CAPÍTULO 3 / TEMA 6 (REVISIÓN)

Fracciones | ¿qué aprendimos?

noción de fracción

Las fracciones son una forma de representar las partes de un todo. Tienen dos elementos: un numerador y un denominador, ambos separados por una raya fraccionaria. El denominador indica en cuántas partes dividimos el todo y el numerador es igual a las partes que se toman del mismo. Las fracciones las podemos clasificar, de acuerdo a la relación entre el numerador y el denominador, en propias, impropias o aparentes.

Cada vez que cortamos frutas y nos comemos una parte de ellas podemos utilizar una fracción, por ejemplo, “me comí media naranja”.

adición y sustracción de fracciones

Para sumar o restar fracciones homogéneas (aquellas con igual denominador) lo único que debemos hacer es sumar o restar los numeradores y mantener el denominador. En cambio, las fracciones heterogéneas (aquellas con denominadores diferentes) se suman o restan por distintos métodos. Uno consiste en calcular el mcm, otro en hallar una fracción equivalente y otro en multiplicar de forma cruzada.

Las fracciones, como parte de un todo, pueden ordenarse de mayor a menor, compararse, sumarse, restarse, multiplicarse y dividirse.

Multiplicación y división de fracciones

Las multiplicaciones de fracciones son relativamente sencillas. Solo tenemos que multiplicar todos los numeradores de forma lineal y luego multiplicar de la misma manera todos los denominadores, y si es posible simplificamos. La división, en cambio, puede ser resuelta por dos métodos. El primero se trata de invertir la segunda fracción y multiplicarla por la primera, y el segundo es el de la doble c.

Las multiplicaciones y las divisiones son muy utilizadas en los problemas de reparto y porcentaje.

Fracciones y otros números

Muchas situaciones de nuestra vida cotidiana involucran no solo a los números naturales (\mathbb{N}), sino también a los enteros (\mathbb{Z}), los racionales (\mathbb{Q}) y los decimales. Todos ellos, con excepción de algunos decimales, pueden ser representados como una fracción, por ejemplo, el número 25 puede ser representado como 25/1 y el número decimal 0,25 puede representarse como 2/8.

Cuando vamos a comprar podemos pedir medio kilo de pan. Eso lo podemos expresar como fracción 1/2 kg o como número decimal 0,5 kg.

Fracciones y porcentajes

Otra forma de representar fracciones son los porcentajes. Estos son iguales a una fracción con denominador igual a 100. Por ejemplo, 20 % es igual a 20/100. Asimismo, estas expresiones se pueden mostrar como un número decimal, por lo tanto, 20/100 = 0,2. Los porcentajes son muy usados en economía, estadística y tecnología, pues ayudan a simplificar relaciones de una parte de un todo de manera clara.

Los porcentajes suelen estar presentes en los comercios para promocionar un descuento.

CAPÍTULO 3 / TEMA 4

fracciones y otros números

Todos los días utilizamos distintos números. Los que usamos para contar, se llaman números naturales. Los que utilizamos en los precios, se llaman números decimales. Todos ellos pueden combinarse con las fracciones en las distintas operaciones. A continuación, verás cómo solucionar problemas de este tipo.

Las fracciones están presentes en la mayoría de las situaciones de nuestra vida cotidiana. Por ejemplo, cuando vamos al mercado y pedimos un cuarto de kilo de una fruta. También usamos fracciones cuando decimos la hora: “Son las tres y cuarto”. O cuando picamos o partimos alimentos, como en la imagen, en la que vemos medio aguacate.

operaciones de fracciones con otros números

Supongamos que compramos 3 barras de chocolate. Si nos comemos 1 chocolate y 2/3 de otro, y nuestro amigo se come 1 chocolate y 1/4 de otro, ¿nos sobró algo de chocolate?

Para resolver esta situación tenemos que sumar primero lo que nos comimos y restarlo a los chocolates que compramos. En este caso, convertimos los números mixtos a sus fracciones impropias equivalentes y luego sumamos.

1\frac{2}{3}+1\frac{1}{4}= \frac{5}{3}+\frac{5}{4}

\frac{5}{3}+\frac{5}{4}=\frac{(5\times 4)+(3\times 5)}{3\times4 }=\frac{20+15}{12}=\boldsymbol{\frac{35}{12}}

Luego de tener la fracción equivalente a lo que comimos, podemos restarla a la cantidad total de chocolate comprado (3). Recuerda que todo número entero puede ser representado como una fracción con denominador igual a 1.

\frac{3}{1}-\frac{35}{12}=\frac{(3\times 12)-(1\times 35)}{1\times 12}=\frac{36-35}{12}=\boldsymbol{\frac{1}{12}}

Ahora sabemos que nos sobró \frac{1}{12} de chocolate.

A diario nos encontramos con situaciones en las que podemos combinar distintos tipos de números. En estos casos, aplicamos las propiedades de cada operación para cada tipo de número.

¡Es tu turno!

  • \left ( 1-\frac{3}{5} \right )\times \frac{3}{2}
Solución

\left ( \frac{1}{1}-\frac{3}{5} \right ) \times \frac{3}{2}=\left ( \frac{5}{5}-\frac{3}{5} \right ) \times \frac{3}{2}=\frac{2}{5} \times \frac{3}{2}=\frac{6}{10}=\boldsymbol{\frac{3}{5}}

  • \frac{9}{5} \div 3+\frac{9}{2}
Solución

\frac{9}{5} \div \frac{3}{1}+\frac{9}{2}=\frac{9}{5} \times \frac{1}{3}+\frac{9}{2}=\frac{9}{15}+\frac{9}{2}=\frac{3}{5}+\frac{9}{2}=\boldsymbol{\frac{51}{10}}

  • 4\frac{1}{3}-\frac{2}{5}+1=
Solución

\frac{13}{3}-\frac{2}{5}+\frac{1}{1}=\frac{65}{15}-\frac{6}{15}+\frac{15}{15}=\boldsymbol{\frac{74}{15}}

¿cómo transformar una fracción a un número decimal?

Para poder transformar una fracción en un número decimal debemos recordar que una fracción es una división en partes. Por lo tanto, lo que debemos hacer es dividir el numerador por el denominador y así convertimos una fracción en un número decimal. Veamos algunos ejemplos:

\frac{3}{4}=0,75

\frac{9}{4}=2,25

Existe otra manera de pasar las fracciones a números decimales pero esta forma no siempre es posible. Para poder utilizarla debemos buscar una fracción equivalente a la dada con denominador igual a 10, 100, 1.000, etc. Si amplificamos la fracción × 25, es decir, si multiplicamos tanto el numerador como el denominador por 25, tenemos que:

\frac{3}{4}=\frac{75}{100}

75/100 es la fracción decimal equivalente de 3/4. Ahora, si recordamos cómo se divide por potencias de 10, vemos que debemos correr la coma de derecha a izquierda tantos lugares como ceros haya en el denominador. Por lo tanto,

\frac{3}{4}=\frac{75}{100}=0,75

Hacemos lo mismo con el segundo ejemplo:

\frac{9}{4}=\frac{225}{100}=2,25

La conversión de una fracción a un decimal consiste en escribir dicha fracción como su número decimal equivalente mediante distintos métodos. Podemos dividir el numerador y el denominador para tener el cociente decimal. También podemos amplificar, es decir, multiplicar tanto el numerador como el denominador hasta tener un denominador igual a 10, 100, 1.000…

¡Es tu turno!

Pasar las siguientes fracciones a número decimal:

  • \frac{1}{25}

Solución

\frac{1}{25}=\frac{4}{100}=0,04

Amplificación: × 4

  • \frac{3}{5}

Solución

\frac{3}{5}=\frac{60}{100}=0,6

Amplificación: × 20

  • \frac{5}{4}

Solución

\frac{5}{4}=\frac{125}{100}=1,25

Amplificación: × 25

¿Sabías qué?
Los números decimales fueron utilizados por primera vez por Stevin que, para escribirlos, lo hacía de una forma particular. Por ejemplo, si quería escribir el número 43,527, la notación era 43⓪5①2②7③. El ⓪ representaba a los enteros, el ① a las décimas, el ② a las centésimas y así sucesivamente.

transformación de un número decimal a fracción

En el caso anterior, para pasar de fracción a número decimal, intentamos hacer fracciones decimales, que son las que poseen denominador igual a una potencia de 10. A partir de ahí, corrimos la coma en el numerador a la izquierda según la cantidad de ceros que había en el denominador.

Ahora vamos a seguir los mismos pasos pero al revés, así que, si tenemos un número decimal, vamos a contar los lugares decimales, que son los que se encuentran a la derecha de la coma. Estos lugares nos indicarán cuántos ceros deberá tener el denominador y el numerador de la fracción será el número decimal, pero sin escribir la coma. Observa este ejemplo:

Sea el número 2,378, da su fracción decimal:

  1. Contamos los lugares que hay a la derecha de la coma \rightarrow hay 3 lugares, por lo tanto, el denominador será un 1 seguido de tres ceros: 1.000.
  2. Para el numerador escribimos el número, pero sin coma \rightarrow 2.378.
  3. Ahora escribimos la fracción correspondiente \rightarrow \frac{2.378}{1.000}.
  4. Si es posible, simplificamos la fracción \rightarrow \frac{1.189}{500}.
Cuando convertimos un número decimal a una fracción reescribimos dicho decimal como su fracción equivalente por medio de la amplificación por unidades seguidas de cero. Para esto escribimos primero el decimal sobre 1 y luego amplificamos y simplificamos. Por ejemplo, 0,5 = 5/10. Luego simplificamos y 5/10 = 1/2.

Clasificación de los números decimales

Los números decimales se pueden clasificar en:

  • Exactos: su parte decimal es finita. Por ejemplo: 0,345, 1,0235, etc.
  • Periódicos puros: su parte decimal es infinita y se repiten uno o varios números. Se suele representar el período con un arco. Por ejemplo: 2,3333…, 0,121212…, etc.
  • Periódico mixto: su parte decimal tiene una parte pura y una periódica. Por ejemplo: 2,1655555…, 0,01222222…, etc.

¡A practicar!

1. Convierte los siguientes números decimales a fracciones y luego, si es posible, simplifica:

  • 5,75
Solución

\frac{575}{100}=\frac{23}{4}

  • 2,03
Solución

\frac{203}{100}

  • 7,5
Solución

\frac{75}{10}

2. Resuelve los siguientes cálculos. Convierte los números decimales a fracciones.

  • 0,2+0,6\: \times \, \frac{5}{2}
Solución

\frac{2}{10}+\frac{6}{10}\: \times \, \frac{5}{2}=\frac{1}{5}+\frac{3}{5}\: \times \, \frac{5}{2}=\frac{1}{5}+\frac{15}{10}=\frac{2}{10}+\frac{15}{10}=\frac{17}{10}

  • 0,25\: \times \, \left ( 1,5-\frac{2}{3} \right )
Solución

\frac{25}{100}\: .\, \left ( \frac{15}{10}-\frac{2}{3} \right )=\frac{1}{4}\: .\, \left ( \frac{3}{2}-\frac{2}{3} \right )=\frac{1}{4}\: .\, \left ( \frac{9}{6}-\frac{4}{6} \right )=\frac{1}{4}\: .\, \frac{5}{6}=\frac{5}{24}

  • 1-0,4\: \times \, \frac{3}{4}
Solución

\frac{1}{1}-\frac{4}{10}\: \times \, \frac{3}{4}=\frac{1}{1}-\frac{2}{5}\: \times \, \frac{3}{4}=\frac{1}{1}-\frac{6}{20}=\frac{1}{1}-\frac{3}{10}=\frac{10}{10}-\frac{3}{10}=\frac{7}{10}

RECURSOS PARA DOCENTES

Video “Fracciones y números decimales. Ejercicio 3”

En este video podrá ver qué pasa si la fracción es impropia

VER

CAPÍTULO 3 / TEMA 3

multiplicación y división de fracciones

Luego de la suma y la resta, la multiplicación y la división son las operaciones básicas más importantes. Estas se aplican a una amplia gama de números y las fracciones no son la excepción. Las reglas para resolver problemas de este tipo son muy sencillas. ¡Aprende cómo hacerlo!

¿Cómo se multiplican las fracciones?

Para multiplicar fracciones lo único que debemos hacer es multiplicar todos los numeradores y denominadores de forma lineal. Luego, si es necesario, simplificamos hasta su fracción irreducible.

\frac{a}{b} y \frac{c}{d} ∈ \mathbb{Q}, se tiene que

 

\frac{a}{b}\times \frac{c}{d}=\frac{a\times c}{b\times d}

– Ejemplo:

\frac{2}{3}\times \frac{9}{4}\times \frac{1}{3}=\frac{2\times 9\times 1}{3\times 4\times 3}=\frac{18}{36}=\boldsymbol{\frac{1}{2}}

-\frac{6}{5}\times \frac{3}{2}=\frac{-6\times 3}{5\times 2}=\frac{-18}{10}=\boldsymbol{-\frac{9}{5}}

¿Cómo simplificar una fracción?

Simplificar una fracción significa que tenemos que transformarla en otra equivalente e irreducible. Para esto, tenemos que dividir sucesivamente tanto el numerador como el denominador entre sus divisores comunes. Por ejemplo:

VER INFOGRAFÍA

Una manera simple de resolver problemas es por medio de la simplificación de sus factores. Observa que si multiplicamos dos fracciones y el numerador de la primera es igual al denominador de la segunda, cancelamos ambos factores. Esto sucede porque todo número sobre él mismo resultará en 1, y el producto de todo número con el 1 será igual al mismo número.

Fracción de un entero

Todo número entero puede ser representado como una fracción con denominador igual a 1.

5=\frac{5}{1}

123=\frac{123}{1}

Problemas de multiplicación

1. Carmen vende rosquillas en cajas de una docena. Si Laura le pide \frac{5}{6} de una caja, ¿cuántas rosquillas debe venderle Carmen?

  • Datos

Cantidad de rosquillas en una caja: 1 docena = 12 rosquillas

Pedido de Laura: \frac{5}{6} de una caja

  • Reflexión

Para saber la cantidad de rosquillas que Carmen debe vender solo tenemos que multiplicar la cantidad de rosquillas en una caja (12) por la fracciones que se desea (5/6).

  • Cálculo

12\times \frac{5}{6}=\frac{12}{1}\times \frac{5}{6}=\frac{12\times 5}{1\times 6}=\frac{60}{6}=\boldsymbol{10}

  • Respuesta

Carmen debe venderle a Laura 10 rosquillas.


2. En un club hay 72 chicos que practican algún deporte. Tres cuartas partes practican baloncesto, la tercera parte del resto practica natación y los demás practican fútbol. Responde:

  1. ¿Cuántos chicos practican baloncesto?
  2. ¿Cuántos practican natación?
  3. ¿Cuántos practican fútbol?
  4. ¿Qué fracción del total representan los chicos que juegan baloncesto, natación y fútbol?
  • Datos

Total de chicos: 72

Chicos que practican baloncesto: \frac{3}{4} del total de chicos

Chicos que practican natación: \frac{1}{3} del resto de los que practican baloncesto

Chicos que practican fútbol: ?

  • Reflexión
  1. Para saber la cantidad de chicos que practican baloncesto tenemos que multiplicar la cantidad de chicos (72) por la fracción (3/4) que representan los que practican ese deporte.
  2. La diferencia o resta entre el total de chicos y los que practican baloncesto (72 − a) tenemos que multiplicarla por la fracción que representa a los que juegan natación (1/3).
  3. La cantidad de chicos que practican fútbol será igual a la resta entre el total de chicos y los que practican natación y baloncesto (c = 72 − (a + b)).
  4. Con la cantidad de chicos que juega cada deporte, basta con considerarlos como numeradores con denominador igual a 72. Si la suma de todas las fracciones es igual a 1, entonces todas las fracciones serán correctas.
  • Cálculo

a. Chicos que practican baloncesto:

72 \times \frac{3}{4}=\frac{72}{1}\times \frac{3}{4}=\frac{72\times 3}{4}=\frac{216}{4}=\boldsymbol{54}

b. Chicos que practican natación:

– Restamos la cantidad de chicos que practican natación al total de chicos:

72-54=\boldsymbol{18}

– Luego calculamos la cantidad:

18\times \frac{1}{3}=\frac{18}{1}\times \frac{1}{3}=\frac{18\times 1}{1\times 3}=\frac{18}{3}=\boldsymbol{6}

c. Chicos que practican fútbol:

72-(54+6)=72-60=\boldsymbol{12}

d. Fracciones por deporte:

– Baloncesto:

\frac{54}{72}=\frac{3}{4}

– Natación:

\frac{6}{72}=\frac{1}{12}

– Fútbol:

\frac{12}{72}=\frac{1}{6}

* Todas las fracciones fueron simplificadas.

Podemos comprobar por medio de una suma:

\frac{54}{72}+\frac{6}{72}+\frac{12}{72}=\frac{72}{72}=\boldsymbol{1}

Como la suma de las fracciones es igual a 1, entonces son correctas.

  • Respuestas

a. ¿Cuántos chicos practican baloncesto?

54 chicos practican baloncesto.

b. ¿Cuántos practican natación?

6 chicos practican natación.

c. ¿Cuántos practican fútbol?

12 chicos practican fútbol.

d. ¿Qué fracción del total representan los chicos que juegan baloncesto, natación y fútbol?

\frac{3}{4} del total practica baloncesto.

\frac{1}{12} del total practica natación.

\frac{1}{6} del total practica fútbol.

¿Sabías qué?
El tratado de matemática chino más antiguo es el Chou Pei Suan Ching. En él hay varios problemas de divisiones de fracciones que debían ser llevadas a fracciones de igual denominador para ser resueltas.

¿cómo se dividen las fracciones?

La división de dos fracciones es igual a la multiplicación de la primera por la inversa de la segunda.

\frac{a}{b} y \frac{c}{d} ∈ \mathbb{Q}, se tiene que

 

\frac{a}{b}\div \frac{c}{d}=\frac{a}{b}\times \frac{d}{c}=\frac{a\times d}{b\times c}

– Ejemplo:

\frac{36}{5}\div \frac{9}{8}=\frac{36}{5}\times \frac{8}{9}=\boldsymbol{\frac{32}{5}}

\frac{4}{10}\div \frac{8}{15}=\frac{4}{10}\times \frac{15}{8}=\frac{60}{80}=\boldsymbol{\frac{3}{4}}

La sandía o patilla es una fruta de gran tamaño y muy rica en agua, ¿cuántas partes de ella ves en la imagen? ¡Hay media sandía de un lado y un cuarto de sandía del otro lado! Cuando nos referimos a la mitad de algo usamos la fracción 1/2 y la mitad de esa mitad se representa con la fracción 1/4. Estas divisiones de fracciones las vemos a diario en los mercados y las verdulerías.

Método de la doble c

Este es un método alternativo para resolver divisiones de fracciones. Consiste en dibujar una línea curva grande, similar a la letra “c”, que una el numerador de la fracción de arriba con el denominador de la fracción de abajo. Después hacemos una “c” más pequeña que una el denominador de la fracción de arriba y el numerador de la fracción de abajo.

Por ejemplo, al hacer por medio de este método la división \frac{2}{3}\div\frac{5}{6} podemos representarlo así:

Problemas de división

1. Luis es jardinero. Él utiliza dos quintos de litro de agua para regar una planta. Si tiene una tanque con 45 litros de agua, ¿cuántas plantas puede regar?

  • Datos

Agua gastada en una planta: \frac{3}{5} litros

Agua en el tanque: 45 litros

  • Reflexión

Si dividimos los litros de agua que tiene el tanque entre los litros de agua que gasta Luis por planta sabremos cuántas plantas podrá regar. Para esto, multiplicamos la primera fracción (45 = 45/1) por la inversa de la segunda fracción (5/3).

  • Cálculo

45\div \frac{3}{5}=\frac{45}{1}\times \frac{5}{3}=\frac{45\times 5}{1\times 3}=\frac{225}{3}=\boldsymbol{75}

  • Respuesta

Luis podrá regar 75 plantas.


2. Carla organiza una fiesta para 12 personas. Si tiene 3 pizzas y media para ese día y cada una está cortada en 6 porciones, ¿le alcanzará para que cada persona coma 2 porciones?

  • Datos

Cantidad de invitados: 12

Cantidad de pizzas: 3\frac{1}{2}

Cantidad de porciones por cada pizza: 6

  • Reflexión
  1. Primero tenemos que saber la cantidad de porciones totales que tenemos. Si cada pizza tiene 6 porciones debemos hacer una división entre la cantidad de pizzas (3 y 1/2) y las porciones de esta (1/6). Primero dividimos 3 entre 1/6 y luego 1/2 entre 1/6.
  2. Luego de saber el total de porciones debemos comparar con lo deseado. Para que 12 invitados coman 2 porciones, deberían haber 24 porciones totales de pizza. Si el resultado obtenido en a) es menor que 24, las 3 pizzas y media no alcanzarán, pero si el resultado obtenido es igual o mayor a 24, las pizzas sí serán suficientes para que todos coman 2 porciones.
  • Cálculo

a. Porciones totales:

– Dividimos las pizzas entre 1/6:

3\div \frac{1}{6}=\frac{3}{1}\times \frac{6}{1}=\boldsymbol{18}

\frac{1}{2}\div \frac{1}{6}=\frac{1}{2}\times \frac{6}{1}=\frac{6}{2}=\boldsymbol{3}

– Sumamos las porciones:

18+3=\boldsymbol{21}

b. Comparamos:

21 < 24

  • Respuesta

Las 3 pizzas y media no serán suficientes para que los 12 invitados coman 2 porciones.


3. Pablo compró tres cuartos de kilogramo de helado, pero pidió que se lo separaran en envases de un octavo de kilogramos para repartirlo entre sus sobrinos. ¿Para cuántos sobrinos le alcanzará el helado?

  • Datos

Helado comprado: \frac{3}{4} kg

Peso de helado en los envases repartidos: \frac{1}{8} kg

  • Reflexión

Si dividimos la cantidad de helado comprado entre lo que cabe en cada envase en el que se repartió, sabremos la cantidad de envases que usó y, por lo tanto, la cantidad de sobrinos a los que podrá darle un envase de helado.

  • Cálculo

\frac{3}{4}\div \frac{1}{8}=\frac{3}{4}\times \frac{8}{1}=\frac{24}{4}=\boldsymbol{6}

  • Respuesta

A Pablo le alcanzará para darle helado a 6 de sus sobrinos.

En la tienda, venden cartones con una docena de huevos. Si Marcos solo necesita 1/4 de docena para preparar una receta de un postre, ¿cuántos huevos debe comprar? ¡Muy sencillo! Tenemos que multiplicar la docena de huevos por la fracción deseada, entonces: 12 × 1/4 = 3. Así que Marcos solo tiene que comprar 3 huevos para hacer su postre.

¡A practicar!

Resuelve los siguientes ejercicios:

  • \frac{\frac{12}{35}}{\frac{4}{21}}
Solución
\frac{\frac{12}{35}}{\frac{4}{21}}=\boldsymbol{\frac{9}{5}}
  • \frac{5}{6}\times \frac{10}{8}
Solución
\frac{5}{6}\times \frac{10}{8}=\boldsymbol{\frac{25}{24}}
  • \frac{6}{4}\div \frac{1}{2}
Solución
\frac{6}{4}\div \frac{1}{2}\frac{6}{4}\div \frac{1}{2}=\boldsymbol{3}
  • \frac{\frac{6}{5}}{\frac{7}{15}}
Solución
\frac{\frac{6}{5}}{\frac{7}{15}}=\boldsymbol{\frac{18}{7}}
  • \frac{8}{3}\times \frac{3}{8}
Solución
\frac{8}{3}\times \frac{3}{8}=\boldsymbol{1}
  • \frac{30}{6}\div \frac{2}{5}
Solución
\frac{30}{6}\div \frac{2}{5}=\boldsymbol{\frac{25}{2}}
  • \frac{\frac{8}{18}}{\frac{4}{9}}
Solución
\frac{\frac{8}{18}}{\frac{4}{9}}=\boldsymbol{1}

RECURSOS PARA DOCENTES

Tarjeta Educativa “Multiplicación de Fracciones”

La tarjeta tiene material adicional sobre multiplicación de fracciones y sus propiedades.

VER

Tarjeta Educativa “División de Fracciones”

La tarjeta tiene material adicional sobre división de fracciones y sus propiedades.

VER

Artículo “Multiplicación y división de fracciones”

Este recurso cuenta con una serie de ejemplos prácticos y ejercicios útiles sobre multiplicación y división de fracciones.

VER

CAPÍTULO 3 / TEMA 3

OPERACIONES CON FRACCIONES

Las fracciones son números y, como tales, su pueden sumar, restar, dividir y multiplicar. Muchas situaciones en la vida cotidiana se resuelven mediante la suma o resta de fracciones, como por ejemplo, calcular las porciones de torta que quedan luego de repartir una parte.

ADICIÓN Y SUSTRACCIÓN DE FRACCIONES

El procedimiento para sumar o restar fracciones es distinto entre fracciones homogéneas y heterogéneas. Por ello es muy importante saber reconocerlas.

Fracciones homogéneas

Las fracciones homogéneas son las que tienen el mismo denominador. En este caso, la operación de suma o resta consiste simplemente en sumar o restar los numeradores y conservar el mismo denominador.

-En el caso de la suma se cumple que:

\frac{a}{{\color{Red} b}}+\frac{c}{{\color{Red} b}}=\frac{a+c}{{\color{Red} b}}

Por ejemplo:

a) \frac{1}{5}+\frac{2}{5}

En este caso se trata de una suma de dos fracciones homogéneas porque tienen igual denominador, que es 5. Para resolver la suma se coloca el mismo denominador y se suman los numeradores.

\frac{1}{5}+\frac{2}{5}=\frac{1+2}{5}=\frac{3}{5}

El denominador en ambos casos es 5. Entonces sumamos los numeradores (1 + 2 = 3) y conservamos el denominador 5.

-En el caso de la resta se cumple que:

\frac{a}{{\color{Red} b}}-\frac{c}{{\color{Red} b}}=\frac{a-c}{{\color{Red} b}}

Por ejemplo:

b) \frac{7}{3}-\frac{2}{3}

En este caso se trata de una sustracción o resta de dos fracciones homogéneas con denominar igual a 3. Para resolver el problema se coloca el mismo denominador y se restan los exponentes.

\frac{7}{3}-\frac{2}{3}=\frac{7-2}{3}=\frac{5}{3}

Fracciones heterogéneas

Las fracciones heterogéneas son las que entre sí tienen distinto denominador. Para el caso de la suma de fracciones heterogéneas se aplica la siguiente fórmula.

La expresión anterior lo que quiere decir es que para sumar dos fracciones heterogéneas, el numerador de la fracción resultante es igual a la suma del producto del numerador de la primera fracción por el denominador de la segunda y el producto del denominador de la primera fracción por el numerador de la segunda. El denominador de la fracción resultante es igual al producto de los denominadores de las fracciones originales.

En el caso de la resta de las fracciones se aplica casi la misma fórmula pero al momento de calcular el numerador resultante se deben restar los productos del numerador de la primera fracción por el denominador de la segunda y el producto del denominador de la primera fracción por el numerador de la segunda.

Veamos algunos ejemplos con números:

Otro método

El método explicado anteriormente es el más utilizado, aunque también se pueden sumar y restar fracciones heterogéneas a través de fracciones equivalentes. Para ello, se calcula el mínimo común múltiplo entre los dos denominadores, y se amplifican ambas fracciones de manera de que ambas tengan como denominador al mínimo común múltiplo. Una vez que tienen el mismo denominador, sumamos o restamos los numeradores y conservamos el denominador.

En procedimiento para sumar o a restar fracciones varía, y depende de si se trata de fracciones homogéneas o heterogéneas. En el caso de las fracciones homogéneas el procedimiento es más sencillo porque se mantiene el mismo denominador y se suman o restan los numeradores según la operación. En las operaciones heterogéneas el procedimiento es más largo.

MULTIPLICACIÓN Y DIVISIÓN DE FRACCIONES

Otras operaciones que se pueden realizar con fracciones son la multiplicación y la división. Ambas llevan procedimientos diferentes.

Multiplicación

La multiplicación de fracciones es una de las operaciones más sencillas. Para resolverla solamente se debe multiplicar de forma lineal. Es decir, numerador por numerador y denominador por denominador. De la siguiente forma:

\frac{a}{b}\times \frac{c}{d} = \frac{a\times c}{b\times d}

Observa el siguiente ejemplo:

 \frac{3}{5}\times \frac{2}{7}

Para resolver esta multiplicación primero tenemos que multiplicar el numerador de la primera fracción por el numerador de la segunda: el resultado será el numerador de la fracción resultante. Luego multiplicamos el denominador de la primera fracción por el denominador de la segunda fracción y el número que se obtiene será el denominador de la fracción resultante.

\frac{3}{5}\times \frac{2}{7} =\frac{3\times 2}{5\times 7}=\frac{6}{35}

División

Para dividir fracciones, el método que más se utiliza es multiplicar en forma de cruz. Es decir, primero se multiplica el numerador de la primera fracción por el denominador de la segunda y el producto de estos números sera el denominador de la fracción resultante. Luego se multiplica el numerador de la segunda fracción por el denominador de la primera y el producto de estos números será igual al denominador de la fracción resultante.

\frac{{\color{Blue} a}}{{\color{Red} b}}:\frac{{\color{Red} c}}{{\color{Blue} d}}=\frac{{\color{Blue} a\times d}}{{\color{Red} b\times c}}

Observa el siguiente ejemplo:

a) \frac{7}{4}:\frac{3}{5}

En este caso procedemos a realizar la multiplicación en cruz del primer numerador, que es 7, por el denominador de la segunda fracción, que es 5:

\frac{7}{4}:\frac{3}{5}=\frac{7\times 5}{}

Luego multiplicamos el numerador de la segunda fracción por el denominador de la primera fracción:

\frac{7}{4}:\frac{3}{5}=\frac{7\times 5}{3\times 4}

Finalmente, se resuelven los productos:

\frac{7}{4}:\frac{3}{5}=\frac{7\times 5}{3\times 4}=\frac{35}{12}

Algunas fracciones se pueden simplificar, es decir, pueden expresarse en fracciones equivalentes más sencillas (que representan la misma cantidad). La simplificación es un proceso usado comúnmente en los cálculos porque permite manejar expresiones más sencillas. Las fracciones que no se pueden simplificar se denominan fracciones irreducibles.

PROBLEMAS DE APLICACIÓN

Existen problemas cotidianos que pueden resolverse a través de operaciones con fracciones. Los siguientes ejemplos indican cómo usar las fracciones en estos casos.

1. Juan comió 3/8 de pizza y Luis comió 4/8 de la misma pizza. ¿Cuánto comieron los dos en total?

Análisis: Debemos sumar ambas fracciones. Como los denominadores son los mismos, son fracciones homogéneas. Entonces, sumamos los numeradores y conservamos el denominador.

Cálculos: \frac{3}{8}+\frac{4}{8}= \frac{3+4}{8}= \frac{7}{8}

Respuesta: Entre Juan y Luis comieron 7/8 de la pizza.

2. Un científico tiene 6/5 partes de una sustancia, si pierde 2/3 de esa sustancia, ¿cuánta sustancia le queda?

Análisis: Para saber cuánta sustancia le queda al científico hay que restar ambas fracciones. Como los denominadores son diferentes, son fracciones heterogéneas. Entonces, seguimos el procedimiento explicado anteriormente:

Cálculos: \frac{6}{5}-\frac{2}{3}= \frac{(6\times 3)-(5\times 2)}{5\times 3}= \frac{18-10}{15}=\frac{8}{15}

Respuesta: Al científico le quedan 8/15 de sustancia.

3. Una modista tiene una tela que mide 5/7 de metro, si la dividió en trozos de 1/8 de metros, ¿cuántos trozos obtuvo?

Análisis: Para saber el número de trozos que obtuvo la modista se deben dividir ambas fracciones.

Cálculos: \frac{5}{7}:\frac{1}{8}=\frac{5\times 8}{1\times 7}=\frac{40}{7}

Respuesta: El número de trozos que obtuvo la modista fue de 40/7.

Muchas situaciones de la vida cotidiana implican la utilización de fracciones. Los casos en que dividimos una torta, una pizza o un terreno, entre otros, son algunas de las situaciones más comunes donde podemos utilizar estos números. Al partir una torta en porciones, cada porción representa una cantidad del total. En esta imagen falta 1/4 de la torta y quedan 3/4 de la misma.

¡A practicar!

  1. Realiza los siguientes cálculos.

a)  \frac{5}{3}+\frac{13}{3}

b) \frac{8}{5}-\frac{2}{5}

c) \frac{8}{5}+\frac{2}{4}

d) \frac{7}{3}\times \frac{9}{5}

e) \frac{5}{2}:\frac{10}{3}

RESPUESTAS

a)  \frac{5}{3}+\frac{13}{3}=\frac{5+13}{3}=\frac{18}{3}

b) \frac{8}{5}-\frac{2}{5}=\frac{8-2}{5}=\frac{6}{5}

c) \frac{8}{5}+\frac{2}{4}=\frac{(8\times 4)+(2\times5)}{5\times4}=\frac{32+10}{20}=\frac{42}{20}

d) \frac{7}{3}\times \frac{9}{5}=\frac{7\times9}{3\times5}=\frac{63}{15}

e) \frac{5}{2}:\frac{10}{3}=\frac{5\times 3}{2\times 10}=\frac{15}{20}

RECURSOS PARA DOCENTES

Artículo “Adición y sustracción de fracciones”

Este artículo profundiza la información sobre el proceso de resolución de sumas y restas de fracciones a través de fracciones equivalentes.

VER

Artículo “Multiplicación y división de fracciones”

Este artículo, además de mostrar cómo resolver multiplicaciones y divisiones con fracciones, muestra cuáles son los criterios de divisibilidad usados para simplificarlas.

VER

Micrositio “Operaciones matemáticas”

El siguiente micrositio ofrece una serie de tarjetas educativas que muestran un resumen de las formulas generales para la sustracción, la adición, la multiplicación y la división de fracciones.

VER

CAPÍTULO 3 / TEMA 2

adición y sustracción de fracciones

Las fracciones son divisiones no resueltas que representan las partes de un todo. Pertenecen a los números racionales y, como cualquier otro tipo de número, pueden ser sumadas o restadas. Las características de cada fracción hacen que las operaciones tengan reglas distintas. A continuación, aprenderás los métodos posibles para realizar estos cálculos.

Una fracción simboliza una división entre un número y otro, y a su vez indica las partes tomadas de un todo. Una fracción tiene dos partes: un numerador y un denominador separados por una línea horizontal. El denominador señala en cuántas partes se divide la unidad, y el numerador señala cuántas de esas partes se han tomado.

VER INFOGRAFÍA

adición y sustracción de fracciones homogéneas

Cuando dos fracciones tienen el mismo denominador se las llama homogéneas. Para sumar y restar este tipo de fracciones solo se suman o restan lo numeradores y se mantiene el mismo denominador.

Adición

\frac{{\color{Red} 12}}{{\color{Blue} 7}}+\frac{{\color{Red} 4}}{{\color{Blue} 7}} = \frac{{\color{Red} 12+4}}{{\color{Blue} 7}}=\boldsymbol{\frac{16}{7}}

– Otros ejemplos:

\frac{{\color{Red} 31}}{{\color{Blue} 17}}+\frac{{\color{Red} 41}}{{\color{Blue} 17}}=\frac{{\color{Red} 31+41}}{{\color{Blue} 17}}=\boldsymbol{\frac{72}{17}}

\frac{{\color{Red} 15}}{{\color{Blue} 11}}+\frac{{\color{Red} 10}}{{\color{Blue} 11}}+\frac{{\color{Red} 21}}{{\color{Blue} 11}}= \frac{{\color{Red} 15+10+21}}{{\color{Blue} 11}}=\boldsymbol{\frac{46}{11}}

Sustracción

\frac{{\color{Red} 23}}{{\color{Blue} 7}}-\frac{{\color{Red} 14}}{{\color{Blue} 7}}=\frac{{\color{Red} 23-14}}{{\color{Blue} 7}}=\boldsymbol{\frac{9}{7}}

– Otros ejemplos:

\frac{{\color{Red} 3}}{{\color{Blue} 5}}-\frac{{\color{Red} 1}}{{\color{Blue} 5}}=\frac{{\color{Red} 3-1}}{{\color{Blue} 5}}=\boldsymbol{\frac{2}{5}}

\frac{{\color{Red} 24}}{{\color{Blue} 13}}-\frac{{\color{Red} 8}}{{\color{Blue} 13}}-\frac{{\color{Red} 10}}{{\color{Blue} 13}}=\frac{{\color{Red} 24-8-10}}{{\color{Blue} 13}}=\boldsymbol{\frac{6}{13}}

fracciones equivalentes

Las fracciones equivalentes son aquellas que, a pesar de tener distintos numeradores y denominadores, representan la misma cantidad. Dos fracciones son equivalentes si al multiplicar sus términos en forma de cruz el resultado es el mismo.

– Ejemplo:

\frac{3}{6} y \frac{6}{12} son fracciones equivalentes porque:

        3\times 12=\boldsymbol{36}

        6\times 6=\boldsymbol{36}

Podemos escribir las fracciones equivalentes de la siguiente manera:

\frac{3}{6}=\frac{6}{12} porque 3\times 12 = 6\times 6

– Otro ejemplo:

\frac{8}{3} y \frac{2}{4} no son fracciones equivalentes porque:

         8\times 4=\boldsymbol{32}

         3\times 2=\boldsymbol{6}

Podemos escribir las fracciones no equivalentes de la siguiente manera:

\frac{8}{3}\neq \frac{2}{4} porque 8\times 4\neq 3\times 2

¡Practiquemos! 

Laura, Tomás y Daniela tienen cada uno un chocolate. Laura comió 1/2, Tomás comió 3/6 y Daniela comió 6/12. ¿Quién comió más chocolate?

Si representamos en gráficos cada fracción tenemos que:

\boldsymbol{\frac{1}{2}=}  

\boldsymbol{\frac{3}{6}=}  

\boldsymbol{\frac{6}{12}=}

Laura partió el chocolate en 2 pedazos y comió uno de esos; Tomás lo cortó en 6 pedazos y comió 3; y Daniela lo cortó en 12 pedazos y comió 6.

Sin importar la cantidad de trozos en las que se dividió el chocolate, cada uno comió lo mismo: la mitad.

Además de comprobarlo con los gráficos y por el método cruzado, podemos corroborar que una fracción es equivalente a otra si resolvemos la división. De este modo, tenemos que:

\frac{1}{2}=\boldsymbol{0,5}

\frac{3}{6}=\boldsymbol{0,5}

\frac{6}{12}=\boldsymbol{0,5}

Como todas las fracciones representan la misma cantidad, se pueden escribir de la siguiente forma:

\frac{1}{2}=\frac{3}{6}=\frac{6}{12}

¿Cómo podemos obtener fracciones equivalentes?

Por medio de dos métodos: amplificación y simplificación.

Amplificación

Consiste en multiplicar el numerador y el denominador por un mismo número distinto de cero.

– Ejemplo:

Ambas fracciones, 2/5 y 6/15 son equivalentes. Observa que tanto el numerador como el denominador se multiplicaron por 3.

– Otro ejemplo:

Simplificación

Consiste en dividir al numerador y al denominador por un mismo número distinto de cero. Este número debe ser un divisor común entre el numerador y el denominador.

– Ejemplo:

Como el número 2 es un divisor común entre el numerador y denominador, podemos hacer una simplificación de la fracción.

– Otro ejemplos:

¿Sabías qué?
Cuando una fracción no puede simplificarse más se la llama fracción irreducible.
Juan y Carlos compraron una pizza cada uno. Si Juan comió 2/3 de pizza y Carlos 3/4 de pizza, ¿quién comió más? Hallar la fracción equivalente con igual denominador de estas fracciones puede ayudarnos a comparar las cantidades y responder la pregunta. 2/3 = 8/12 y 3/4 = 9/12, entonces comparamos los numeradores y, como 9 > 8, decimos que Carlos comió más que Juan.

adición y sustracción de fracciones heterogéneas

Las fracciones heterogéneas son las que tienen distinto denominador. Para sumar o restar fracciones heterogéneas podemos emplear tres métodos distintos.

Método 1: con fracciones equivalentes

En este método hallamos la fracción equivalente de las fracciones para que todas tengan el mismo denominador, es decir, para que sean homogéneas. Luego las sumamos como se explicó al inicio: sumamos los numeradores y mantenemos el mismo denominador.

– Ejemplo:

\frac{1}{2}+\frac{3}{4}

1. Hallamos la fracción equivalente a 1/2 con denominador igual a 4.

Ya sabemos que el producto cruzado de los términos debe ser el mismo. Así que multiplicamos el primer numerador por el segundo denominador, el cual necesitamos que sea 4.

\frac{{\color{Red} 1}}{2}=\frac{a}{{\color{Red} 4}}\; \; \; \; \;\; \; 1\times 4=\boldsymbol{4}

Luego planteamos la segunda multiplicación como una ecuación. Esta corresponde a la del primer denominador con el primer numerador.

\frac{1}{{\color{Blue} 2}}=\frac{{\color{Blue} a}}{4}\; \; \; \; \;\; \; 2\times a=\boldsymbol{4}

Despejamos la incógnita a y obtenemos el numerador de la fracción equivalente.

2\times a=4\: \Rightarrow a=4\div 2=\boldsymbol{2}

Por lo tanto,

\frac{1}{2}=\frac{\boldsymbol{2}}{4}

2. Reescribimos la suma con la nueva fracción equivalente. En lugar de la fracción 1/2 escribimos su fracción equivalente 2/4.

\frac{2}{4}+\frac{3}{4}

3. Resolvemos la suma de fracciones homogéneas.

\frac{2}{4}+\frac{3}{4}=\frac{2+3}{4}=\boldsymbol{\frac{5}{4}}

El procedimiento es igual con la sustracción, solo cambiamos el signo más (+) por el signo menos (−).

Método 2: con mínimo común múltiplo

Consiste en hallar el mínimo común múltiplo de los denominadores de las fracciones, el cual será el nuevo denominador. El cociente entre este valor y los denominadores se multiplica con los numeradores.

– Ejemplo:

\frac{1}{2}+\frac{3}{4}

1. Calculamos el mínimo común múltiplo de los denominadores. Ese será el denominador de la fracción resultante.

mcm (2, 4) = 2 × 2 = 4

2. Dividimos al mcm con el denominador de la primera fracción (4 ÷ 2 = 2) y multiplicamos ese resultado por su numerador.

\frac{1}{2}+\frac{3}{4} = \frac{{\color{Red} 2} \times 1\:}{4}+

3. Realizamos el mismo procedimiento con la segunda fracción. Esta vez dividimos el mcm entre el segundo denominador (4 ÷ 4 = 1) y multiplicamos ese resultado por el segundo numerador. Sumamos este resultado con el obtenido anteriormente.

\frac{1}{2}+\frac{3}{4} = \frac{{\color{Red} 2}\times 1}{4}+\frac{{\color{Blue} 1}\times 3}{4}

4. Resolvemos las operaciones y obtenemos el resultado final.

\frac{1}{2}+\frac{3}{4} = \frac{{\color{Red} 2}\times 1}{4}+\frac{{\color{Blue} 1}\times 3}{4}=\frac{2+3}{4}=\boldsymbol{\frac{5}{4}}

El procedimiento es igual con la sustracción, solo cambiamos el signo más (+) por el signo menos (−).

Método 3: con productos cruzados

En este método multiplicamos de manera cruzada los numeradores y denominadores de las fracciones. Sumamos los resultados y los colocamos en el numerador resultante. El denominador de la fracción final será igual al producto de la multiplicación de los denominadores.

– Ejemplo:

\frac{1}{2}+\frac{3}{4}

1. Multiplicamos el primer numerador por el segundo denominador.

\frac{{\color{Red} 1}}{2}+\frac{3}{{\color{Red} 4}}=\frac{{\color{Red} 1\times 4}}{}

2. Multiplicamos el primer denominador por el segundo numerador. Sumamos esta operación con la primera.

\frac{{\color{Red} 1}}{{\color{Blue} 2}}+\frac{{\color{Blue} 3}}{{\color{Red} 4}}=\frac{{\color{Red} 1\times 4}+{\color{Blue} 2\times 3}}{}

3. Multiplicamos los denominadores. El resultado lo colocamos en el lugar del denominador.

\frac{{\color{Red} 1}}{{\color{Blue} 2}}+\frac{{\color{Blue} 3}}{{\color{Red} 4}}=\frac{{\color{Red} 1\times 4}+{\color{Blue} 2\times 3}}{{\color{Blue} 2}\times {\color{Red} 4}}

4. Resolvemos las operaciones y obtenemos el resultado final.

\frac{1}{2}+\frac{3}{4}=\frac{1\times 4+2\times 3}{2\times 4}=\frac{4+6}{8}=\frac{10}{8}=\boldsymbol{\frac{5}{4}}

Observa que al resolver las operaciones el resultado es 10/8, pero esta fracción se puede simplificar al dividir ambos términos entre 2, el cual es un divisor común.

El procedimiento es igual con la sustracción, solo cambiamos el signo más (+) por el signo menos (−).

Las fracciones heterogéneas son las que tienen distinto denominador. Para sumar o restar este tipo de fracciones podemos emplear tres métodos diferentes: por medio de fracciones equivalentes, mínimo común múltiplo o productos cruzados. Sin importar el método que escojas el resultado será el mismo.

¡A practicar!

1. ¿Cuáles de las siguientes fracciones son equivalentes a \frac{2}{5}?

\frac{6}{15}\ ,\ \frac{6}{9}\ ,\ \frac{10}{25}\ ,\ \frac{14}{30}\ ,\ \frac{8}{20}

Solución

\frac{6}{15}\ ,\ \frac{10}{25}\ ,\ \frac{8}{20}

2. ¿Cuáles de las siguientes fracciones son equivalentes a \frac{25}{40}?

\frac{50}{80}\ ,\ \frac{5}{8}\ ,\ \frac{75}{110}\ ,\ \frac{75}{120}\ ,\ \frac{5}{4}

Solución

\frac{50}{80}\ , \frac{5}{8}\ , \frac{75}{120}

3. ¿Cuál es la fracción equivalente? Coloca el numerador que falta.

  • \frac{1}{2}=\frac{?}{8}

Solución

\frac{1}{2}=\frac{{\color{Red} 4}}{8}

  • \frac{3}{5}=\frac{?}{25}

Solución

\frac{3}{5}=\frac{{\color{Red} 15}}{25}

  • \frac{4}{5}=\frac{?}{12}

Solución

No es posible conseguir una fracción equivalente de denominador 12 porque el 12 no es múltiplo del 5.

  • \frac{2}{7}=\frac{?}{21}

Solución

\frac{2}{7}=\frac{{\color{Red} 6}}{21}

4. Realizar los siguientes cálculos con fracciones:

  • \dfrac{1}{5}+\dfrac{3}{10}-\dfrac{1}{2}+\dfrac{2}{5}=
Solución

\dfrac{1}{5}+\dfrac{3}{10}-\dfrac{1}{2}+\dfrac{2}{5}=\boldsymbol{\frac{2}{5}}

  • \frac{4}{5}+\frac{1}{3}+\frac{1}{2}=
Solución

\frac{4}{5}+\frac{1}{3}+\frac{1}{2}=\boldsymbol{\frac{49}{30}}

  • \frac{3}{10}-\frac{1}{12}=
Solución

\frac{3}{10}-\frac{1}{12}=\boldsymbol{\frac{13}{60}}

  • \frac{1}{2}+\frac{1}{3}-\left ( \frac{1}{4}+\frac{1}{5} \right )=
Solución

\frac{1}{2}+\frac{1}{3}-\left ( \frac{1}{4}+\frac{1}{5} \right )=\boldsymbol{\frac{23}{60}}

RECURSOS PARA DOCENTES

Artículo “Adición y sustracción de fracciones”

Puedes realizar la adición o la sustracción de fracciones por medio de varios métodos. Este recurso le permitirá ampliar información sobre estos.

VER

Artículo “Fracciones equivalentes”

Con este artículo podrá profundizar sobre las fracciones y cómo obtenerlas por amplificación y simplificación.

VER

CAPÍTULO 5 / TEMA 4

OPERACIONES CON FRACCIONES homogéneas

Si la mamá de Carla compró 1/2 kg de naranjas y su papá compró 3/2 kg de naranjas, ¿cuántos kg de naranja hay en total? Esta situación la podemos encontrar a diario en nuestra vida. Para resolverla tenemos que involucrar operaciones básicas como la suma o la resta a números fraccionarios. Las características de cada fracción nos indicarán qué pasos tenemos que seguir.

Cada vez que dividimos un todo en varias partes iguales usamos fracciones. Todas las fracciones son divisiones sin resolver que tienen un numerador y un denominador, ambos separados por una raya fraccionaria. Las usamos cuando repartimos comida, seguimos instrucciones de recetas o pedimos una parte o porción de algo.

VER INFOGRAFÍA

suma de fracciones homogéneas

Recordemos que dos o más fracciones son homogéneas cuando comparten el mismo denominador. Sumar este tipo de fracciones es muy fácil. Primero sumamos los numeradores, el número resultante será el numerador de la fracción y mantenemos el mismo denominador. Veamos un ejemplo:

\boldsymbol{\frac{{\color{Blue} 1}}{{\color{Red} 5}}+\frac{{\color{Blue} 6}}{{\color{Red} 5}}=\frac{{\color{Blue} 1+6}}{{\color{Red} 5}}=\frac{7}{5}}

 

– Otros ejemplos:

\boldsymbol{\frac{{\color{Blue} 1}}{{\color{Red} 2}}+\frac{{\color{Blue} 3}}{{\color{Red} 2}}=\frac{{\color{Blue} 1+3}}{{\color{Red} 2}}=\frac{4}{2}=2}

 

\boldsymbol{\frac{{\color{Blue} 12}}{{\color{Red} 8}}+\frac{{\color{Blue} 4}}{{\color{Red} 8}}=\frac{{\color{Blue} 12+8}}{{\color{Red} 8}}=\frac{20}{8}}

sustracción de fracciones homogéneas

Del mismo modo que se resuelve la suma de fracciones homogéneas, en la sustracción primero restamos los numeradores y conservamos el mismo denominador. Por ejemplo:

\boldsymbol{\frac{{\color{Blue} 6}}{{\color{Red} 7}}-\frac{{\color{Blue} 3}}{{\color{Red} 7}}=\frac{{\color{Blue} 6-3}}{{\color{Red} 7}}=\frac{3}{7}}

– Otros ejemplos:

\boldsymbol{\frac{{\color{Blue} 8}}{{\color{Red} 5}}-\frac{{\color{Blue} 4}}{{\color{Red} 5}}=\frac{{\color{Blue} 8-4}}{{\color{Red} 5}}=\frac{4}{5}}

 

\boldsymbol{\frac{{\color{Blue} 10}}{{\color{Red} 3}}-\frac{{\color{Blue} 8}}{{\color{Red} 3}}=\frac{{\color{Blue} 10-8}}{{\color{Red} 3}}=\frac{2}{3}}

fracciones equivalentes

Las fracciones equivalentes son fracciones que tienen distinto numerador y denominador pero representan una misma cantidad. Hay dos métodos para calcular fracciones equivalentes: por amplificación y por simplificación.

  • Por el método de amplificación multiplicamos el numerador y el denominador por un mismo número.

Por ejemplo, \frac{1}{3} es la fracción equivalente a \frac{3}{9}, porque tanto el numerador como el denominador fueron multiplicados por 3.

 

  • Por el método de simplificación dividimos el numerador y el denominador por un mismo número.

Por ejemplo, la fracción \frac{22}{10} es equivalente a \frac{11}{5} porque tanto el numerador como el denominador fueron divididos por 2.

 

Se puede simplificar una fracción hasta obtener su mínima expresión, es decir, hasta conseguir la fracción irreducible. Se la llama irreducible porque el numerador y el denominador no comparten los mismos divisores. Obtener esta expresión hace que se simplifiquen los cálculos y la escritura de fracciones.

¿Cómo sabemos si dos fracciones son equivalentes?

El cálculo que permite determinar si dos fracciones son iguales es el método de multiplicar cruzado los numeradores y denominadores de ambas fracciones.

Para saber si \frac{2}{5} y \frac{4}{10} son fracciones equivalentes debes seguir estos pasos:

1. Multiplica el numerador de la primera fracción por el denominador de la segunda.

2. Multiplica el numerador de la segunda fracción por el denominador de la primera.

3. Compara los dos resultados. Sin los dos son iguales significa que las dos fracciones son equivalentes.

\boldsymbol{\frac{2}{5}=\frac{4}{10}}

orden de fracciones

Todos los números tienen un orden y las fracciones no son la excepción. Para establecer ese orden podemos comparar sus elementos y determinar si son mayores, menores o iguales unas con otras. Los símbolos que se usan para compararlas son:

Símbolo Significado
> Mayor que
< Menor que

Cuando las fracciones tienen igual denominador y se quiere saber si una es mayor que la otra solo tenemos que comparar sus numeradores. Una fracción es mayor que otra si tiene el numerador más grande. Por ejemplo:

\boldsymbol{\frac{7}{6}>\frac{5}{6}} porque 7 es mayor que 5.

Para determinar si una fracción es menor que otra y sus denominadores son iguales, solo comparamos los numeradores. Veamos un ejemplo:

\boldsymbol{\frac{8}{9}<\frac{13}{9}} porque 8 es menor que 13.

problemas

Día a día nos cruzamos con problemas que involucran fracciones y son las diferentes operaciones básicas las que nos permiten resolverlos. Algunas veces nos toca comparar fracciones para saber, por ejemplo, quién comió más chocolate; otras veces cuántas partes de jugo se tomó y cuántas quedan.

Pasos a seguir para resolver problemas con fracciones

Los siguientes pasos también servirán para resolver problemas con números naturales.

  1. Lee atentamente el problema.
  2. Identifica y anota los datos del problema.
  3. Piensa qué pide el problema, ¿qué pregunta hace?
  4. Establece qué operaciones permiten resolver el problema.
  5. Haz los cálculos.
  6. Relee la pregunta del problema para luego contestarla.

1. Carla y María se repartieron una barra de chocolate en 6 partes iguales, Carla comió \frac{3}{6} y María \frac{2}{6}. ¿Quién comió más chocolate?

  • Datos

Cantidad de chocolate que comió Carla: \frac{3}{6}

Cantidad de chocolate que comió María: \frac{2}{6}

  • Pregunta

¿Quién comió más chocolate?

  • Piensa

Para saber quién comió más hay que comparar las dos fracciones. Como son homogéneas solo no fijamos en los numeradores.

  • Calcula

\boldsymbol{\frac{3}{6}>\frac{2}{6}} porque 3 es mayor que 2.

  • Respuesta

Carla comió más chocolate que María.


2. Pedro tenía en la heladera \frac{3}{4} de litro de jugo de naranja. Si tomó \frac{1}{4} de litro, ¿cuánto jugo le quedó?

  • Datos

Litros de jugo naranja en la heladera: \frac{3}{4}

Litros de jugo que tomó Pedro: \frac{1}{4}

  • Pregunta

¿Cuánto jugo le quedó?

  • Piensa

Hay que restar la cantidad de jugo que tomó Pedro a la cantidad de jugo que había en la heladera.

  • Calcula

\frac{3}{4}-\frac{1}{4}=\frac{3-1}{4}=\boldsymbol{\frac{2}{4}}

  • Respuesta

A Pedro le quedaron \frac{2}{4} de litro de jugo de naranja.


3. Si Pedro prepara \frac{5}{4} de litro de jugo y los une con \frac{2}{4} de litro de jugo que le quedaron, ¿cuánto jugo tiene ahora?

  • Datos

Litros de jugo que preparó Pedro: \frac{5}{4}

Litro de jugo que ya tiene Pedro: \frac{2}{4}

  • Pregunta

¿Cuánto jugo tiene ahora?

  • Piensa

Para saber la cantidad total de jugo hay que sumar las dos cantidades.

  • Calcula

\frac{5}{4}+\frac{2}{4}=\frac{5+2}{4}=\boldsymbol{\frac{7}{4}}

  • Respuesta

Pedro tiene ahora \frac{7}{4} de litro de jugo de naranja.

¡A practicar!

1. Resuelve las siguientes operaciones.

  • \frac{7}{8}-\frac{2}{8}=
Solución

\frac{7}{8}-\frac{2}{8}=\frac{7-2}{8}=\boldsymbol{\frac{5}{8}}

  • \frac{4}{3}+\frac{6}{3}=
Solución

\frac{4}{3}+\frac{6}{3}=\frac{4+6}{3}=\boldsymbol{\frac{10}{3}}

  • \frac{16}{5}-\frac{4}{5}=
Solución

\frac{16}{5}-\frac{4}{5}=\frac{16-4}{5}=\boldsymbol{\frac{12}{5}}

  • \frac{9}{7}+\frac{3}{7}=
Solución

\frac{9}{7}+\frac{3}{7}=\frac{9+3}{7}=\boldsymbol{\frac{12}{7}}

 

2. Ordenar de mayor a menor las siguientes fracciones.

\frac{4}{5},\: \: \: \frac{2}{5},\: \: \: \frac{1}{5},\: \: \: \frac{6}{5},\: \: \: \frac{3}{5}

Solución

\frac{6}{5}>\frac{4}{5}>\frac{3}{5}>\frac{2}{5}>\frac{1}{5}

3. Ordenar de menor a mayor las siguientes fracciones.

\frac{7}{7},\: \: \: \frac{3}{7},\: \: \: \frac{5}{7},\: \: \: \frac{2}{7},\: \: \: \frac{9}{7}

Solución

\frac{2}{7}<\frac{3}{7}<\frac{5}{7}<\frac{7}{7}<\frac{9}{7}

 

4. Determina si las siguientes fracciones son equivalentes.

  • \frac{3}{5} y \frac{9}{15}
Solución
Son fracciones equivalentes porque 3 × 15 = 45 y 9 × 5 = 45.

  • \frac{2}{9} y \frac{10}{42}
Solución
No son fracciones equivalentes porque 2 × 42 = 84 y 10 × 9 = 90.

  • \frac{6}{18} y \frac{3}{9}
Solución
Son fracciones equivalentes porque 6 × 9 = 54 y 18 × 3 = 54.

 

5. Marianela se va de vacaciones con su familia. En la primera hora de viaje recorrieron \frac{3}{8} del trayecto y en la segunda hora, \frac{2}{8} del trayecto. ¿Cuánto del trayecto ya recorrieron?

Solución
Recorrieron \frac{5}{8} del trayecto.

 

6. Marcos tiene \frac{9}{12} de una tarta y le regala a su vecino \frac{3}{12}, ¿cuánto le queda de la tarta?

Solución
Le queda \frac{6}{12} de tarta.
RECURSOS PARA DOCENTES

Artículo “Adición y sustracción de fracciones”

Este recurso permitirá profundizar en el tema de la suma y resta de fracciones.

VER

Artículo “Fracciones decimales y equivalentes”

Este recurso permitirá complementar la información sobre fracciones equivalentes mediante múltiples ejemplos.

VER

Artículo “Partes y porciones”

El siguiente artículo profundiza temas tales como fracciones equivalentes, orden de las fracciones y otros.

VER