Las fracciones son una forma de representar las partes de un todo. Tienen dos elementos: un numerador y un denominador, ambos separados por una raya fraccionaria. El denominador indica en cuántas partes dividimos el todo y el numerador es igual a las partes que se toman del mismo. Las fracciones las podemos clasificar, de acuerdo a la relación entre el numerador y el denominador, en propias, impropias o aparentes.
adición y sustracción de fracciones
Para sumar o restar fracciones homogéneas (aquellas con igual denominador) lo único que debemos hacer es sumar o restar los numeradores y mantener el denominador. En cambio, las fracciones heterogéneas (aquellas con denominadores diferentes) se suman o restan por distintos métodos. Uno consiste en calcular el mcm, otro en hallar una fracción equivalente y otro en multiplicar de forma cruzada.
Multiplicación y división de fracciones
Las multiplicaciones de fracciones son relativamente sencillas. Solo tenemos que multiplicar todos los numeradores de forma lineal y luego multiplicar de la misma manera todos los denominadores, y si es posible simplificamos. La división, en cambio, puede ser resuelta por dos métodos. El primero se trata de invertir la segunda fracción y multiplicarla por la primera, y el segundo es el de la doble c.
Fracciones y otros números
Muchas situaciones de nuestra vida cotidiana involucran no solo a los números naturales (), sino también a los enteros (), los racionales () y los decimales. Todos ellos, con excepción de algunos decimales, pueden ser representados como una fracción, por ejemplo, el número 25 puede ser representado como 25/1 y el número decimal 0,25 puede representarse como 2/8.
Fracciones y porcentajes
Otra forma de representar fracciones son los porcentajes. Estos son iguales a una fracción con denominador igual a 100. Por ejemplo, 20 % es igual a 20/100. Asimismo, estas expresiones se pueden mostrar como un número decimal, por lo tanto, 20/100 = 0,2. Los porcentajes son muy usados en economía, estadística y tecnología, pues ayudan a simplificar relaciones de una parte de un todo de manera clara.
Las fracciones mixtas se denominan así porque están formadas por un número entero y por una fracción. Hay diversas situaciones donde se usan, unas de ellas son las recetas de cocina, donde se suelen emplear fracciones mixtas para representar cantidades: por ejemplo, “2 ½ de tazas de azúcar” hacen referencia a dos tazas y media de ese ingrediente.
¿QUÉ ES UNA FRACCIÓN MIXTA?
Una fracción mixta es una forma de representar a una cantidad, y esta compuesta por una parte entera y una parte fraccionaria. La estructura general de una fracción mixta es la siguiente:
Donde:
A = es la parte entera; es decir, un número entero.
b = es el numerador de la parte fraccionaria.
c = es el denominador de la parte fraccionaria.
Una característica de estas expresiones es que la parte fraccionaria corresponde a una fracción propia, es decir, una fracción en la que su numerador es menor que el denominador.
Lectura de fracciones mixtas
Para leer fracciones de este tipo se lee primero su parte entera y luego su parte fraccionaria.
Veamos algunos ejemplos:
a)
La parte entera de este número es 2 y su parte fraccionaria es 1/3. Por lo tanto, esta fracción se lee como: dos enteros y un tercio.
b)
En este caso la parte entera del número es 4 y su parte fraccionaria es 5/7. Se lee como: cuatro enteros y siete quintos.
¿Sabías qué?
Las fracciones mixtas también son denominadas números mixtos.
GRÁFICA DE FRACCIONES MIXTAS
Para graficar fracciones mixtas se siguen los siguientes pasos:
Se representa al entero o la unidad dividida en tantas partes iguales como indique el denominador de la parte fraccionaria.
Se repite este gráfico tantas veces como indique la parte entera. En este caso representaríamos solo la parte entera de la fracción.
Se representa la parte fraccionaria con otro gráfico similar pero en este caso se rellenan solo las partes que indique el numerador de la fracción.
Por ejemplo, si queremos graficar la fracción mixta:
Lo primero es representar a la unidad dividida en tantas partes iguales como indique el denominador de la parte fraccionaria. En este caso como el denominador es 3 se debe dividir al entero o la unidad en 3 partes iguales:
Como la parte entera de esta fracción es 2, quiere decir que esta formada por dos enteros, entonces se debe graficar el entero nuevamente:
Finalmente, se repite el gráfico pero se rellenan únicamente las partes que indique el numerador, como el numerador es 1, señalamos una sola parte que corresponde a un tercio:
La fracción se lee como dos enteros y un tercio.
Historia de las fracciones
Las fracciones surgieron a partir de la necesidad de representar divisiones inexactas y unidades de medida. Por esta razón, no son un invento nuevo. De hecho, antiguas civilizaciones como la egipcia, la babilonia y la griega ya las conocían. Sin embargo, la manera de expresar fracciones con la raya horizontal fue introducida por los árabes y luego fue llevada a Europa por Lenorado Fibonacci en el siglo XIII. Posteriormente, su uso se expandió por el resto del mundo.
TRANSFORMAR FRACCIONES MIXTAS A FRACCIONES CONVENCIONALES
Para transformar una fracción mixta a una fracción convencional, se debe sumar la parte entera con la parte fraccionaria. El resultado, será una fracción convencional que representa la misma cantidad que la fracción mixta original.
Por ejemplo:
– Convertir la siguiente fracción mixta a fracción convencional.
En este caso se debe sumar 2 + 1/3 pero como la parte entera que es 2 no es una fracción, se debe colocar un número 1 como denominador para poder realizar la suma de fracciones. Se debe seguir el procedimiento de suma de fracciones heterogéneas (con diferente denominador):
De esta manera el resultado es 7/3, es una fracción impropia porque su numerador es mayor que el denominador y es igual a 2 1/3.
Para graficar fracciones impropias se deben convertir primero a fracciones mixtas.
¡A practicar!
1. Representa gráficamente los siguientes números mixtos.
a.
b.
c.
RESPUESTAS
2. Transforma las siguientes fracciones mixtas en fracciones convencionales.
a.
b.
c.
d.
e.
RESPUESTAS
a.
b.
c.
d.
e.
RECURSOS PARA DOCENTES
Artículo “Clasificación de fracciones”
En este artículo se explican los diferentes tipos de fracciones, como las fracciones propias, las impropias, las homogéneas, las heterogéneas, las reducibles y las irreducibles.
En la vida diaria usamos números para decir nuestra edad, dar la hora o para contar. Todos estos números son los que conocemos como números naturales, pero no siempre son útiles. Por ejemplo, si nos comemos medio alfajor, un cuarto de torta, o compramos medio kilo de naranjas, necesitamos emplear otro tipo de números: los fraccionarios.
¿Qué es una fracción?
Una fracción es la forma de representar una parte de un todo. Así, si queremos decir que nos comimos medio alfajor, lo podemos pensar como que a nuestro todo, el alfajor, lo cortamos en dos y de esas dos partes nos comimos una. En forma de fracción lo escribimos como:
En el numerador escribimos la cantidad que nos comimos y en el denominador la cantidad en la que cortamos el alfajor.
Los egipcios trabajaban con fracciones para indicar la distribución del pan, para la construcción de las pirámides y para estudiar las medidas de la Tierra. Ellos usaban fracciones llamadas “unitarias” porque todas tenían numerador 1.
Para resolver el problema de repartir 6 panes entre 10 hombres ellos decían que a cada uno le tocaba panes. Esto significaba que cada pan lo dividían en mitades y el último lo hacían en décimos.
¡A practicar!
Escribe las fracciones que están representadas por los gráficos:
Solución
Cantidad de divisiones: 8
Partes sombreadas: 3
Solución
Cantidad de divisiones: 8
Partes sombreadas: 4
Solución
Cantidad de divisiones: 8
Partes sombreadas: 5
Tipos de fracciones
Las fracciones se pueden clasificar en:
Propias: son las que tienen numerador menor al denominador. Esto quiere decir que representan un número menor a 1 entero. Ejemplo:
Impropias: son las que tienen el numerador mayor al denominador y representan números mayores a 1 entero. Ejemplo:
Aparentes: son aquellas en las que el numerador es múltiplo del denominador, por lo cual, al dividirlos resulta un número entero. Ejemplo:
También podemos clasificarlas en:
Puras: son las que se representan únicamente con una fracción.
Ejemplo: o
Mixtas: son las que se representan con una parte entera y una parte fraccionaria. Para esto, es necesario que la fracción sea más grande que 1 entero.
Ejemplo: o
¡A practicar!
Clasifica las siguientes fracciones en propias, impropias o aparentes
Solución
Propias
Impropias
Aparentes
¿Cómo convertimos una fracción impropia pura a una fracción impropia mixta y viceversa?
De impropia pura a mixta
Dividimos el numerador con el denominador y, según los valores obtenidos, los representamos de la siguiente manera:
De impropia mixta a pura
Multiplicamos el denominador por el entero y le sumamos el numerador. Este valor nos da el numerador de la fracción pura, mientras que el denominador de ambas es el mismo.
Fracción irreducible
Una fracción es irreducible cuando su numerador y su denominador solo tienen como divisor común al 1.
Recordemos el mcd
Para calcularlo descomponemos los números en sus factores primos.
– Ejemplo: halla el mcd entre 15 y 18.
Ahora solo debemos elegir los factores que se repiten en ambos y la menor cantidad de veces que aparece. En este caso, el que se repite es el 3 y aparece una sola vez en el 15.
Entonces:
Veamos algunas fracciones para ver si son irreducibles:
– Ejemplo 1:
Como ya vimos, podemos escribir los números como descomposición de sus factores primos y calcular su mcd:
Entonces, los números 15 y 4 no tienen factores en común por lo tanto la fracción es irreducible.
– Ejemplo 2:
Descomponemos cada número en sus factores primos y calculamos el mcd.
Los números 6 y 8 tienen un factor en común, el número 2, por lo tanto la fracción no es irreducible. Para convertirla en una fracción irreducible lo único que tenemos que hacer es dividir al numerador y denominador por el factor que tienen en común.
Y ahora la fracción que se obtuvo es irreducible.
¡A practicar!
Señala cuáles de las siguientes fracciones son irreducibles
Solución
simplificación de fracciones
Simplificar una fracción significa “achicarla” tanto como podamos, o sea, hacerla irreducible. Como lo vimos antes, para convertir una fracción en irreducible hay que dividir el numerador y el denominador por un número que sea divisor de ambos (mcd).
Este valor lo podemos buscar por medio de los factores primos, o si nos damos cuenta, podemos calcular por cuáles números se pueden dividir ambos. Podemos dividir tantas veces como consideremos necesarias hasta lograr la fracción irreducible.
Hagamos algunos ejemplos:
– Ejemplo 1:
Ambas fracciones fueron divididas por 5.
– Ejemplo 2:
Ambas fracciones fueron divididas por 2.
– Ejemplo 3:
Ambas fracciones fueron divididas primero por 5 y después por 3.
¡A practicar!
1. Simplifica las siguientes fracciones hasta su fracción irreducible.
Solución
Solución
Solución
2. Clasifica las siguientes fracciones, en caso de que sea impropia escríbela como fracción mixta. Luego, indica si la fracción es irreducible. Si no lo es, simplifica.
Solución
Fracción propia. No es irreducible.
Simplificación:
Solución
Fracción impropia. No es irreducible.
Fracción mixta:
Solución
Fracción propia. No es irreducible.
Simplificación:
Solución
Fracción impropia. Es irreducible.
La fracción mixta es:
Solución
Fracción propia. Es irreducible.
Solución
Fracción propia. No es irreducible.
Simplificación:
Solución
Fracción aparente. No es irreducible.
La fracción es igual a .
Solución
Fracción impropia. No es irreducible.
Fracción mixta:
Solución
Fracción impropia. No es irreducible.
Fracción mixta:
RECURSOS PARA DOCENTES
Artículo sobre “Fracciones”
Es un artículo didáctico con más ejemplos sobre la representación y clasificación de las fracciones.