CAPÍTULO 2 / TEMA 1

CÁLCULOS MATEMÁTICOS

DÍA A DÍA NOS ENCONTRAMOS CON SITUACIONES EN LAS QUE TENEMOS QUE HACER CÁLCULOS, POR EJEMPLO, CUANDO COMPARTIMOS NUESTROS DULCES O CUANDO AGRUPAMOS NUESTROS JUGUETES. COMO VES, SIEMPRE RESOLVEMOS PROBLEMAS MATEMÁTICOS. PARA ELLO ES ÚTIL SEGUIR ALGUNOS CONSEJOS Y UTILIZAR SÍMBOLOS ESPECIALES.

¿QUÉ ES UN CÁLCULO MATEMÁTICO?

UN CÁLCULO MATEMÁTICO ES UNA OPERACIÓN QUE REALIZAMOS PARA CONOCER EL RESULTADO, VALOR O MEDIDA DE ALGO EXPRESADO EN NÚMEROS. LAS OPERACIONES QUE UTILIZAMOS CON MAYOR FRECUENCIA PARA CALCULAR SON LA SUMA Y LA RESTA.

ES POSIBLE QUE CADA DÍA SOLUCIONES PROBLEMAS MATEMÁTICOS SIN DARTE CUENTA. ESTOS CÁLCULOS SON MUY SENCILLOS CUANDO DOMINAS LOS SÍMBOLOS ADECUADOS. POR EJEMPLO, SI TIENES UNA CAJA CON DOCE ROSQUILLAS Y TE COMES DOS, PUEDES CONTAR UNA POR UNA LAS QUE QUEDARÍA O PUEDES EXPRESARLO COMO UNA CÁLCULO: 12 − 2 = 10. ¡QUEDARÍAN 10 ROSQUILLAS!

¿por qué es importante la matemática?

LA MATEMÁTICA NOS PERMITE ADQUIRIR HABILIDADES MUY ÚTILES PARA NUESTRA VIDA. NOS AYUDA A PENSAR, RAZONAR Y AGILIZAR NUESTRA MENTE. EN LA VIDA COTIDIANA ESTO TE AYUDARÁ A RESOLVER JUEGOS CON AMIGOS, ADMINISTRAR TUS AHORROS, UTILIZAR BIEN TU TIEMPO, UBICARTE EN EL ESPACIO Y NUNCA DEJAR DE APRENDER.

LA MATEMÁTICA Y LA MÚSICA

A SIMPLE VISTA LA MATEMÁTICA Y LA MÚSICA PUEDEN PARECER QUE NO TIENEN RELACIÓN. SIN EMBARGO, LOS MÚSICOS UTILIZAN CONSTANTEMENTE ELEMENTOS MATEMÁTICOS PARA CREAR Y EJECUTAR SUS PRODUCCIONES. LA UTILIZAN PARA INDICAR LA DURACIÓN DE LAS NOTAS, EL RITMO, EL VOLUMEN, LOS TONOS. ¡YA VES! LA MATEMÁTICA ESTÁ PRESENTE AÚN DONDE NO PODEMOS VERLA.

¿SABÍAS QUÉ?
EN TODOS LOS DEPORTES ES NECESARIA LA MATEMÁTICA. YA SEA PARA CONTAR LOS GOLES APUNTADOS, LA CANTIDAD DE JUGADORES O EL TAMAÑO DE LA CANCHA DE JUEGO.

SÍMBOLOS MATEMÁTICOS

EN MATEMÁTICA LOS SÍMBOLOS SIRVEN PARA EXPRESAR OPERACIONES O RELACIONES ENTRE LOS NÚMEROS. LA SUMA Y LA RESTA SON LAS OPERACIONES QUE UTILIZAMOS CON MAYOR FRECUENCIA.

ESTE ES EL SÍMBOLO “IGUAL”.

EL SÍMBOLO = ES USADO PARA DAR EL RESULTADO DE UN CÁLCULO COMO LA SUMA O LA RESTA.

ESTE ES EL SÍMBOLO “MÁS”.

EL SÍMBOLO + ES USADO PARA HACER SUMAS O ADICIONES. LA SUMA ES UN CÁLCULO EN EL QUE AGRUPAMOS CANTIDADES.

− ESTE ES EL SÍMBOLO “MENOS”.

EL SÍMBOLO  ES USADO PARA HACER RESTAS O SUSTRACCIONES. LA RESTA ES UNA CÁLCULO EN QUE QUITAMOS UNA CANTIDAD A OTRA.

– EJEMPLO:

SI MARÍA TIENE 4 LIMONES Y SU MAMÁ LE DA 3 LIMONES, ¿CUÁNTOS LIMONES TIENE AHORA?

MARÍA TIENE 7 LIMONES.

SI LUEGO LE REGALA 5 LIMONES A JOSÉ, ¿CUÁNTOS LIMONES LE QUEDAN?

LE QUEDAN 2 LIMONES.

LOS SÍMBOLOS MATEMÁTICOS REPRESENTAN LAS DISTINTAS OPERACIONES O RELACIONES ENTRE NÚMEROS. ALGUNOS SÍMBOLOS COMO “+” Y “−” REPRESENTAN LAS OPERACIONES DE SUMA Y RESTA, OTROS COMO “>” Y “<” REPRESENTAN RELACIONES DE “MAYOR QUE” O “MENOR QUE”. EXISTEN MUCHOS SÍMBOLOS ADEMÁS DE ESTOS. A MEDIDA QUE APRENDAS MÁS OPERACIONES APRENDERÁS MÁS SÍMBOLOS.

CONSEJOS PARA RESOLVER PROBLEMAS

  • PIENSA SI YA HAS RESUELTO UN PROBLEMA PARECIDO.
  • ANOTA LA INFORMACIÓN O LOS DATOS QUE EL PROBLEMA TE PROPORCIONA.
  • REALIZA DIBUJOS O ESQUEMAS.
  • PIENSA SI ALGUNA OPERACIÓN MATEMÁTICA TE AYUDARÍA A RESOLVERLO.
  • REALIZA LOS CÁLCULOS.
  • TOMA NOTA DE TODO LO QUE CONSIDERES NECESARIO.
  • ESCRIBE EL RESULTADO.

¡SIGUE LOS CONSEJOS!

JUAN TIENE 6 LÁPICES DE COLOR ROJO Y 3 LÁPICES DE COLOR AMARILLO. ¿CUÁNTOS LÁPICES TIENE EN TOTAL?

  • DATOS

LÁPICES DE COLOR ROJO:

LÁPICES DE COLOR AMARILLO: 3

  • DIBUJO

  • CÁLCULOS

  • RESULTADO

JUAN TIENE 9 LÁPICES EN TOTAL. 6 DE COLOR ROJO Y 3 DE COLOR AMARILLO.

RECURSOS PARA DOCENTES

Artículo “Matemáticas en las vida cotidiana”

Este artículo ofrece información sobre el uso diario de la matemática, lo que te servirá para analizar con tus alumnos la importancia de la misma.

VER

CAPÍTULO 2 / TEMA 4

Operaciones con números decimales

Los números decimales son aquellos que tienen una parte entera y una parte decimal, separadas por una coma; son comunes en los precios de los productos del supermercado o en nuestro peso y altura. Los problemas con este tipo de números se resuelven casi de la misma forma que los que tienen números naturales. A continuación, aprenderás las reglas para resolver dichos cálculos.

suma de números decimales

Cuando sumamos número decimales el procedimiento es similar al de los números naturales. Colocamos las unidades, decenas y centenas una sobre otra; de este modo, las comas, décimas, centésimas y milésimas también estarán en las mismas columnas.

– Ejemplo:

432,61 + 54,3

Donde:

C = centena

D = decena

U = unidad

d = décima

c = centésima

m = milésima

 

Si la suma de las cifras de una columna es mayor a 9, colocamos el dígito de la unidad debajo de dicha columna y el dígito de la decena en la columna de la izquierda.

– Ejemplo:

523,4 + 74,86

¡Es tu turno!

Resuelve estas sumas de números decimales.

  • 0,816 + 26,5
  • 10,5 + 10,5
  • 129,836 + 345,26
  • 64,68 + 22,129
Solución

 

¿Sabías qué?
Además de la coma, también se puede usar un punto para separar la parte entera de la parte decimal. Todo depende de la convención del país en el que estés.

 

¿Notaste que la adición de los números decimales es muy similar a la adición de los números naturales? Lo más importante en esta operación es que las cifras estén en las mismas columnas según su valor posicional: unidades con unidades, decenas con decenas, centenas con centenas. De este modo, la coma siempre estará en el lugar adecuado.

resta de números decimales

Para restar números decimales colocamos cada números en las mismas columnas según el orden de cada cifra: unidades con unidades, décimas con décimas, etc. De ser necesario añadimos ceros para que ambos números tengan la misma cantidad de dígitos. Luego restamos como si fueran números naturales y colocamos la coma en el resultado.

– Ejemplo:

360,84 − 246,013

1. Colocamos los números uno sobre otro y agregamos un cero al minuendo.

2. Como no podemos restarle 3 a 0, tomamos “prestada” una décima de la columna de la izquierda. Ahora el 0 se transforma en 10 y el 4 de las centésimas se convierte en 3. Luego hacemos la resta: 10 − 3 = 7.

3. Restamos las centésimas: 3 − 1 = 2.

4. Restamos las décimas: 8 − 0 = 8.

5. Restamos las unidades. Como no podemos restarle 6 a 0, tomamos una decena de la columna de la izquierda. Así que el 0 se convierte en 10 y el 6 se transforma en 5. Luego restamos: 10 − 6 = 4.

6. Restamos las decenas: 5 − 4 = 1.

7. Restamos las centenas y colocamos la coma en la misma columna en la que están las comas.

¡Es tu turno!

Resuelve las siguientes restas de números decimales.

  • 95,371 − 24,98
  • 137 − 45,290
  • 348,6 − 26,696
  • 67,4 − 0,16
Solución

 

Décimas en una regla

La regla graduada es un instrumento de medición con el que también podemos trazar líneas rectas. Por lo general viene con marcas con números que indican los centímetros y marcas más pequeñas entre estas que muestran los milímetros. Recuerda que 1 milímetro es igual a 0,1 centímetros.

Multiplicación con números decimales

Cuando multiplicamos un número decimal por un número natural colocamos los factores uno sobre otro alineados a la derecha, luego multiplicamos tal como si ambos fueran números naturales. Al final colocamos la coma decimal de acuerdo a la cantidad de decimales que tenga el factor decimal.

– Ejemplo:

1,27 × 36

1. Colocamos los factores uno sobre otro.

2. Multiplicamos como hacemos con los números naturales.

3. Colocamos la coma decimal en el resultado. Como el 1,27 tiene dos números decimales, movemos dos espacios en el resultado y colocamos la coma.

Por lo tanto,

1,27 × 36 = 45,72

¡Es tu turno!

Resuelve la siguientes multiplicaciones.

  • 3,1 × 21
  • 132 × 5,3
  • 2,65 × 68
Solución

Los números decimales también se pueden representar como una fracción. Para esto colocamos un denominador con la unidad seguida de tantos ceros como sean necesarios para que el numerador sea un entero. Recuerda que se multiplican ambas partes de la fracción. Luego simplificamos. Por ejemplo, si amplificamos por 10 la expresión 0,5/1 nos queda 5/10 = 1/2.

 

¡A practicar!

Resuelve las siguientes operaciones.

421,78 + 100,1

Solución
421,78 + 100,1 = 521,88

500,999 − 500,159

Solución
500,999 − 500,159 = 0,84

131 × 12,4

Solución
131 × 12,4 = 1.624,4

0,92 × 53

Solución
0,92 × 53 = 48,76

0,578 + 0,9

Solución
0,578 + 0,9 = 1,478

36,9 − 0,806

Solución
36,9 − 0,806 = 36,094
RECURSOS PARA DOCENTES

Artículo “Números decimales”

Con este artículo podrás ampliar la información relacionada con los números decimales, su clasificación y las operaciones que los involucran.

VER

Artículo “Operaciones con números decimales”

Este recurso describe paso a paso cómo realizar sumas, restas, multiplicaciones y divisiones con números decimales.

VER

 

CAPÍTULO 5 / TEMA 6

Aplicación de la geometría

La geometría se encuentra inmersa dentro de diferentes ciencias y situaciones de la vida. Muchos desarrollos de la actualidad no se habrían logrado sin los aportes de la geometría. La astronomía, la computación y la cartografía son algunos de los muchos campos donde la geometría es empleada. 

Cálculo de área de una superficie

Para el cálculo de superficies usamos las fórmulas de área de las principales figuras geométricas. Las principales fórmulas son las siguientes:

Nombre Figura Área
Cuadrado \boldsymbol{A = l^{2}}

 

Donde:

A = área

l = lado

Rectángulo \boldsymbol{A = a\times b}

 

Donde:

A = área

a = altura

b = base

Triángulo \boldsymbol{A = \frac{b\times h}{2}}

 

Donde:

A = área

b = base

h = altura

Rombo \boldsymbol{A = \frac{D\times d}{2}}

 

Donde:

A = área

D = diagonal mayor

d = diagonal menor

Paralelogramo \boldsymbol{A = b\times h}

 

Donde:

A = área

b = base

h = altura

Trapecio \boldsymbol{A = \left (\frac{a+ b}{2} \right )\times h}

 

Donde:

a = base menor

b = base mayor

h = altura

Círculo \boldsymbol{A = \pi \times r^{2}}

 

Donde:

A = área

π = número pi

r = radio

Polígono regular \boldsymbol{A = \frac{n\times b\times Ap}{2}}

 

Donde:

A = área

n = número de lados regulares

b = longitud de un lado

Ap = apotema

Las figuras compuestas

Una figura compuesta es aquella que está formada por dos o más figuras geométricas más simples. Para calcular el área de estas figuras se suelen calcular las áreas de las figuras más simples por separado y la sumatoria de estas será el área total de la figura. Por otra parte, para el cálculo de perímetro suelen usarse ecuaciones trigonométricas, y teoremas como el de Pitágoras para calcular las longitudes de los lados de la figura.

Ejercicios

– Una cancha de fútbol mide 105 metros de largo y 68 metros de ancho. ¿Cuántos metros cuadrados de césped artificial se necesitarían para cubrir toda la cancha?

Es un problema de área porque al calcular los metros cuadrados de césped artificial que se necesitan, se calcula la superficie. Como todos sabemos, una cancha de fútbol tiene una forma rectangular, por lo tanto se debe aplicar la fórmula del rectángulo:

A = a\times b
A = 105\, m\times 68\, m
A = \mathbf{7.140\, m^{2}}

Por lo tanto, para cubrir toda la cancha se necesitarían 7.140 m2 de césped artificial.


– La siguiente figura muestra el plano de una casa. ¿Cuántos metros cuadrados de cerámica se necesitan para cubrir el piso?

El piso de la casa forma una figura compuesta. Por lo tanto, antes de resolver el problema debemos separarlo en formas geométricas más simples:

La figura 1 corresponde a un rectángulo y la figura 2 a un cuadrado (ya que sus cuatro lados miden lo mismo). El área total del piso será igual a:

A_{t} = A_{1}+A_{2}

Donde:

At = área total del piso

A1 = área de la figura 1

A2 = área de la figura 2

Por lo tanto, para calcular el problema tenemos que resolver las áreas por separado:

En la figura 1 se cumple que:

A_{1} = a\times b

A_{1} = 13\, m\times 5\, m

A_{1} = 65\, m^{2}

En la figura 2 se cumple que:

A_{2} = l^{2}

A_{2} = (10\, m)^{2}

A_{2} = 100\, m^{2}

Al reemplazar los valores de A1 y A2 se tiene que:

A_{t} = 65\, m^{2}+100\, m^{2}

A_{t} = \mathbf{165\, m^{2}}

Por lo tanto, el piso de la casa necesita 165 m2 de cerámica para cubrirlo.

¿Sabías qué?
La hectárea (ha) es una medida de área que equivale a 10.000 m2.

Cálculo de volumen de un cuerpo

Todo cuerpo ocupa un lugar en el espacio. Se denomina volumen. Como ya sabemos, los principales cuerpos geométricos se calculan a través de fórmulas:

Nombre Figura Fórmula de volumen
Cubo \boldsymbol{V=l^{3}}

 

 

Donde:

V = volumen

l = lado

Prisma \boldsymbol{V = A_{b}\times h}

 

 

Donde:

V = volumen

Ab = área basal

h = altura

Pirámide \boldsymbol{V = \frac{A_{b}\times h}{3}}

 

 

Donde:

V = volumen

Ab = área basal

h = altura

Cilindro \boldsymbol{V =\pi \times r^{2}\times h}

 

 

Donde:

V = volumen

π = número pi (3,14…)

r = radio

h = altura

Cono \boldsymbol{V =\frac{\pi \times r^{2}\times h}{3}}

 

 

Donde:

V = volumen

π = número pi (3,14…)

r = radio

h = altura

Esfera \boldsymbol{V =\frac{4}{3}\times \pi \times r^{3}}

 

 

Donde:

V = volumen

π = número pi (3,14…)

r = radio

En el caso de las pirámides y los primas, las formas de sus bases pueden ser diferentes.

Estas ecuaciones pueden aplicarse a figuras similares para resolver diferentes problemas.

Ejercicios

– Calcula el volumen de la Gran Pirámide de Guiza, cuya base es un cuadrado de aproximadamente 230 m cada lado y de altura mide aproximadamente 186 m.

La fórmula para calcular el volumen de una pirámide es la siguiente:

V = \frac{A_{b}\times h}{3}

Lo primero es calcular el valor de Ab que es el área de la base. En este caso, su base es un cuadrado de 230 metros de cada lado. Por lo tanto:

A_{b} = l^{2}

A_{b} = (230\, m)^{2}

A_{b} = 52.900 \, m^{2}

Reemplazamos el valor del área de la base y el de la altura (que es 186 m) en la fórmula:

V = \frac{52.900\, m^{2}\times 186\, m}{3}

V = \frac{9.839.400\, m^{3}}{3}

V = \mathbf{3.279.800\, m^{3}}

El volumen aproximado de la pirámide de Guiza es de 3.279.800 m3 (si se considera la pirámide como un cuerpo rígido sin cámaras interiores).


– Calcula el volumen de una canica de 2 centímetros de diámetro.

La forma de una canica es igual a la de una esfera por lo tanto se utiliza la siguiente ecuación:

V =\frac{4}{3}\times \pi \times r^{3}

El problema nos dice que el diámetro de la canica es de 2 cm, pero la fórmula está expresada en función del radio. Como ya sabemos, el radio es la mitad del diámetro, por lo tanto, el radio de la canica es de 1 cm.

V =\frac{4}{3}\times \3,14 \times (1\, cm)^{3}

V =\frac{4}{3}\times \3,14 \times 1\, cm^{3}

V =\mathbf{4,18\, cm^{3}}

La leyenda de la corona

Hay una leyenda popular que cuenta cómo el rey Hieron II de Siracusa le encomendó al reconocido matemático griego Arquímedes que comprobara si la corona que había mandado a hacer era de oro puro o no. Arquímedes pasó mucho tiempo sin resolver el misterio y estaba frustrado hasta que un día, al meterse a la bañera, se percató que el agua que se desplazaba tenía el mismo volumen de su cuerpo. Enseguida dio un salto al tiempo que decía la frase “¡Eureka!”.

Posteriormente le demostró al rey que el volumen desplazado por la corona debía ser el mismo que el desplazado por un lingote de oro puro de la misma masa. Cuando realizó el experimento, la cantidad de agua desplazada no fue la misma y concluyó que la corona no era de oro puro.

Otros usos

Desde su aparición, la geometría ha permitido al ser humano destacarse en varios campos como la arquitectura, la escultura, la pintura y, por su puesto, en las ciencias aplicadas como la física o la química. Disciplinas como la ingeniería aplican la geometría para el cálculo de ángulo y otras medidas. La química emplea la geometría para entender las estructuras moleculares, la agrupación de los átomos y la forma de los cristales de algunos compuestos, entre otros usos.

En el ámbito de la cartografía y la agronomía, se aplica la geometría para determinar áreas, calcular perímetros y planos de terrenos. La astronomía y la computación son otras áreas que emplean conocimientos geométricos.

La geometría y la arquitectura

La arquitectura clásica no habría podido lograr obras de singular belleza o armonía sin hacer uso de conocimientos geométricos. En la actualidad, los arquitectos emplean la geometría para lograr estructuras que se vean bien estéticamente, que permitan un ahorro de materiales y un mejor aprovechamiento de los espacios.

¡A practicar!

1. Una fábrica de quesos compró una granja de 14.300 m2. ¿Cuáles son las medidas de la granja?

a) 150 m × 100 m
b) 130 m × 110 m
c) 40 m × 10 m
d) 280 m × 100 m

Solución
b) 130 m × 110 m

2. Un tablero de ajedrez mide 44 cm de alto y 44 cm de ancho, ¿cuál es el área del tablero?

a) 88 cm2
b) 1.936 cm2
c) 4.404 cm2
d) 3.854 cm2

Solución
b) 1.936 cm2

3. Una empresa inmobiliaria trabaja con propiedades que no superan los 20.000 m2. ¿Cuál de las siguientes propiedades no cumple con este requisito de la empresa inmobiliaria?

a) Casa de playa de 155 m de ancho por 84 m de alto.
b) Departamento en la ciudad de 18 m de ancho por 14 m de alto.
c) Cabaña en la montaña de 320 m de ancho por 124 m de alto.
d) Chalet de 24 m de ancho por 20 m de alto.

Solución
c) Cabaña en la montaña de 320 m de ancho por 124 m de alto. El área de esta propiedad es de 39.680 m2, por lo tanto, supera los 20.000 m2 aceptados por la inmobiliaria.

4. Una pelota de fútbol tiene 22 cm de diámetro, ¿cuál es su volumen?

a) 2026,34 cm3
b) 44 cm3
c) 220 cm3
d) 5.572,45 cm3

Solución
d) 5.572,45 cm3

5. Una lata de tomates es cilíndrica y tiene una altura de 9 cm y un radio de 3 cm, ¿cuál es su volumen?

a) 384,35 cm3
b) 127,17 cm3
c) 954.44 cm3
d) 506,58 cm3

Solución
c) 254.34 cm3

RECURSOS PARA DOCENTES

Artículo “Los números ocultos en el universo”

El artículo trata de mostrar cómo la mayoría de los fenómenos del universo pueden explicarse a través de los números. También explica algunas formas geométricas que podemos encontrar en nuestro planeta.

VER

Enciclopedia “Nana y Enriqueta en el país de las matemáticas”

En este tomo, se platean los principales elementos de la geometría de una manera didáctica y sencilla. También se dan ejemplos y aplicaciones de la geometría.

VER

Artículo “Superficies de figuras geométricas”

El artículo plantea el cálculo de superficie de las principales figuras geométricas. También resuelve una serie de ejercicios y muestra al final algunos problemas propuestos.

VER

CAPÍTULO 5 / TEMA 1

Elementos geométricos

El punto, la recta y el plano representan los cimientos de la geometría. Seguramente, muchos otros conceptos no podrían ser definidos sin ellos y por tal motivo son tan importantes. Cada uno está relacionado: infinitos puntos forman una recta, infinitos puntos y rectas forman un plano e infinitos puntos, rectas y planos forman el espacio.

El punto

El punto es el objeto más pequeño del espacio, por tanto no tiene longitud, área o volumen. Es adimensional, lo que quiere decir que no tiene dimensiones.

Una de las funciones del punto es describir la posición en un sistema de coordenadas como el cartesiano.

¿Sabías qué?
Los puntos se nombran con letras mayúsculas del abecedario, por ejemplo: A, B, C, D, etc.

Entes fundamentales de la geometría

Se denominan así a los entes que por sí solos no tienen definición y se comprenden a partir de las características de elementos similares. La mayoría de las personas tiene noción de lo que cada uno representa. Los entes fundamentales en la geometría son el punto, la recta y el plano.

La recta y sus tipos

Una recta es un tipo de línea que se extiende en una misma dirección y está formada por infinitos puntos. Por esta razón, la recta tiene longitud pero no anchura. En geometría, las rectas se suelen denominar con letras minúsculas.

De acuerdo a su posición en el plano, las rectas pueden ser paralelas, perpendiculares y secantes.

¿Sabías qué?
Entre dos puntos, solamente existe una recta que los une.

Rectas paralelas

Son rectas que no tienen ningún punto en común, es decir, nunca se interceptan. Para la construcción de este tipo de rectas se emplean la regla, la escuadra y el compás. En el siguiente ejemplo la recta a es paralela a la recta b.

Un ejemplo de rectas paralelas son los lados opuestos de un cuadrilátero como el cuadrado.

VER INFOGRAFÍA

Rectas secantes

Son aquellas que se interceptan en un punto en común y forman cuatro ángulos internos. Las rectas c y d son secantes.

Un ejemplo de rectas secantes son dos calles que se interceptan en un punto en común.

Rectas perpendiculares

Son aquellas rectas secantes que al cortarse forman cuatro ángulos iguales, específicamente rectos (de 90°). Estas rectas dividen al plano en cuatro regiones. Las rectas e y f son perpendiculares entre sí.

Un ejemplo de rectas perpendiculares son los ejes del plano cartesiano.

La recta es un tipo de línea pero no es la única, existen líneas curvas, quebradas y mixtas. Además de su empleo en la geometría, los diferentes tipos de líneas son recursos usados por artistas plásticos y diseñadores gráficos en sus trabajos para proporcionar expresividad gráfica, dinamismo y movimiento. También son útiles para crear planos y texturas.

Otros conceptos relacionados

Semirrecta

Todo punto que pertenece a una línea recta la divide en dos partes denominadas semirrectas. Las semirrectas también son llamadas rayos y contienen infinitos puntos como la recta. La diferencia es que una recta no tiene origen y una semirrecta sí lo tiene.

Segmento

Corresponde a la parte de una recta que se encuentra delimitada entre dos de sus puntos, cada uno de ellos es denominado extremo. Los segmentos se escriben a través de la escritura sin espacio de sus extremos y con una raya horizontal en la parte superior. En el siguiente ejemplo, la figura corresponde al segmento \overline{PQ}.

El plano

Es un ente ideal que posee dos dimensiones (bidimensional). Se suele representar con letras del alfabeto griego. En geometría, un plano queda definido cuando se cumplen algunas de las siguientes condiciones:

  • Tres puntos no alineados.
  • Dos rectas que son paralelas.
  • Dos rectas secantes.

Un plano contiene infinitas rectas y puntos. En el siguiente ejemplo se puede observar un ejemplo de plano.

Otro ejemplo de plano sería la parte superior de una mesa.

Con el propósito de facilitar su gráfica y simplificar su visualización, los planos suelen representarse como una figura delimitada con bordes irregulares. Sin embargo, un plano contiene infinitos puntos, por lo tanto, al igual que sucede con la recta, sería imposible representarlo completamente, así que se muestra una pequeña porción de su superficie.

El plano cartesiano

Es un sistema de coordenadas desarrollado por el célebre matemático René Descartes en el siglo XVII. Permite asignar ubicación a cualquier punto del plano. Este sistema cuenta con dos ejes numerados que permiten localizar las coordenadas de los puntos. Un eje vertical denominado eje Y o de las ordenadas muestra las coordenadas en Y de un punto, y un eje horizontal denominado eje X o de las abscisas indica las coordenada en X de un punto.

¡A practicar!

1. Observa la siguiente imagen y responde qué tipo de rectas son las indicadas.

a) Las rectas e y h.

Solución
Secantes.

b) Las rectas d y g.

Solución
Secantes perpendiculares.

c) Las rectas e y f.

Solución
Paralelas.

d) Las rectas h y f.

Solución
Secantes.

2. De acuerdo al contenido explicado responde las siguientes preguntas.

a) ¿Cuántos puntos no alineados definen a un plano?

Solución
3

b) ¿Qué diferencia tiene una recta de una semirrecta?

Solución
La semirrecta tiene un origen y la recta no.

c) ¿De qué medida son los ángulos formados por dos rectas perpendiculares?

Solución
90°

d) ¿En cuántos puntos se intersectan dos rectas paralelas?

Solución
En ningún punto.

e) ¿Cuáles entes fundamentales de la geometría suelen nombrarse con letras del alfabeto griego?

Solución
Los planos.

f) ¿Cómo se denominan a los puntos que forman un segmento?

Solución
Extremos.

g) ¿Qué tipo de ente fundamental de la geometría tiene longitud pero no anchura?

Solución
La recta.

h) ¿Qué tipo de ente fundamental de la geometría no tiene dimensiones?

Solución
El punto.

i) ¿Con qué otro nombre se denominan las semirrectas?

Solución
Rayos.

j) ¿Quién inventó el sistema cartesiano?

Solución
René Descartes.

RECURSOS PARA DOCENTES

Artículo “Determinación de rectas y puntos notables de los triángulos”

El artículo explica cuáles son las rectas y puntos notables que presentan los triángulos y qué características geométricas poseen.

VER

Micrositio “Tarjetas educativas – Geometría y medidas”

En este micrositio podrá encontrar una variedad de tarjetas que resumen los elementos principales de la geometría como el punto, la recta y las principales figuras geométricas.

VER

Artículo “Las rectas en el plano”

El artículo explica la clasificación de las rectas según su posición en el plano y muestra cómo graficar cada una de ellas mediante el uso de regla, escuadra y compás.

VER

CAPÍTULO 3 / TEMA 1

noción de fracción

En la vida diaria usamos números para decir nuestra edad, dar la hora o para contar. Todos estos números son los que conocemos como números naturales, pero no siempre son útiles. Por ejemplo, si nos comemos medio alfajor, un cuarto de torta, o compramos medio kilo de naranjas, necesitamos emplear otro tipo de números: los fraccionarios.

¿Qué es una fracción?

Una fracción es la forma de representar una parte de un todo. Así, si queremos decir que nos comimos medio alfajor, lo podemos pensar como que a nuestro todo, el alfajor, lo cortamos en dos y de esas dos partes nos comimos una. En forma de fracción lo escribimos como:

 

En el numerador escribimos la cantidad que nos comimos y en el denominador la cantidad en la que cortamos el alfajor.

VER INFOGRAFÍA

¿Sabías qué?
Los egipcios trabajaban con fracciones para indicar la distribución del pan, para la construcción de las pirámides y para estudiar las medidas de la Tierra. Ellos usaban fracciones llamadas “unitarias” porque todas tenían numerador 1.

Para resolver el problema de repartir 6 panes entre 10 hombres ellos decían que a cada uno le tocaba  panes. Esto significaba que cada pan lo dividían en mitades y el último lo hacían en décimos.

¡A practicar!

Escribe las fracciones que están representadas por los gráficos:

Solución

\boldsymbol{\frac{3}{8}}

Cantidad de divisiones: 8

Partes sombreadas: 3

Solución

\boldsymbol{\frac{4}{8}}

Cantidad de divisiones: 8

Partes sombreadas: 4

Solución

\boldsymbol{\frac{5}{8}}

Cantidad de divisiones: 8

Partes sombreadas: 5

Una fracción nos indica dos cosas: las partes en las que se ha dividido un todo y las partes que se han tomado de ese todo. Al primero lo llamamos denominador y al segundo lo llamamos numerador. Por ejemplo, en la imagen vemos un círculo que está dividido en 6 partes iguales, pero solo una, la parte azul, fue tomada. Esa pieza azul representa 1/6 del total.

Tipos de fracciones

Las fracciones se pueden clasificar en:

  • Propias: son las que tienen numerador menor al denominador. Esto quiere decir que representan un número menor a 1 entero. Ejemplo:

\boldsymbol{\frac{2}{5}}=

  • Impropias: son las que tienen el numerador mayor al denominador y representan números mayores a 1 entero. Ejemplo:

\boldsymbol{\frac{9}{4}}=

  • Aparentes: son aquellas en las que el numerador es múltiplo del denominador, por lo cual, al dividirlos resulta un número entero. Ejemplo:

\boldsymbol{\frac{10}{5}}=

También podemos clasificarlas en:

  • Puras: son las que se representan únicamente con una fracción.

Ejemplo: \frac{2}{5}  o  \frac{3}{8}

  • Mixtas: son las que se representan con una parte entera y una parte fraccionaria. Para esto, es necesario que la fracción sea más grande que 1 entero.

Ejemplo: 2\frac{3}{8}  o  4\frac{1}{7}

¡A practicar!

Clasifica las siguientes fracciones en propias, impropias o aparentes

 

Solución
  • Propias

  • Impropias

  • Aparentes

¿Cómo convertimos una fracción impropia pura a una fracción impropia mixta y viceversa?

De impropia pura a mixta

Dividimos el numerador con el denominador y, según los valores obtenidos, los representamos de la siguiente manera:

De impropia mixta a pura

Multiplicamos el denominador por el entero y le sumamos el numerador. Este valor nos da el numerador de la fracción pura, mientras que el denominador de ambas es el mismo.

Una fracción mixta nos da una información más visible que una fracción impropia. Por ejemplo, si nosotros tenemos 7 galletitas para compartir entre tres amigos, sabemos que 7 dividido 3 nos da 2, o sea, 2 galletitas para cada uno. Pero la que nos sobra la partimos en tres partes y nos toca 1 parte a cada uno. Es decir, cada uno comerá 2 1/3 de galletitas.

Fracción irreducible

Una fracción es irreducible cuando su numerador y su denominador solo tienen como divisor común al 1.

Recordemos el mcd

Para calcularlo descomponemos los números en sus factores primos.

– Ejemplo: halla el mcd entre 15 y 18.

Ahora solo debemos elegir los factores que se repiten en ambos y la menor cantidad de veces que aparece. En este caso, el que se repite es el 3 y aparece una sola vez en el 15.

Entonces:

mcd(15, 18) = \boldsymbol{3}

Veamos algunas fracciones para ver si son irreducibles:

– Ejemplo 1:

\frac{15}{4}

Como ya vimos, podemos escribir los números como descomposición de sus factores primos y calcular su mcd:

15 = 5\: \times 3

4 = 2^{2}

Entonces, los números 15 y 4 no tienen factores en común por lo tanto la fracción es irreducible.

– Ejemplo 2:

\frac{6}{8}

Descomponemos cada número en sus factores primos y calculamos el mcd.

6 = 2\: \times 3

8 = 2^{3}

Los números 6 y 8 tienen un factor en común, el número 2, por lo tanto la fracción no es irreducible. Para convertirla en una fracción irreducible lo único que tenemos que hacer es dividir al numerador y denominador por el factor que tienen en común.

Y ahora la fracción que se obtuvo es irreducible.

¡A practicar!

Señala cuáles de las siguientes fracciones son irreducibles

Solución

simplificación de fracciones

Simplificar una fracción significa “achicarla” tanto como podamos, o sea, hacerla irreducible. Como lo vimos antes, para convertir una fracción en irreducible hay que dividir el numerador y el denominador por un número que sea divisor de ambos (mcd).

Este valor lo podemos buscar por medio de los factores primos, o si nos damos cuenta, podemos calcular por cuáles números se pueden dividir ambos. Podemos dividir tantas veces como consideremos necesarias hasta lograr la fracción irreducible.

También usamos las fracciones para decir la hora. Por ejemplo, si dividimos el reloj a la mitad como en la foto, podemos decir que son las nueve y media. Pero también lo podemos dividir en cuatro partes. Entonces, cuando la aguja de los minutos esté en el 3 diremos que son las nueve y cuarto, y cuando esté en el 9 diremos que falta un cuarto de hora para la diez.

Hagamos algunos ejemplos:

– Ejemplo 1:

\frac{25}{35} = \frac{5}{7}

Ambas fracciones fueron divididas por 5.

– Ejemplo 2:

\frac{14}{36}=\frac{7}{18}

Ambas fracciones fueron divididas por 2.

– Ejemplo 3:

\frac{45}{105}=\frac{9}{21}=\frac{3}{7}

Ambas fracciones fueron divididas primero por 5 y después por 3.

¡A practicar!

1. Simplifica las siguientes fracciones hasta su fracción irreducible.

  • \boldsymbol{\frac{24}{36}}
Solución

\frac{2}{3}

  • \boldsymbol{\frac{40}{24}}
Solución

\frac{5}{3}

  • \boldsymbol{\frac{18}{63}}
Solución

\frac{2}{7}

2. Clasifica las siguientes fracciones, en caso de que sea impropia escríbela como fracción mixta. Luego, indica si la fracción es irreducible. Si no lo es, simplifica.

  • \boldsymbol{\frac{24}{36}}
Solución

Fracción propia. No es irreducible.

Simplificación: \frac{2}{3}

  • \boldsymbol{\frac{40}{24}}
Solución

Fracción impropia. No es irreducible.

Fracción mixta: 1\frac{2}{3}

  • \boldsymbol{\frac{6}{9}}
Solución

Fracción propia. No es irreducible.

Simplificación: \frac{2}{3}

  • \boldsymbol{\frac{23}{4}}
Solución

Fracción impropia. Es irreducible.

La fracción mixta es: 5\frac{3}{4}

  • \boldsymbol{\frac{21}{50}}
Solución

Fracción propia. Es irreducible.

  • \boldsymbol{\frac{18}{63}}
Solución

Fracción propia. No es irreducible.

Simplificación: \frac{2}{7}

  • \boldsymbol{\frac{120}{40}}
Solución

Fracción aparente. No es irreducible.

La fracción es igual a 3.

  • \boldsymbol{\frac{42}{9}}
Solución

Fracción impropia. No es irreducible.

Fracción mixta: 4\frac{2}{3}

  • \boldsymbol{\frac{90}{50}}
Solución

Fracción impropia. No es irreducible.

Fracción mixta: 1\frac{4}{5}

RECURSOS PARA DOCENTES

Artículo sobre “Fracciones”

Es un artículo didáctico con más ejemplos sobre la representación y clasificación de las fracciones.

VER

Libro de “Matemáticas primaria”

El mismo cuenta con ejercicios, explicaciones y ejemplos de los temas vistos en este capítulo para poder ampliar en clase.

VER

CAPÍTULO 4 / TEMA 1

Potencia

La potencia, también llamada potenciación, es una operación matemática que implica multiplicar varias veces un mismo número. Como todo cálculo matemático, tiene sus partes y propiedades. A continuación, aprenderás cuáles son sus características y cómo resolver problemas de este tipo.

¿Qué es la potencia?

La potencia es una multiplicación abreviada. Esta operación consiste en multiplicar un número llamado base la cantidad de veces que indique otro número llamado exponente. Los exponentes los colocamos como superíndice de un número.

Donde:

a: base

n: exponente

¿Sabías qué?

La radicación es la operación inversa a la potenciación.

Elementos de la potencia

Toda potencia está formada por dos elementos:

  • La base: es el factor que será multiplicado n cantidad de veces.
  • El exponente: es el número de veces que se multiplica la base por sí misma.

Cálculo de la potencia de un número

Para calcular la potencia de un número debemos tener conocimientos sobre la multiplicación, ya que el proceso consiste en aplicar esta operación de forma repetitiva.

– Ejemplo:

53 = 5 · 5 · 5 = 125

Como el exponente es 3, multiplicamos la base tres veces por sí misma.

– Otros ejemplos:

  • 23 = 2 · 2 · 2 = 8
  • 32 = 3 · 3 = 9
  • 64 = 6 · 6 · 6 · 6 = 1.296

Casos especiales

Cuando el exponente es 1, el resultado será igual a la base.

  • 81 = 8
  • 121 = 12

Cuando el exponente es 0, el resultado siempre será 1.

  • 30 = 1
  • 250 = 1

Cuando la base es 0, el resultado siempre sera 0.

  • 05 = 0
  • 08 = 0
Cuando el exponente es igual a dos (2), decimos que un número está elevado al cuadrado. Esto lo vemos en ecuaciones matemáticas como la del teorema de Pitágoras. Este teorema explica la relación entre los catetos y la hipotenusa de un triángulo rectángulo. Así, si la hipotenusa mide “c”, y la medida de los catetos es “a” y “b”, se verifica que c2 = a2 + b2.

 

Potencia base 10

Cuando la base es igual a 10 solo se deben añadir tantos ceros como indique el exponente. Por ejemplo:

  • 104 = 10.000
  • 102 = 100
  • 101 = 10

Lectura de potencias

Existen dos formas válidas de leer potencias:

1. Nombrar el número de la base seguido de la expresión “elevado a“. Luego nombrar el número del exponente.

  • 65 se lee “seis elevado a cinco”.
  • 28 se lee “dos elevado a ocho”.

2. Nombrar el número de la base seguido de de la expresión “a la“. Luego nombrar el número de exponente como un número ordinal femenino.

  • 65 se lee “seis a la quinta”.
  • 28 se lee “dos a la octava”.

Cuadrados y cubos

Las potencias tienen una estrecha relación con el cálculo del área y el volumen de figuras geométricas. Gracias a esto, cuando el exponente es 2, la potencia se llama cuadrado; y cuando el exponente es 3, la potencia se llama cubo.

Por ejemplo, si un cuadrado está formado por tres cuadros más pequeños por cada lado, basta con hacer este cálculo de 32 que se lee “tres al cuadrado”:

32 = 3 · 3 = 9

En cambio, si tenemos un cubo compuesto por tres cubos más pequeños en sus tres dimensiones: alto, ancho y profundidad, calcularemos 33 que se lee “tres al cubo”:

33 = 3 · 3 · 3 = 27

Entonces, un cubo de Rubik está formado por 27 cubos más pequeños.

Bases negativas

Cuando la base es negativa, el resultado puede variar de estas formas:

  • Si el exponente es un número impar, el resultado será negativo.
  • Si el exponente es un número par, el resultado será positivo.

– Ejemplo:

  • (−2)3 =(−2) · (−2) · (−2) = −8
  • (−2)2 = (−2) · (−2) = 4

¡A practicar!

¿Qué signo tendrá el resultado de las siguientes operaciones?

  • (−15)13
    Solución
    Negativo porque 13 es impar.
  • (14)20
    Solución
    Positivo porque 20 es par.
  • (−5)4
    Solución
    Positivo porque 4 es par.

Usos de la potencia

Las aplicaciones de la potenciación son de amplio rango en diversas profesiones. Los astrónomos emplean la potencia de base 10 para representar medidas muy grandes, como la distancia de la Tierra al Sol. También las usan los oceanógrafos y geólogos para escribir el valor de grandes extensiones de tierra o agua, por ejemplo, el volumen del océano Atlántico es 3,54 · 108 km3.

Además de expresar cantidades muy grandes, las potencias funcionan para representar números muy pequeños. La diferencia en esto casos es que la potencia tiene un exponente negativo, por ejemplo, un virus puede llegar a medir 2 · 10−8 cm, y la masa de un electrón es de 9,1 · 10−31 kg.

Uno de los tipos de potencias más usadas son las potencias de base 10 porque sirven para expresar cantidades muy grandes de manera sencilla. Estas potencias son iguales a la unidad seguida de tantos ceros como indique el exponente. Por ejemplo, la masa del planeta Tierra es de aproximadamente 6 x 1024 kg, es decir, 6 seguido de 24 ceros.

¡A practicar!

1. Expresa en forma de potencia los siguientes productos:

  • 8 · 8 · 8 · 8 =
    Solución
    8 · 8 · 8 · 8 = 84
  • 3 · 3 =
    Solución
    3 · 3 = 32
  • 10 · 10 · 10 · 10 · 10 · 10 =
    Solución
    10 · 10 · 10 · 10 · 10 · 10 = 106
  • 5 · 5 · 5 · 5 =
    Solución
    5 · 5 · 5 · 5 = 54
  • 7 · 7 · 7 =
    Solución
    7 · 7 · 7 = 73
  • 15 · 15 · 15 · 15 · 15 · 15 =
    Solución
    15 · 15 · 15 · 15 · 15 · 15 = 156

 

2. ¿Cuál es el resultado de las siguientes operaciones?

  • 92
    Solución
    92 = 9 · 9 = 81
  • (−5)3
    Solución
    (−5)3 = (−5) · (−5) · (−5) = −125 
  • 105
    Solución
    105 = 10 · 10 · 10 · 10 · 10 = 100.000
  • (−18)4
    Solución
    (−18)4 = (−18) · (−18) · (−18) · (−18) = 104.976
  • (−6)8
    Solución
    (−6)8 = (−6) · (−6) · (−6) · (−6) · (−6) · (−6) · (−6) · (−6) = 1.679.616 
  • 109
    Solución
    109 = 10 · 10 · 10 · 10 · 10 · 10 · 10 · 10 · 10 · 10 = 1.000.000.000 

RECURSOS PARA DOCENTES

Artículo “Potenciación y radicación”

Este artículo te permitirá tener más contenido sobre las potencias y la radicación, operación inversa a la potenciación.

VER

Artículo “Ejercicios de potenciación

Con este recurso podrás profundizar sobre qué es la potenciación y encontrarás una lista de ejercicios para reforzar lo aprendido.

VER

 

CAPÍTULO 1 / TEMA 1

LECTURA Y REPRESENTACIÓN DE NÚMEROS

Los números son símbolos escritos que reflejan cantidades de objetos reales e imaginarios. Por ejemplo, vemos números en las medidas y posiciones en el orden de llegada de una carrera, en la tabla de puntajes de un juego o en actividades cotidianas, como cuando cambiamos de canal con el control remoto del televisor.

Lectura de números hasta el 10.000

Existen ocasiones en las que usamos números que involucran una, dos, tres o más cifras. Cada una de estas cifras tiene un valor según la posición que tengan dentro del número. De acuerdo a esta posición y a los nombres de cada dígito podremos nombrar números de hasta cinco o más cifras.

Desde hace miles de años, el hombre ha sentido la necesidad de expresar cantidades a partir de sistemas de signos comprensibles por toda su comunidad. Los números arábigos, desarrollados en la India y transmitidos por los árabes, son los diez dígitos del sistema de numeración decimal: 0, 1, 2, 3, 4, 5, 6, 7, 8 y 9. Con ellos formamos infinidad de números.

Ejemplo:

Si queremos leer el número 542, lo primero que hacemos es ubicar cada cifra en una tabla de valor posicional como esta:

Donde:

U: unidades

D: decenas

C: centenas

Observa que:

  • El 5 está ubicado en la posición de las centenas → 5 x 100 = 500, se lee “quinientos”.
  • El 4 está ubicado en la posición de la decenas → 4 x 10 = 40, se lee “cuarenta”.
  • El 2 está ubicado en la posición de la unidades → 2 x 1 = 2, se lee “dos”.

Por lo tanto, el número 542 se lee: “quinientos cuarenta y dos”.

 

Otro ejemplo:

Para el leer el número 709 realizamos una tabla de valor posicional y ubicamos sus cifras:

Observa que:

  • El 7 está ubicado en la posición de las centenas → 7 x 100 = 700, se lee “setecientos”.
  • El 9 está ubicado en la posición de la unidades → 9 x 1 = 2, se lee “nueve”.

El número 709 se lee: “setecientos nueve”.

¡Atención a los ceros!

¿Qué pasa cuando una posición está ocupada por el cero (0)?

En estos casos no tomamos en cuenta su valor posicional para la lectura del número.

Para leer números mayores a 999 colocamos un punto después de las centenas, es decir, a la izquierda de la tercera cifra. Este punto indica el comienzo de una clase llamada miles.

De este modo, para escribir y leer correctamente el número 2435, primero colocamos un punto al lado izquierdo de la centena. El punto rojo se lee “mil”:

2.435

Luego ubicamos cada cifra en una tabla posicional. Esta vez, añadimos las unidades, decenas y centenas de mil.

Observa que:

  • El 2 está ubicado en la posición de las unidades de mil → 2 x 1.000 = 2.000, se lee “dos mil”.
  • El 4 está ubicado en la posición de la centenas → 4 x 100 = 400, se lee “cuatrocientos”.
  • El 3 está ubicado en la posición de la decenas → 3 x 10 = 30, se lee “treinta”.
  • El 5 está ubicado en la posición de las unidades → 5 x 1 = 5, se lee “cinco”.

El número 2.435 se lee: “dos mil cuatrocientos treinta y cinco”.

 

Ejemplo:

– Lee el número 6.028.

  • El 6 está ubicado en la posición de las unidades de mil → 6 x 1.000 = 6.000, se lee “seis mil”.
  • El 2 está ubicado en la posición de la decenas → 2 x 10 = 20, se lee “veinte”.
  • El 8 está ubicado en la posición de las unidades → 8 x 1 = 8, se lee “ocho”.

El número 6.028 se lee: “seis mil veintiocho”

Representación de cantidades

La cinta métrica o metro es un instrumento de medida que consiste en una cinta flexible graduada. Con ella medimos líneas rectas y superficies curvas. Se utiliza en casa y en la construcción. Tiene marcas divisorias con números que representan los centímetros (cm) y los milímetros (mm). Su largo promedio es de 2 metros.

Para representar cantidades utilizamos 10 dígitos que combinados entre sí forman infinitos números y, como ya sabes, cada dígito cambia su valor según la posición que tenga en el número. Por lo tanto, la misma cifra puede tener distintos valores. Observa:

Esta información es útil si tuviésemos, por ejemplo, que pagar una cuenta y debemos descomponer un número grande. Los billetes y monedas por lo general señalan el valor de una unidad (1), de una decena (10) o de una centena (100). Por ejemplo, si tienes monedas de $ 1 y billetes de $ 10 y $ 100  y debes pagar $ 435, ¿cuántos billetes y monedas tomarías de cada uno?

De la tabla de valor posicional observamos sus valores relativos:

Ahora sabemos que si tomamos 5 monedas de $ 1; 3 billetes de $ 10 y 4 billetes de $ 100, tenemos $ 435. De modo gráfico puedes verlo a continuación:

Podemos concluir que 435 = (4 x 100) + (3 x 10) + (5 x 1)

¡A practicar!

¿Cuántos billetes y monedas de $ 1 , $ 10 y $ 100 necesitarías para formar estas cantidades?

  • 876
Solución

8 billetes de $ 100

7 billetes de $ 10

6 monedas de $ 1

  • 1.000
Solución
10 billetes de $ 100 
  • 611
Solución
6 billetes de $ 100

1 billete de $ 10

1 moneda de $ 1

¿Dónde usamos los números?

  • En los carteles que indican la numeración de las calles. Por ejemplo, calle Maipú del 800 al 900.
  • En los precios de los productos que se compran y venden en la juguetería. Por ejemplo, una muñeca cuesta $ 850, es decir, ochocientos cincuenta pesos.
  • En el número que señala la balanza cuando nos pesamos. Por ejemplo, Juan se pesó en la balanza de la farmacia y su peso fue 65 kilogramos.
  • En el dinero entregado al vendedor cuando se paga el precio de un producto. Por ejemplo, la mamá de Pedro fue a la verdulería y gastó $ 420, entonces le dio al vendedor cuatro billetes de $ 100 y dos billetes de $ 10.
¿Sabías que...?

En el sistema de numeración egipcio se simbolizaban los múltiplos de 10 (1, 10, 100, 1.000, 10.000, 100.000 y 1.000.000) con dibujos denominados ideogramas que representaban conceptos o ideas.

Aproximación por redondeo

Consiste en reducir o aumentar la cantidad del número para acercarlo al número redondo más próximo en la recta númerica. Redondear números te ayudará a manejar mejor los cálculos mentales cuando no necesites una respuesta exacta.

Redondear números permite realizar las cuentas de manera más sencilla y estimar el resultado por medio de números más cercanos y redondos. En la vida cotidiana es muy común redondear cantidades cuando nos faltan monedas o queremos usar pocos billetes para pagar el precio exacto de los productos comprados en los comercios.

Pasos para aproximar un número a la decena más cercana

1. Identifica la cifra que está en la posición de las unidades.

2. Si la cifra que está en la posición de las unidades es menor que cinco (5), no cambies la decena y escribe un cero (0) en el lugar de las unidades.

3. Si la cifra que está ubicada en la posición de las unidades es igual o mayor que cinco (5), aumenta una unidad en la decena y escribe un cero (0) en el lugar de las unidades.

– Redondea el número 343 a su decena más cercana.

Primero identificamos la unidad:

343

Luego, como la unidad es menor que cinco (3 < 5), mantenemos la decena igual y escribimos un cero (0) en el lugar de la unidades:

343 ≈ 340

Por lo tanto, el número 343 es aproximadamente igual a 340.

¿Sabías qué?
El símbolo “≈” se lee “aproximadamente igual a”.

 

– Redondea el número 2.589 a su decena más cercana.

Primero identificamos la unidad.

2.589

Luego, como la unidad es mayor que cinco (9 > 5), aumentamos la decena una unidad y escribimos un cero en el lugar de las unidades.

2.589 ≈ 2.590

Por lo tanto, el número 2.589 es aproximadamente igual a 2.590.

 

Pasos para aproximar un número a la centena más cercana

1. Identifica la cifra que está en la posición de las decenas.

2. Si la cifra que está en la posición de las decenas es menor que cinco (5), no cambies la centena y escribe un cero (0) en el lugar de las decenas y de las unidades.

3. Si la cifra que está ubicada en la posición de las decenas es igual o mayor que cinco (5), aumenta una unidad en la centena y escribe un cero (0) en el lugar de las decenas y de las unidades.

– Redondea el número 9.411 a la centena más cercana

Primero identificamos la decena.

9.411

Luego, como la decena es menor que cinco (1 < 5), no cambiamos la centena y escribimos un cero (0) en el lugar de las decenas y de las unidades:

9.411 ≈ 9.400

Por lo tanto, el número 9.411 es aproximadamente igual a 9.400.

 

– Redondea el número 6.382 a la centena más cercana.

Primero identificamos la decena.

6.382

Luego, como la decena es mayor que cinco (8 > 5), aumentamos la centena una unidad y escribimos un cero en el lugar de las decenas y de las unidades.

6.382 ≈ 6.400

Por lo tanto, el número 6.382 es aproximadamente igual a 6.400.

¡A practicar!

Una familia se va de viaje y cuando llegan al kilómetro 485 hacen una parada para comer en una estación de servicio. Luego siguen su camino. En el kilómetro 495 se detiene el auto por falta de combustible y el padre tiene que salir a buscar gasolina. Él sabe que en el kilómetro 500 también hay una estación de servicio.

¿Hacia dónde le conviene ir si quiere caminar la menor cantidad de kilómetros posible? ¿Hacia la estación de servicio del kilómetro 485 o a la del kilómetro 500?

Solución

Le conviene ir a la estación de servicio del kilómetro 500 porque está a menor distancia que la otra.

Números ordinales

Los números ordinales sirven para representar un orden y se escriben antes de un sustantivo, por ejemplo “tercer grado”, donde la primera palabra es el número ordinal y la segunda es el sustantivo al que se refiere. También se usan en las colecciones de libros, el que tiene el número 1 es el primero, el que tiene el número 2 es el segundo y así sucesivamente.

Los números ordinales nos indican la posición en la que se ubica un elemento en una sucesión o lista. Para representarlos usamos números naturales seguidos por una letra que indica el género (masculino-femenino) del sustantivo al que se refieren. Por ejemplo:

  • El 5.º auto, se lee “el quinto auto”.
  • La 6.ª mesa, se lee “la quinta mesa”.

Estos números sirven para designar los pisos que hay en un edificio e indicar la dirección de vivienda de una persona. Por ejemplo, departamento A del 2º piso:

Estos son los nombres de los números ordinales del 1 al 50:

Número arábigo Número ordinal
1.º/1.ª primero/primera
2.º/2.ª segundo/segunda
3.º/3.ª tercero/tercera
4.º/4.ª cuarto/cuarta
5.º/5.ª quinto/quinta
6.º/6.ª sexto/sexta
7.º/7.ª séptimo/séptima
8.º/8.ª octavo/octava
9.º/9.ª noveno/novena
10.º/10.ª décimo/décima
11.º/11.ª décimo primero/décimo primera
12.º/12.ª décimo segundo/décimo segunda
13.º/13.ª décimo tercero/décimo tercera
14.º/14.ª décimo cuarto/décimo cuarta
15.º/15.ª décimo quinto/décimo quinta
16.º/16.ª décimo sexto/décimo sexta
17.º/17.ª décimo séptimo/décimo séptima
18.º/18.ª décimo octavo/décimo octava
19.º/19.ª décimo noveno/décimo novena
20.º/20.ª vigésimo/vigésima
30.º/30.ª trigésimo/trigésima
40.º/40.ª cuadragésimo/cuadragésima
50.º/50.ª quincuagésimo/quincuagésima

Para escribir números ordinales mayores al 20 primero se escribe el número ordinal del primer valor relativo, luego se escribe el del segundo, por ejemplo:

  • 25.º es igual a “vigésimo quinto”.
  • 42.º es igual a “cuadragésimo segundo”.
¿Sabías qué?

El número ordinal correspondiente al once puede ser nombrado como “décimo primero” o “undécimo”. En el caso del número 12, se lo denomina “décimo segundo” o “duodécimo”.

Números romanos

El reloj de la imagen indica la hora en una circunferencia numerada según el sistema romano. Este sistema de numeración fue inventado en la Antigua Roma y se basaba en la suma y resta de valores representados por letras mayúsculas. A pesar de estar en desuso, se lo puede encontrar en libros, objetos y denominaciones en la actualidad.

Cuando hablamos de números romanos nos referimos a un sistema de numeración que usa letras mayúsculas para representar cantidades. Está compuesto por siete letras y cada una tiene un valor diferente.

¿Para qué se usan los números romanos en la actualidad?

  • Nombrar los siglos históricos: siglo I antes de Cristo o siglo XX.
  • Numerar tomos, capítulos, partes de una obra literaria, actos y escenas de una obra teatral: tomo III, capítulo IV o escena VIII.
  • Nombrar reyes, papas y emperadores: Felipe IV o Juan Pablo II.
  • Denominar congresos, campeonatos y festivales: IV Congreso de la infancia o XIII Muestra de cine independiente.

Reglas para escribir números romanos

– Si a la derecha de una letra se escribe otra igual o de menor valor, sus valores se suman. Ejemplo:

VI = 5 + 1 = 6

XXI = 10 + 10 + 1= 21

LXVII = 50 + 10 + 5 + 1 + 1 = 67

 

– La letra I, colocada a la izquierda de V o X, les resta 1. Ejemplo:

IV = 5 − 1 = 4

IX = 10 − 1 = 9

 

– La letra X, colocada a la izquierda de L o C, les resta 10. Ejemplo:

XC = 100 − 10 = 90

XL = 50 − 10 = 40

 

– La letra C, colocada a la izquierda de D o M, les resta 100. Ejemplo:

CD = 500 − 100 = 400

CM = 1.000 − 100 = 900

 

– No se pueden repetir las letras I, X, C y M más de tres veces seguidas. Ejemplo:

XIII = 10 + 1 + 1 + 1 = 13

XXXIII = 10 + 10 + 10 + 1 + 1 + 1 = 33

MMM = 1.000 + 1.000 + 1.000 = 3.000

 

– Las letras V, L y D no pueden duplicarse, porque otras ya representan su valor. Ejemplo:

X = 10 (2 veces 5)

C = 100 (2 veces 50)

M = 1.000 (2 veces 500)

 

– Una raya encima de una letra o grupo de letras multiplica su valor por mil.

\overline{V} = 5.000

\overline{X} = 10.000

 

VER INFOGRAFÍA

 

Ejercicios

a) Escribe los números en cifras o en palabras, según corresponda.

  • Setecientos cincuenta y dos
Solución
Setecientos cincuenta y dos = 752
  • Mil cien
Solución
Mil cien = 1.100
  • 1.308
Solución
1.308 = mil trescientos ocho
  • 8.444
Solución
8.444 = ocho mil cuatrocientos cuarenta y cuatro
  • 10.000
Solución
10.000 = diez mil

b) Escribe los números ordinales en palabras:

  • 4.ª
Solución
4.ª = cuarta
  • 7.º
Solución
7.º = séptimo
  • 12.º
Solución
12.º = décimo segundo o duodécimo
  • 17.º
Solución
17.º = décimo séptimo
  • 20.ª
Solución
20.ª = vigésima
  • 23.º
Solución
23.º = vigésimo tercero
  • 34.ª
Solución
34.ª = trigésima cuarta
  • 40.º
Solución
40.º = cuadragésimo
  • 46.ª
Solución
46.ª = cuadragésima sexta

c) Descubre los números romanos que están mal representados y escríbelos correctamente.

Número en sistema decimal Número en sistema romano
4 IV
9 VIIII
15 VVV
40 XL
150 CL
1.000 CMC
Solución
  • VIIII no es la representación de 9, porque no se puede repetir la letra I más de tres veces. La escritura correcta es IX.
  • VVV no es la representación de 15, ya que no se puede repetir la letra V más de tres veces. La escritura correcta es XV.
  • CMC no es la representación de 1.000, porque hay un símbolo que tiene exactamente ese valor. La escritura correcta es M.

d) Aproxima por redondeo los siguientes números a la decena.

  • 46
Solución
46 ≈ 50
  • 493
Solución
493 ≈ 490
  • 2.456
Solución
2.456 ≈ 2.460

RECURSOS PARA DOCENTES

Artículo “Sistemas de numeración”

Es una lectura ampliatoria sobre la numeración a lo largo de la historia. Una síntesis que contextualiza y explica el funcionamiento de algunos sistemas de numeración que han sentado las bases de lo que hoy conocemos como aritmética: babilónico, egipcio, chino, griego, romano y decimal.

VER

Artículo “Números grandes”

Artículo que explica cómo leer números grandes sin dificultades, a partir de dos saberes básicos en cuanto a la numeración: leer números de tres cifras y reconocer el valor posicional de cada dígito en un número. Recomendado para enseñar lectura y escritura de números a niños de 3.° grado en adelante.

VER

CAPÍTULO 1 / TEMA 1

Algunos sistemas de numeración

Todas las sociedades, desde las prehistóricas hasta las modernas, han empleado técnicas para saber cantidades. Desde palos, piedras y marcas, hasta llegar a los símbolos actuales, todos los sistemas de numeración nos ayudan a una importarte y necesaria tarea diaria: contar.

Sistema decimal

Es un sistema de numeración posicional compuesto por diez símbolos o cifras llamados números arábigos: 1, 2, 3, 4, 5, 6, 7, 8, 9 y 0. Es el sistema que más se utiliza en la vida cotidiana.

Al ser posicional, cada cifra adquiere un valor relativo de acuerdo a la posición en que se encuentre: unidades, decenas y centenas. De este modo, cada dígito del número 333 tiene un valor distinto a pesar de ser el mismo.

Observa que 300 + 30 + 3 = 333

También puedes escribir el número 333 como 33310 por pertenecer a un sistema de base diez.

Hallar la respuesta a la pregunta ¿cuántos hay? ha sido la razón principal por la que el hombre desarrolló distintos métodos de recuento y dio origen al concepto de “número”. Nuestro sistema de numeración decimal permite no solo escribir de manera efectiva cantidades muy grandes, sino también cantidades muy pequeñas por medio de un posicionamiento visible.

Orden y clase

El sistema de numeración decimal tiene órdenes y clases. La unidad, la decena y la centena son el primero, segundo y tercer orden, respectivamente. Cada orden superior equivale a 10 unidades del orden anterior, es decir, una decena equivale a diez unidades y una centena equivale a 10 decenas.

1 U = 1 U

1 D = 10 U

1 C = 10 D = 100 U

Donde:

U: unidad

D: decena

C: centena

Cada grupo de tres órdenes representa una clase. Así, el número 94.256.328.100.079 tienen dígitos en distintas clases. Observa la tabla:

Este número se lee: “noventa y cuatro billones doscientos cincuenta y seis mil trescientos veintiocho millones cien mil setenta y nueve”.

Equivalencias

 

1 unidad = 1 unidad

1 decena = 10 unidades

1 centena = 100 unidades

1 unidad de mil (millar) = 1.000 unidades

1 decena de mil (millar) = 10.000 unidades

1 centena de mil (millar) = 100.000 unidades

1 unidad de millón = 1.000.000 unidades

1 decena de millón = 10.000.000 unidades

1 centena de millón = 100.000.000 unidades

1 unidad de millar de millón = 1.000.000.000 unidades

1 decena de millar de millón = 10.000.000.000 unidades

1 centena de millar de millón = 100.000.000.000 unidades

1 unidad de billón = 1.000.000.000.000 unidades

1 decena de billón = 10.000.000.000.000 unidades

1 centena de billón = 100.000.000.000.000 unidades

¡A practicar!

  • ¿Cuántas unidades equivalen a 15 centenas?
Solución

Si 1 centena = 100 unidades, entonces:

15\: C \times \frac{100\: U}{1\: C} = 1.500\: U

15 centenas equivalen a 1.500 unidades.

  • ¿Cuántas unidades equivalen a 3 decenas de millón?
Solución

Si 1 decena de millón = 10.000.000 unidades, entonces:

3\: DM \times \frac{10.000.000 \: U}{1\: DM}= 30.000.000\: U

También lo puedes representar así:

3\: DM \times \frac{10^{7} \: U}{1\: DM}= 3 \times 10^{7}\: U

3 decenas de millón equivalen a 30.000.000 unidades.

Sistema binario

Es un sistema de numeración posicional que está constituido solo por dos dígitos: 1 y 0. Este sistema utiliza como base el número 2. Un ejemplo de número binario es:

1000100101002

¿Sabías qué?
El sistema de numeración binario se encuentra con frecuencia en los algoritmos usados en las computadoras y otros equipos electrónicos, pues resulta más sencillo operar solo con los dígitos 0 y 1.
Los sistemas electrónicos emplean una lógica binaria, es decir, manejan la información en base a 0 y 1, donde cero (0) significa que no circula corriente y uno (1) significa que circula corriente. Las computadoras procesan y almacenan en cuestión de segundos gran cantidad de información escrita mediante este sistema.

¿Cómo convertir un número del sistema binario al sistema decimal?

Para transformar un número binario, como 1012, al sistema decimal debes seguir estos pasos:

1. Como el número tiene tres cifras, calcula las tres primeras potencias de 2. Inicia por 20 y escríbelas en orden decreciente.

22 = 4

21 = 2

20 = 1

2. Multiplica cada resultado por el dígito correspondiente al número binario. En este caso 1012.

4 x 1 = 4

2 x 0 = 0

1 x 1 = 1

3. Suma los productos. El resultado será el número en el sistema decimal.

4 + 0 + 1 = 5

Por lo tanto:

1012 = 510

¿Cómo convertir un número del sistema decimal al binario?

Para transformar un número del sistema decimal, como 2510, al sistema binario debes seguir estos pasos:

1. Divide el número sucesivamente entre 2 hasta que el cociente sea igual a 1.

2. Lee la cifra, de derecha a izquierda, de abajo hacia arriba. Ese es el número binario equivalente.

2510 = 110012

 

¡A practicar!

Transforma los siguiente números al sistema de numeración decimal o binario según sea el caso.

  • 11001002

Solución
En el sistema decimal es 10010.
  • 3610

Solución
En el sistema binario es 1001002.
  • 1110102

Solución
En el sistema decimal es 5810.

Sistema sexagesimal

Es un sistema de numeración posicional conformado por los mismos símbolos del sistema decimal: 1, 2, 3, 4, 5, 6, 7, 8, 9 y 0, pero a diferencia de este último, 60 unidades de un orden forman una unidad de orden superior. Sirve para medir los ángulos y el tiempo.

En el sistema sexagesimal se divide un grado en 60 partes iguales. Cada una de estas partes se llama minuto, y este, a su vez, se divide en otras 60 partes iguales para obtener segundos. Observa la equivalencia:

1 grado = 60 minutos = 3.600 segundos

La unidad de medida de los ángulos es el grado. Esta unidad es el resultado de dividir un ángulo llano (ángulo de 180°) en 180 partes iguales. Por lo general, se utiliza el transportador para medir la amplitud de ángulos. Cada línea en el transportador representa un grado, o lo que es igual, la 1 / 180 parte de un ángulo llano.

¿Cómo se miden los ángulos?

La unidad principal para medir los ángulos es el grado. Si queremos medirlos con mayor precisión utilizamos, además de los grados, los minutos y los segundos.

  • Un grado se escribe .
  • Un minuto se escribe 1′.
  • Un segundo se escribe 1”.

De este modo, 35° 22′ 36” se lee: “35 grados, 22 minutos y 36 segundos”.

Equivalencias

  • 1° = 60′
  • 1′ = 60″
  • 1° = 3.600″

Observa el esquema:

Por ejemplo, para convertir 17 grados a minutos solo debes multiplicar por 60.

17 x 60 = 1.020

17° = 1.020′

Entonces, 17 grados son iguales a 1.020 minutos.

Si quieres convertir esos 17 grados a segundos solo debes multiplicar por 3.600 (60 x 60).

17 x 3.600 = 61.200

17° = 61.200″

Así, 17 grados son iguales a 61.200 segundos.

Esta tabla muestra algunos ejemplos:

Grados (°) Minutos (‘) Segundos (“)
17 17 x 60 = 1.020 17 x 3.600 = 61.200
45 45 x 60 = 2.700 45 x 3.600 = 162.000
22 22 x 60 = 1.320 22 x 3.600 = 79.200

También puedes convertir todas las medidas de un ángulo si sumas sus partes. De esta manera, si quieres pasar a segundos la medida del ángulo 6° 9′ 52″, solo sigue estos pasos:

1. Convierte los grados a segundos. Para esto debes multiplicar por 3.600.

6° = 6 x 3.600 = 21.600″

2. Convierte los minutos a segundos. Para estos debes multiplicar por 60.

9′ = 9 x 60 = 540″

3. Como el resultado final debe ser en segundos, los segundos quedan iguales.

52″ = 52″

4. Suma todos los resultados, lo que es igual a:

6° 9′ 52″ = (6 x 3.600) + (9 x 60) + 52 = 22.192″

Pasa a segundos estas medidas de ángulos

  • 4° 35′ 17″
Solución
4° 35′ 17″ = (4 x 3.600) + (35 x 60) + 17 = 16.517″
  • 5° 8′ 45″
Solución
5° 8′ 45″ = (5 x 3.600) + (8 x 60) + 45 = 18.525″

¿Cómo se mide el tiempo?

Las unidades para medir el tiempo son diversas y van desde los milenios hasta los segundos. Para medir tiempos menores a un día usamos las horas, los minutos y los segundos.

  • 1 hora se escribe 1 h.
  • 1 minuto se escribe 1 min.
  • 1 segundo se escribe 1 s.
Equivalencias

  • 1 h = 60 min
  • 1 min = 60 s
  • 1 h = 3.600 s

Observa el esquema:

Por ejemplo, 3 horas, 20 minutos y 2 segundos se representan así: 3 h 20 min 2 s; y si deseas expresar todo en una sola unidad, como segundos, el procedimiento es similar al de los ángulos. Observa:

  1. 3 h = 3 x 3.600 = 10.800 s
  2. 20 min = 20 x 60 = 1.200 s
  3. 2 s = 2 s

Luego sumas todos los resultados, lo que es igual a:

3 h 20 min 2 s = (3 x 3.600) + (20 x 60) + 2 = 12.002 s

Pasa a segundos estas medidas de tiempo

  • 2 h 31 min 23 s

Solución
2 h 31 min 23 s = (2 x 3.600) + (31 x 60) + 23 = 9.083 s
  • 5 h 50 min 5 s

Solución
5 h 50 min 5 s = (5 x 3.600) + (50 x 60) + 5 = 21.005

Números romanos

Este sistema de numeración desarrollado en la Antigua Roma es no posicional y se caracteriza por usar siete letras mayúsculas del alfabeto latino.

En la actualidad, el sistema decimal es el más utilizado para realizar operaciones, aunque, los números romanos también puedes verlos en la vida cotidiana. Este sistema de numeración romano se utiliza para dar la hora en algunos relojes, nombrar siglos, papas y reyes; también se usa en la enumeración de tomos de libros, sagas de películas, leyes, reformas y lápidas conmemorativas.

Sin importar la posición que ocupe cada letra, esta siempre tendrá el mismo valor. No obstante, es de gran importancia seguir las reglas de escritura:

  • I, X, C y M no pueden escribirse más de tres veces consecutivas en un mismo número.
  • Un símbolo de menor valor ubicado a la derecha de otro de mayor valor, se suma.
  • Un símbolo de menor valor ubicado a la izquierda de otro de mayor valor, se resta.
  • V, L y D se permite escribirlos solamente una vez y no se pueden escribir a la izquierda de otro de mayor valor.
  • I solo puede colocarse a la izquierda de V o X.
  • X solo puede colocarse a la izquierda de L o C.
  • C únicamente se coloca a la izquierda de D o M.
  • Cuando el número supera el valor 3.999, se traza una línea horizontal sobre el número romano la cual multiplica su valor por mil.
  • Si se colocan dos rayas horizontales sobre un número romano, su valor se multiplica por un millón.

¿Cómo se convierte un número romano a número arábigo?

Para conocer qué cantidad corresponde a un número romano se deben aplicar las reglas antes mencionadas. Por ejemplo, si deseas saber el número arábigo correspondiente al número romano \overline{DCLXXIX}, sigue estos pasos:

1. Determina los valores de cada letra.

D = 500

C = 100

L = 50

X = 10

I = 1

2. Suma los valores de las letras a la derecha de otra de mayor valor.

DC = 500 + 100 = 600

LXX = 50 + 10 + 10 = 70

3. Resta los valores de las letras a la izquierda de otras de mayor valor.

IX = 10 − 1 = 9

4. Suma todos los resultados, y como el número tiene una barra, multiplica su valor por mil.

\overline{DCLXXIX} = (600 + 70 + 9) \times 1.000 = 679.000

¿Existen estos números?

  • VL

Solución
No. V no puede estar delante de un número de valor mayor como L. Para escribir el número 45 lo correcto es XLV.
  • LXXXXV

Solución
No. X solo puede escribirse un máximo de tres veces consecutivas en un número. Para escribir el número 95 lo correcto es XCV.

VER INFOGRAFÍA

¿Sabías qué?
El número cero (0) fue posterior al sistema de numeración romana, se originó con la creación de los números arábigos.
Ejercicios

1. ¿A cuántas unidades equivalen?

  • 2 unidades de millón.
Solución
2.000.000 unidades.
  • 5 centenas de mil.
Solución
500.000 unidades.
  • 4 decenas de billón.
Solución
40.000.000.000.000 unidades.

2) Indica orden y clase del número 3 en las siguientes cifras.

  • 32.512.874
Solución
Decena de millón.
  • 35.294
Solución
Decena de mil.
  • 953.812.549.798.400
Solución
Unidad de billón.

3) Transforma los siguientes números al sistema de numeración decimal o binario según sea el caso.

  • 11012
Solución
1310
  • 110002
Solución
2410 
  • 2310
Solución
101112

4) Convierte a segundos.

  • 1° 22′ 15”
Solución
4.935”
  • 2° 1′ 30”
Solución
7.290”
  • 35 min 3 s
Solución
2.103 s

5) Completa la siguiente tabla.

Solución

RECURSOS PARA DOCENTES

Enciclopedia “Matemáticas primaria”

El siguiente recurso le brindará nociones sobre los sistemas de numeración y una variedad de ejercicios prácticos para desarrollar el tema.

VER

Tarjetas educativas “Números romanos”

Estas tarjetas le brindarán una herramienta pedagógica mediante imágenes para la enseñanza del tema.

VER

CAPÍTULO 1 / TEMA 2

Números primos y compuestos

Los números naturales son usados comúnmente para contar y se clasifican según sus divisores. Aquellos que solo pueden dividirse de forma exacta entre ellos mismos y entre el 1, es decir, tienen solo dos divisores, se denominan números primos; mientras que los que tienen más de dos divisores se denominan números compuestos.

Divisores de un número

Antes de abordar el tema de los números primos y números compuestos, es indispensable comprender el concepto de divisor. Este es un número natural que al dividir a otro natural da como resultado una división con cociente entero y resto igual a cero.

¿Sabías qué?
El divisor de un número siempre lo divide en partes exactas, por eso el resto siempre es igual a cero.

En este sentido, si deseas saber si un número es o no divisor de otro, debes realizar una división entre el número en cuestión y el posible divisor. Si el resultado es un cociente entero (no decimal) y si el resto es igual a cero (división exacta) entonces decimos que efectivamente es divisor de dicho número.

Por ejemplo:

– Para determinar si el número 2 es divisor del número 6:

Lo primero es dividir 6 entre 2.

En este caso, el número 2 es divisor del número 6 porque el cociente de la división es un número entero (no es decimal) y la división es exacta con el resto igual a cero.

Otro ejemplo:

– Para determinar si el número 3 es divisor del número 14:

 

 

 

Aunque la división es exacta, el número 4 no es divisor del número 14, porque el cociente de la división es un número decimal, en este caso se dice que el número 14 no es divisible entre 4.

Criterios de divisibilidad

Son simples reglas que permiten determinar de manera rápida si un número es divisor o no de otro sin necesidad de realizar la división. Algunos de estos criterios son:

– Un número es divisible entre 2 si es un número par o termina en 0.
Por ejemplo: 20, 54, 12, 1.050, 76 y 80.

– Un número es divisible entre 5 si termina en 5 o en 0.
Por ejemplo: 15, 225, 3.110 y 400.

– Un número es divisible entre 10 si termina en 0.
Por ejemplo: 10, 500, 3.410 y 780.

¡A practicar!

  1. ¿Cuáles de los siguientes números es divisor del número 12?
    a) 5
    b) 2
    c)10
    RESPUESTAS
    2
  2. ¿Cuáles de los siguientes números es divisor del número 25?
    a) 3
    b) 7
    c) 5
    RESPUESTAS
    5
  3. ¿Cuáles de los siguientes números es divisor del número 200?
    a) 10
    b) 3
    c) 6
    RESPUESTAS
    10
  4. ¿Cuáles de los siguientes números es divisor del número 16?
    a) 5
    b) 4
    c) 9
    RESPUESTAS
    4

Números primos

Son números que poseen únicamente dos divisores: ellos mismos y el 1.

Por ejemplo, el número 2 es un número primo porque solamente es divisible entre 2 y entre 1.

 

VER INFOGRAFÍA

¿Sabías qué?
El número uno es divisor de todos los números enteros pero solo es divisible por sí mismo.

Números compuestos

Los números compuestos son números divisibles por ellos mismos, por el uno (1) y por otros números, es decir, tienen más de dos divisores y son más frecuentes que los números primos.

Por ejemplo, el número 24 es un número compuesto, ya que es divisible entre 1, 2, 3, 4, 6, 8, 12 y 24. En total tiene 8 números divisores.

Números especiales

Los números 1 y 0 son números muy particulares. En el caso del 1, su único divisor es él mismo y en el caso del número 0, aunque puede ser dividido entre infinitos números, no puede dividirse entre sí mismo porque la división entre cero no esta determinada. Por estas razones, los números 1 y 0 no se consideran números primos ni compuestos.

Tabla de los números primos y compuestos

Existe un simple procedimiento que permite determinar con facilidad los conjuntos de números primos y compuestos; se conoce como Criba de Eratóstenes y aunque su nombre parezca complicado, su procedimiento no lo es.

1. Lo primero que hay que hacer es realizar una tabla con los números del 1 al 100 y se deberán tachar los números que no son primos. El primer número que se tacha es el 1 al no ser considerado número primo.
2. Luego, el siguiente número es el 2, al ser un número primo no se tacha pero a partir de él se empieza a contar de dos en dos al mismo tiempo que se tachan los números que resulten de dicho conteo.

3. Luego del 2, el siguiente número que no se ha tachado es el 3, a partir de él se empieza a contar de 3 en 3 y se tachan los números al mismo tiempo.

4. El siguiente número sin tachar es el 5, se deja sin tachar y se empieza a contar de 5 en 5 mientras se tachan los números.

5. El siguiente número sin marcar el el 7, se mantiene en la tabla sin tachar y se empieza a contar de 7 en 7 mientras se tachan los números.

Los números que no fueron tachados corresponden a números primos, y los números tachados son los compuestos, es una manera gráfica de identificar estos tipos de números del 1 al 100.

La Criba de Eratóstenes es una herramienta muy práctica para tener una visión general de los números primos y compuestos, sin embargo; en la vida cotidiana no es necesario ni aconsejable memorizarlos para resolver los ejercicios, por el contrario; al entender los elementos de cada número se podrá determinar con mayor rapidez si es primo o no.

 

¡A practicar!

1. ¿Qué número tiene infinitos divisores?

RESPUESTAS
El número cero.

2. ¿Cómo se llaman los números que solo tienen dos divisores?

RESPUESTAS
Números primos.

3. ¿Qué números no son considerados ni primos ni compuestos?

RESPUESTAS
El cero y el uno.

4. Un número es divisible entre dos si es par o termina en __________.

RESPUESTAS
cero

5. ¿Cuáles de estos números no es primo?
a) 7
b) 19
c) 25
d) 2

RESPUESTAS
25

6. El número 32 es un número _________.

a) impar
b) primo
c) compuesto

RESPUESTAS
compuesto

7. Clasifica cada uno de los siguientes números como “primo” o “compuesto”:

a) 21
b) 59
c) 18
d) 13

RESPUESTAS
a) Compuesto.
b) Primo.
c) Compuesto.
d) Primo.
RECURSOS PARA DOCENTES

Artículo “Números primos y compuestos”

En el siguiente artículo se desarrolla el tema de números primos y compuestos. Además se explica qué son los coprimos, y se señalan algunos números especiales.

VER

Artículo “Criterios de divisibilidad”

Este recurso ayuda a conocer los criterios de divisibilidad, ampliados para más números de los que se mencionaron en este artículo.

VER