Ángulos
Los ángulos están presentes en la mayoría de las figuras geométricas y en nuestra vida cotidiana. Se los considera indispensables para realizar cálculos trigonométricos y estudios en balística, arquitectura e ingeniería. De acuerdo a su amplitud, los ángulos se clasifican en varios tipos.
El ángulo y sus elementos principales
Un ángulo es una región del plano comprendida por dos semirrectas que tienen un origen en común. Los elementos de un ángulos son los siguientes:
- Vértice: es el punto en común de las dos semirrectas.
- Lados: son las dos semirrectas que conforman al ángulo.
- Amplitud: es la medida de abertura de los lados de un ángulo. Esta medida usualmente se lee en grados sexagesimales.
Se usa principalmente para medir el tiempo y los ángulos. En este último caso, las unidades que emplea son grados, minutos y segundos. Al dividir un ángulo llano en 180 partes iguales, una de esas partes equivale a un grado (°). Si se divide un grado en sesenta partes iguales, una de esas partes equivale a un minuto (′). Y si el minuto se divide en 60 partes iguales, una de esas partes corresponde a un segundo (″). En resumen:
1° = 60′
1′ = 60″
Observa que este sistema emplea como base el número 60 y de ahí viene el origen de su nombre. El instrumento usado para su medición es el transportador.
Clasificación de los ángulos
Los ángulos pueden clasificarse en:
- Ángulo nulo: cuando mide 0°.
- Ángulo agudo: cuando es mayor que 0° pero menor que 90°.
- Ángulo recto: cuando mide exactamente 90°.
- Ángulo obtuso: cuando es mayor de 90° pero menor que 180°.
- Ángulo llano: cuando mide exactamente 180°.
- Ángulo completo: cuando mide 360°.
Ángulos complementarios
Dos ángulos son complementarios si al ser sumados el resultado es igual a 90°. Al saber el valor de uno de los ángulos puedes calcular el valor del otro al restar 90° al ángulo conocido.
– Ejemplo:
Se tienen los ángulos complementarios α y β. El valor de β es de 35°. Calcula el valor de α.
Simplemente debes resolver la resta:
Por lo tanto el valor de α es 55°.
Ángulos suplementarios
Dos ángulos son suplementarios si al ser sumados el resultado es igual a 180°. Al igual que en el caso anterior puedes determinar el valor de un ángulo de este tipo si conoces el valor de otro y lo restas a 180°.
– Ejemplo:
Se tienen los ángulos suplementarios θ y δ. El valor de θ es de 160°. Calcular el valor de δ.
Resuelve la resta:
El valor de δ es 20°.
Medida de un ángulo
La medición de los ángulos se realiza a menudo a través de un transportador, el cual puede ser de dos tipos: circular o semicircular. El circular mide los 360° de la circunferencia y el semicircular mide los 180°. Ambos transportadores cuentan con una marca en el centro que se debe colocar en el vértice del ángulo a medir. El 0° de la escala debe coincidir con uno de los lados del ángulo y la lectura del ángulo sería la que indica el otro lado en la escala.
Los transportadores suelen presentar dos numeraciones que van en diferentes sentidos según se lea el ángulo: en sentido horario (en el sentido de las manecillas del reloj) o en sentido antihorario.
Los ángulos en las figuras planas
Las figuras planas poseen ángulos interiores y ángulos exteriores. Los ángulos interiores, como su nombre lo indica, se ubican en el interior de la figura, mientras que los exteriores se ubican entre un lado de la figura y el otro lado siguiente. Por ejemplo:
Cálculo de ángulos internos en triángulos
Los ángulos interiores de los triángulos siempre suman 180°. De manera que si conoces la medida de dos de sus ángulos internos puedes calcular la medida del tercero. Lo único que debes hacer es restar los valores de los ángulos conocidos a 180°. Por ejemplo:
– Calcula el valor del ángulo θ.
Como ya sabes, la sumas de los ángulos internos de un triángulo es igual a 180°, entonces, si restas los valores de los ángulos conocidos a 180° obtendrás el valor de Θ:
El valor del ángulo θ es 48°.
Cálculo de ángulos internos en cuadriláteros
En el caso de los cuadriláteros se cumple que la suma de sus cuatro ángulos internos siempre es igual a 360°. De acuerdo al tipo de cuadrilátero el valor del ángulo puede variar. Por ejemplo, en el caso del cuadrado y del rectángulo sus cuatro ángulos internos son iguales y miden 90°. En el caso del rombo y del romboide sus ángulos opuestos son iguales. Si el trapecio es rectángulo posee dos ángulos consecutivos que miden 90°. Si es isósceles tiene los ángulos adyacentes a la base mayor con la misma medida y si el trapecio es escaleno ninguno de sus ángulos mide lo mismo.
Los trapezoides son otro tipo de cuadrilátero con el valor de cada uno de sus ángulos internos diferentes. En resumen:
Figuras | Características |
El cuadrado y el rectángulo tienen ángulos internos iguales y miden 90°. | |
El rombo tiene todos sus ángulos iguales (pero son agudos, es decir, menores a 90°).
El romboide presenta cada par de ángulos opuestos con la misma medida. |
|
El trapecio rectángulo tiene dos ángulos rectos (miden 90° cada uno).
El trapecio isósceles presenta los ángulos adyacentes a la base mayor con la misma medida.
El trapecio escaleno presenta todos sus ángulos con diferente medida. |
|
El trapezoide no posee ningún ángulo con la misma medida. |
Para calcular ángulos en un cuadrilátero simplemente tenemos que restar los ángulos conocidos a 360°.
– Ejemplo:
Calcula el valor del ángulo ε de la siguiente figura.
El valor del ángulo ε es 115°.
¡A practicar!
1. ¿Qué tipo de ángulo observas?
a)
b)
c)
d)
2. Calcula el valor del ángulo γ.
3. Calcula el valor del ángulo θ.
4. Calcula el valor del ángulo φ.
5. Calcula el valor del ángulo β.