una tabla posicional.

En la tabla posicional vemos que hay:

  • 2 centenas = 2 veces 100
  • 4 decenas = 4 veces 10
  • 5 unidades = 5 veces 1

Hagamos la representación con las cajas y donas:

Para este pedido el encargado necesita 2 cajas de 100, 4 cajas de 10 y 5 donas sueltas.

  • Cuarto pedido
Solución

Este pedido es de 300 donas. Ubicamos este número en una tabla posicional.

En la tabla posicional vemos que hay:

  • 3 centenas = 3 veces 100

Hagamos la representación con las cajas y donas:

Para este pedido el encargado necesita 3 cajas de 100.

– Problema 2

En un juego de fichas, cada una de estas figuras indica una cantidad de puntos.

Observa que:

  • 1 cubo azul = 1 unidad
  • 1 barra roja = 1 decena
  • 1 placa verde = 1 centena
  • 1 caja amarilla = 1 unidad de mil

Carla sacó estas fichas, ¿cuántos puntos obtuvo?

  • Hay 2 cajas amarillas → 2 unidades de mil
  • Hay 1 placa verde → 1 centena
  • Hay 3 barras rojas → 3 decenas
  • Hay 8 cubos azules → 8 unidades

En una tabla posicional colocamos cada cifra según el valor que tenga.

Carla obtuvo 2.138 puntos.


Pedro sacó estas fichas, ¿cuántos puntos obtuvo?

  • Hay 5 cajas amarillas → 5 unidades de mil
  • Hay 0 placa verde → 0 centena
  • Hay 2 barras rojas → 2 decenas
  • Hay 3 cubos azules → 3 unidades

En una tabla posicional colocamos cada cifra según el valor que tenga.

Pedro obtuvo 5.023 puntos.

¿Sabías qué?
Hubo dos civilizaciones antiguas que usaron el principio de posición y representaron la ausencia de unidades mediante el cero: los babilonios y los mayas.

Descomposición aditiva de un número

La descomposición aditiva consiste en expresar un número como una suma de dos o más números. Para esta descomposición consideramos los valores posicionales.

Por ejemplo, el número 3.456 se coloca de esta manera en una tabla posicional:

En la tabla vemos que hay:

  • 3 unidades de mil = 3 veces 1.000 = 3.000
  • 4 centenas = 4 veces 100 = 400
  • 5 decenas = 5 veces 10 = 50
  • 6 unidades = 6 veces 1 = 6

Por lo tanto, podemos decir que el número 3.456 es igual a la suma de todos sus valores posicionales. Observa:

3.456 = 3.000 + 400 + 50 + 6

 

El ábaco es uno de los objetos más antiguos utilizados por el hombre para realizar sus operaciones matemáticas y quizás el de mayor distribución a nivel mundial. Esta herramienta o instrumento se utiliza para hacer cálculos manuales por medio de piezas de colores que representan los valores posicionales de una cifra.

¡A practicar!

Escribe la descomposición aditiva de los siguientes números:

  • 7.342
Solución

Valores posicionales

  • 7 unidades de mil = 7 veces 1.000 = 7.000
  • 3 centenas = 3 veces 100 = 300
  • 4 decenas = 4 veces 10 = 40
  • 2 unidades = 2 veces 1 = 2

Descomposición aditiva

7.342 = 7.000 + 300 + 40 + 2

  • 9.716
Solución

Valores posicionales

  • 9 unidades de mil = 9 veces 1.000 = 9.000
  • 7 centenas = 7 veces 100 = 700
  • 1 decena = 1 vez 10 = 10
  • 6 unidades = 6 veces 1 = 6

Descomposición aditiva

9.716 = 9.000 = 700 + 10 + 6

  • 8.053
Solución

Valores posicionales

  • 8 unidades de mil = 8 veces 1.000 = 8.000
  • 5 decenas = 5 veces 10 = 50
  • 3 unidades = 3 veces 1 = 3

Descomposición aditiva

8.053 = 8.000 + 50 + 3

¿Sabías qué?
Cuando el valor de una cifra es cero (0) no se escribe en la descomposición.

¡Hora de practicar!

1. Escribe el valor posicional de los dígitos en color rojo.

216

Solución
Unidad.

1.971

Solución
Centena.

7.031

Solución
Centena.

532

Solución
Decena.

828

Solución
Unidad.

6.220

Solución
Decena.

9.483

Solución
Unidad de mil.

2. Une la descomposición con el numero correspondiente.

Solución

RECURSOS PARA DOCENTES

Artículo “Composición y descomposición de números”

Este artículo explica cómo realizar composiciones y descomposiciones aditivas que ayudarán al alumno a realizar cálculos mentales con números naturales.

VER 

Artículo “Sistemas posicionales de numeración”

En este artículo podrás profundizar sobre la representación de los números en varios sistemas de numeración.

VER

Artículo “Descomposición de números”

Con este recurso tendrás las herramientas necesarias para hacer la descomposición de aditiva de los números naturales.

VER

CAPÍTULO 2 / TEMA 1

ADICIÓN

MUCHAS VECES NECESITAMOS AGRUPAR OBJETOS, POR EJEMPLO, LAS TARJETAS DE UN COMPAÑERO CON LAS NUESTRAS, PERO ¿CÓMO SABER CUÁNTAS HAY AL FINAL? PARA ESTO USAMOS UNA OPERACIÓN LLAMADA ADICIÓN O SUMA QUE CONSISTE EN UNIR CANTIDADES. SEGURO LA USAS DIARIAMENTE. HOY APRENDERÁS CUÁLES SON SUS PROPIEDADES Y CÓMO CALCULARLA.

LA ADICIÓN Y SUS ELEMENTOS

LA ADICIÓN ES UNA OPERACIÓN MATEMÁTICA QUE UNE DOS O MÁS CANTIDADES. EN ESA UNIÓN SE FORMA OTRA CANTIDAD LLAMADA SUMA. SUS ELEMENTO SON LOS SUMANDOS Y LA SUMA TOTAL.

– EJEMPLO:

JOSÉ Y CARLOS COMPRARON PALETAS PARA TODOS SUS AMIGOS. SI JOSÉ COMPRÓ 4 PALETAS Y CARLOS COMPRÓ 5 PALETAS, ¿CUÁNTAS PALETAS COMPRARON EN TOTAL?

ESTE PROBLEMA SE RESUELVE CON UNA SUMA. LOS SUMANDOS SON 4 Y 5 Y LA SUMA TOTAL ES LA UNIÓN DE ESAS DOS CANTIDADES, ES DECIR, 9.

LA SUMA ES UNA DE LAS PRIMERAS OPERACIONES MATEMÁTICAS QUE APRENDEMOS PORQUE ES UNA DE LAS MÁS USADAS EN LA VIDA COTIDIANA. DESDE LA ANTIGÜEDAD SE HAN AGRUPADO NÚMEROS PARA SABER CANTIDADES. INICIAMOS A SUMAR CON LOS DEDOS, PERO CUANDO LAS CIFRAS SON MAYORES TENEMOS QUE USAR LOS SÍMBOLOS DE LOS NÚMEROS Y SUS VALORES EN TABLAS POSICIONALES.

SUMA CON TABLA DE VALORES

ES UNA MANERA SENCILLA DE REPRESENTAR LAS SUMAS. AQUÍ DEBEMOS COLOCAR EN COLUMNAS LAS UNIDADES, LAS DECENAS Y LAS CENTENAS DE CADA NÚMERO.

– EJEMPLO:

¡ES TU TURNO!

REALIZA LAS SIGUIENTES SUMAS:

  • 15 + 14
  • 45 + 2
  • 45 + 51
SOLUCIÓN

 

SUMA CON LLEVADAS

A VECES LA SUMA DE LAS UNIDADES DE LOS SUMANDOS PUEDE SER MAYOR A 10, EN ESE CASO SEGUIMOS ESTOS PASOS:

1. SUMAMOS LAS UNIDADES Y COLOCAMOS EL 1 EN LA COLUMNA DE LAS DECENAS.

2. SUMAMOS LAS DECENAS CON EL 1 QUE SE COLOCÓ ANTES.

 

– EJEMPLOS:

 

TAMBIÉN PUEDE OCURRIR CON LAS CENTENAS. OBSERVA:

 

NUESTRO SISTEMA DE NUMERACIÓN SOLO TIENE DIEZ DÍGITOS: 0, 1, 2, 3, 4, 5, 6, 7, 8 Y 9. CON ELLOS FORMAMOS TODOS LOS NÚMEROS QUE EXISTEN Y CADA CIFRA TENDRÁ UN VALOR DIFERENTE SEGÚN EL LUGAR QUE OCUPE DENTRO DEL NÚMERO. POR EJEMPLO, EN EL NÚMERO 25, EL 2 VALE 20 Y EL 5 VALE 5, PERO EN EL NÚMERO 52, EL 5 VALE 50 Y EL 2 VALE 2.

PROPIEDADES DE LA ADICIÓN

PROPIEDAD CONMUTATIVA

EN UNA SUMA DE DOS CANTIDADES, SI CAMBIAMOS EL ORDEN DE LOS SUMANDOS EL RESULTADO ES EL MISMO.

PROPIEDAD ASOCIATIVA

EN UNA SUMA DE TRES SUMANDOS, SI CAMBIAMOS LA AGRUPACIÓN DE LOS SUMANDOS EL RESULTADO ES EL MISMO.

ELEMENTO NEUTRO

LA SUMA DE CUALQUIER NÚMERO CON CERO DA COMO RESULTADO SU NÚMERO INICIAL.

DESCOMPOSICIÓN ADITIVA

SE TRATA DE REPRESENTAR UN NÚMERO COMO LA SUMA DE OTROS. EN ESTE CASO CONSIDERAMOS LOS VALORES POSICIONALES. RECUERDA QUE:

  • 1 UNIDAD = 1 UNIDAD
  • 1 DECENA = 10 UNIDADES
  • 1 CENTENA = 100 UNIDADES

– EJEMPLO 1:

EL NÚMERO 156 TIENE:

  • 1 CENTENA = 1 × 100 = 100
  • 5 DECENAS = 5 × 10 = 50
  • 6 UNIDADES = 6 × 1 = 6

DESCOMPOSICIÓN ADITIVA:

156 = 100 + 50 + 6

 

– EJEMPLO 2:

EL NÚMERO 84 TIENE:

  • 8 DECENAS = 8 × 10 = 80
  • 4 UNIDADES = 4 × 1 = 4

DESCOMPOSICIÓN ADITIVA:

84 = 80 + 4

¡ANTES DE LAS CALCULADORAS!

DESDE HACE MILES DE AÑOS EL SER HUMANO HA NECESITADO CONTAR, ¡Y CLARO! SUMAR. AL PRINCIPIO LO HACÍA CON LOS DEDO, CON PALOS O CON PIEDRAS. TAMBIÉN HACÍAN NUDOS EN CUERDAS PARA CONTAR CANTIDADES. PERO UNO DE LOS MÁS IMPORTANTES INVENTOS FUE EL ÁBACO: UN HERRAMIENTA QUE HACE CÁLCULOS MANUALES POR MEDIO DE CONTADORES O ESFERAS QUE REPRESENTAN CANTIDADES.

¡PRACTIQUEMOS LO APRENDIDO!

1. PARA UN TORNEO DE BALONCESTO SE INSCRIBIERON 78 NIÑOS DE PRIMERO GRADO Y 81 NIÑOS DE SEGUNDO GRADO, ¿CUÁNTO NIÑOS SE INSCRIBIERON EN TOTAL?

  • DATOS

NIÑOS DE PRIMERO GRADO: 78

NIÑOS DE SEGUNDO GRADO: 81

  • PREGUNTA

¿CUÁNTOS NIÑOS SE INSCRIBIERON EN TOTAL?

  • ANALIZA

HAY QUE HACER UNA SUMA. PARA ESTO COLOCAMOS LOS SUMANDOS UNO SOBRE Y OTRO. SUMAMOS PRIMERO LAS UNIDADES Y LUEGO LAS DECENAS.

  • CALCULA

  • RESPUESTA

SE INSCRIBIERON 159 NIÑOS PARA EL TORNEO.


2. EN UN DÍA, UNA LIBRERÍA VENDIÓ 45 LÁPICES AMARILLOS Y 82 LÁPICES ROJOS, ¿CUÁNTOS LÁPICES SE VENDIERON ESE DÍA?

  • DATOS

LÁPICES AMARILLOS VENDIDOS: 45

LÁPICES ROJOS VENDIDOS: 82

  • PREGUNTA

¿CUÁNTOS LÁPICES SE VENDIERON ESE DÍA?

  • ANALIZA

HAY QUE HACER UNA SUMA. PARA ESTO COLOCAMOS LOS SUMANDOS UNO SOBRE Y OTRO. SUMAMOS PRIMERO LAS UNIDADES Y LUEGO LAS DECENAS.

  • CALCULA

  • RESPUESTA

SE VENDIERON 127 LÁPICES ESE DÍA.


3. ANTONIO TIENE 3 PAQUETES CON CARAMELOS. EN EL PRIMERO HAY 29 CARAMELOS, EN EL SEGUNDO HAY 8 Y EN EL TERCERO HAY 2. ¿CUÁNTOS CARAMELOS TIENE ANTONIO?, ¿CUÁL ES LA SOLUCIÓN MÁS FÁCIL PARA ESTE PROBLEMA?

  • DATOS

CANTIDAD DE CARAMELOS EN PAQUETE 1: 29

CANTIDAD DE CARAMELOS EN PAQUETE 2: 8

CANTIDAD DE CARAMELOS EN PAQUETE 3: 2

  • PREGUNTA

¿CUÁNTOS CARAMELOS TIENE ANTONIO?, ¿CUÁL ES LA SOLUCIÓN MÁS FÁCIL PARA ESTE PROBLEMA?

  • ANALIZA

EN ESTE CASO UTILIZAMOS LA PROPIEDAD ASOCIATIVA. AGRUPAMOS LOS PRIMEROS DOS TÉRMINOS Y LUEGO SUMAMOS EL TERCERO. LUEGO AGRUPAMOS EL SEGUNDO Y EL TERCER TÉRMINO Y SUMAMOS EL PRIMERO. AL COMPARAR LAS DOS OPCIONES VEREMOS CUÁL ES LA MÁS FÁCIL.

  • CALCULA

  • RESPUESTA

ANTONIO TIENE 39 CARAMELOS.

ES MÁS FÁCIL SUMAR 8 + 2 = 10 Y LUEGO SUMARLE 29.


4. CAROLINA DEBE PAGAR $ 134 EN EL SUPERMERCADO. SI SOLO TIENE BILLETES DE $ 100, $ 10 Y $ 1, ¿CUÁNTOS BILLETES DE CADA DENOMINACIÓN TIENE QUE USAR PARA PAGAR LA CUENTA?

  • DATOS

PAGO QUE TIENE QUE HACER CAROLINA: $ 134

BILLETES QUE TIENE CAROLINA: $ 100, $ 10 Y $ 1

  • PREGUNTA

¿CUÁNTOS BILLETES DE CADA DENOMINACIÓN TIENE QUE USAR PARA PAGAR LA CUENTA?

  • ANALIZA

HAY DE HACER UNA DESCOMPOSICIÓN ADITIVA DE 134. DE ESTE MODO TENDREMOS UNA SUMA DE VALORES QUE REPRESENTAN LA MISMA CANTIDAD. TENEMOS QUE VER LA CANTIDAD DE UNIDADES (QUE VALEN 1), DECENAS (QUE VALEN 10) Y CENTENAS (QUE VALEN 100) HAY EN LA SUMA.

  • CALCULA

EL NÚMERO 134 TIENE:

  • 1 CENTENA = 1 × 100 = 100
  • 3 DECENAS = 3 × 10 = 30
  • 4 UNIDADES = 4 × 1 = 4

DESCOMPOSICIÓN ADITIVA:

134 = 100 + 30 + 4

COMO YA VIMOS, 100 = 1 VEZ 100, 30 = 3 VECES 10 Y 4 = A VECES 1.

  • RESPUESTA

CAROLINA TIENE QUE USAR 1 BILLETE DE $ 100, 3 BILLETE DE $ 10 Y 4 BILLETES DE $ 1.


¡A PRACTICAR!

1. RESUELVE LAS SUMAS. COMPRUEBA LA PROPIEDAD CONMUTATIVA.

  • 15 + 10 =
SOLUCIÓN

15 + 10 = 25

10 + 15 = 25

  • 60 + 20 =
SOLUCIÓN

60 + 20 = 80

20 + 60 = 80

  • 48 + 2 =
SOLUCIÓN

48 + 2 = 50

2 + 48 = 50

 

2. RESUELVE LAS SUMAS. COMPRUEBA LA PROPIEDAD ASOCIATIVA.

  • 40 + 25 + 10 =
SOLUCIÓN

(40 + 25) + 10 = 65 + 10 = 75

40 + (25 + 10) = 40 + 35 = 75

  • 15 + 60 + 10 =
SOLUCIÓN

(15 + 60) + 10 = 75 + 10 = 85

15 + (60 + 10) = 15 + 70 = 85

  • 40 + 14 + 20 =
SOLUCIÓN

(40 + 14) + 20 = 54 + 20 = 74

40 + (14 + 20) = 40 + 34 = 74

 

3. REALIZA LA DESCOMPOSICIÓN ADITIVA DE LOS SIGUIENTES NÚMEROS.

  • 189
SOLUCIÓN
189 = 100 + 80 + 9
  • 74
SOLUCIÓN
74 = 70 + 4
  • 123
SOLUCIÓN
123 = 100 + 20 + 3
RECURSOS PARA DOCENTES

Artículo “Propiedades de la suma”

Este recurso te permitirá ampliar la información sobre las propiedades de la adición.

VER

Artículo “Cómo enseñar a sumar y a restar”

Con este artículo obtendrás algunas orientaciones y ejemplos prácticos de gran utilidad al momento de enseñar estas operaciones matemáticas.

VER