Desde la elaboración de planos y dibujos a escalas en hojas cuadriculadas, hasta la localización de estrellas en la galaxia, la unión de rectas perpendiculares nos ayuda a distinguir la posición de cualquier objeto. Una cuadrícula es un sistema de coordenadas compuesto por líneas perpendiculares verticales y horizontales, que funciona como sistema de referencias y permite ubicar elementos en un espacio definido. El conjunto de líneas horizontales y verticales, también llamadas ejes, suelen nombrarse con números y letras.
TIPOS DE LÍNEAS
Las líneas son un conjunto de puntos ubicados uno junto al otro que generan un trazo continuo. Si los puntos están orientados en una misma dirección, entonces, forman una línea recta. Las líneas rectas son continuas e infinitas, no tienen ni principio ni final y se pueden clasificar según la forma en que interaccionan entre ellas en rectas paralelas (aquellas que nunca se cortan), rectas secantes perpendiculares (aquellas que se cortan formando ángulos rectos) y rectas secantes oblicuas (aquellas que se cortan sin formar ángulos rectos).
LOS ÁNGULOS Y SUS TIPOS
Un ángulo es una porción del plano delimitado por dos semirrectas. Cada semirrecta es uno de los lados del ángulo y coinciden en un punto de origen al que se denomina vértice. A la distancia entre lado y lado del ángulo se la denomina amplitud, y esta se mide en grados (°). Si queremos medir o trazar un ángulo es indispensable el uso del transportador. Según su amplitud, un ángulo puede ser convexo, cóncavo, nulo, completo, llano, agudo, recto u obtuso.
LOS TRIÁNGULOS
Los triángulos son polígonos regulares cerrados de tres lados, tres ángulos y tres vértices. Los ángulos interiores de un triángulo siempre suman 180° y los ángulos exteriores suman 360°. Son varios los criterios de clasificación que permiten agrupar a los triángulos de acuerdo a ciertas particularidades, los más utilizados son: la medida de sus lados y la medida de sus ángulos. Según la medida de sus lados, los triángulos se clasifican en equiláteros, isósceles y escalenos; mientras que, según la medida de sus ángulos se clasifican en acutángulo, obtusángulo y rectángulo.
CUADRILÁTEROS
Los cuadriláteros tienen cuatro lados, cuatro ángulos internos, cuatro ángulos externos, cuatro vértices y dos diagonales. Estos se clasifican en paralelogramos, trapecios y trapezoides. Los paralelogramos son aquellos cuadriláteros que poseen dos pares de lados opuestos paralelos y que comparten algunas propiedades específicas; los trapecios, por su parte, son figuras que presentan un par de lados opuestos paralelos a los que se suele denominar base; y los trapezoides son aquellos cuyos lados no son paralelos.
POLIEDROS
Los poliedros son cuerpos geométricos tridimensionales con caras planas formados por polígonos. Cada una de las caras de un poliedro es un polígono (triángulo, cuadrado, rombo, etc.). Los poliedros pueden ser regulares cuando sus caras están compuestas por el mismo polígono regular; o irregulares si sus caras presentan diferentes formas. En estos poliedros el número de caras no presenta límites como ocurre con los poliedros regulares y se dividen en prismas (tienen dos bases) y pirámides (tienen una sola base).
Seguramente habrás notado a tu alrededor múltiples objetos con cuatro lados: una mesa, una caja o un teléfono móvil. Todos ellos tienen forma de cuadriláteros. Este tipo de figura tiene diversas clasificaciones según la longitud de sus lados y amplitud de sus ángulos. Con este artículos podrás diferenciar cada tipo de cuadrilátero y sabrás cómo calcular su perímetro.
¿qué es un cuadrilátero?
El término “cuadrilátero” proviene del latín quattuor que significa “cuatro” y latus que significa “lado”. Así que los cuadriláteros son aquellos polígonos que tienen cuatro lados. Estos lados pueden dibujarse de diversas formas: todos del mismo tamaño, de distintas medidas o con diferentes inclinaciones; pero lo fundamental es que estén unidos de forma tal que constituyan el contorno de una figura.
La suma de los ángulos interiores de un cuadrilátero es 360°.
La suma de los ángulos exteriores de un cuadrilátero es igual a 360°.
En el ejemplo anterior:
α + β + γ + δ = 360°
α’ + β’ + γ’ + δ’ = 360°
Clasificación de los cuadriláteros
Los cuadriláteros se clasifican en paralelogramos, trapecios y trapezoides.
Paralelogramos
Son figuras con lados paralelos dos a dos cuyas diagonales se cortan entre sí en segmentos iguales. Se clasifican en:
Figura
Característica
Cuadrado
4 lados iguales.
4 ángulos rectos (90°).
Rectángulo
Lados iguales dos a dos.
4 ángulos rectos (90°).
Rombo
4 lados iguales.
Ángulos iguales dos a dos.
Romboide
Lados iguales dos a dos.
Ángulos iguales dos a dos.
Eje de simetría de los paralelogramos
Todos los paralelogramos tienen un eje de simetría. El eje de simetría es el segmento que divide a la figura en dos partes iguales. El punto de intersección de las diagonales es el centro de simetría del paralelogramo.
Para diferenciar un rombo de un cuadrado invertido debes prestar atención a los ángulos, solo el cuadrado tiene cuatro ángulos rectos.
Trapecio
Son figuras con 2 lados paralelos denominados bases. Se clasifican en:
Figura
Característica
Trapecio rectángulo
2 ángulos rectos (90°), uno agudo (menor a 90°) y uno obtuso (mayor a 90°).
Un lado es perpendicular a sus bases (paralelas).
Trapecio isósceles
Sus lados no paralelos son de igual longitud.
2 ángulos internos agudos (menores a 90°) y 2 ángulos obtusos (mayores a 90°) iguales entre sí.
Sus ángulos opuestos son suplementarios.
Trapecio escaleno
Todos sus lados y ángulos son diferentes.
Trapezoide
Son figuras sin lados paralelos.
Figura
Características
Lados opuestos no paralelos.
CÁLCULO DEL PERÍMETRO DE PARALELOGRAMOS
El perímetro es la suma de las longitudes de los lados de cualquier figura geométrica, con excepción del círculo; sin embargo, con el fin de agilizar su cálculo puedes aplicar las siguientes fórmulas:
Figura
Fórmula de perímetro
Cuadrado
P = 4 × l
Rectángulo
P = 2 × l + 2 × b
Romboide
P = 2 × l1 + 2 × l2
Rombo
P = 4 × l
– Ejemplo:
Calcula el perímetro de este rectángulo:
P = 2 × b + 2 × a
P = 2 × 10 cm + 2 × 6 cm
P = 20 cm + 12 cm
P = 32 cm
El perímetro del rectángulo es de 32 cm.
– Otro ejemplo:
Calcula el área de este rombo:
P = 4 × l
P = 4 × 5 cm
P = 20 cm
El perímetro del rombo es de 20 cm.
Figuras geométricas en la publicidad
Las figuras geométricas son entendidas como símbolo de sencillez y perfección. Incluso, cada una de ellas, tiene un significado propio. Esto quiere decir que las figuras transmiten un concepto y las geométricas nos hablan de perfección. Las empresas no eligen al azar su logotipo sino que se dedican a estudiar su público e invierten mucho dinero para su elaboración. Un gran número de compañías optan por figuras geométricas porque está comprobado que tienen impacto seguro, profundo y duradero.
¡A practicar!
1. Clasifica las siguientes figuras como: paralelogramos, trapecio o trapezoide.
Solución
A. Paralelogramo
B. Paralelogramo
C. Trapecio
D. Trapecio
E. Paralelogramo
F. Trapezoide
G. Trapecio
H. Paralelogramo
I. Trapezoide
2. Calcula el perímetro de las siguientes figuras:
Solución
P = 2 × 12 cm + 2 × 9 cm
P = 24 cm + 18 cm
P = 42 cm
Solución
P = 4 × 7 cm
P = 28 cm
Solución
P = 2 × 12 cm + 2 × 6 cm
P = 24 cm + 12 cm
P = 36 cm
RECURSOS PARA DOCENTES
Enciclopedia “Matemática tomo 6”
En el tomo 6 de la enciclopedia de matemática encontrarás información detallada, ejemplos y ejercicios sobre una diversidad de temas vinculados a la geometría para el nivel primario.
Es posible que identifiques diversas figuras geométricas al observar el mundo que te rodea y los objetos presentes en él. La mayoría de estas figuras están compuestas por semirrectas unidas por un punto en común, es decir, un vértice. Esa porción del plano delimitada por dos semirrectas que nacen de un mismo punto se conoce como ángulo y según su medida puede ser de distintos tipos.
¿qué es un ángulo?
Es una porción del plano delimitada por dos semirrectas, las cuales también son llamadas lados. Ambos lados coinciden en un punto de origen o vértice. La abertura de un lado con respecto al otro es la que denominamos ángulo.
Con una letra griega, por ejemplo α y se lee “ángulo alpha”. En esta imagen vemos un ángulo α = 52,13°.
Con los puntos correspondientes a las semirrectas que lo constituyen y al vértice. Estos puntos se nombran mediante letras, por ejemplo, en la imagen vemos el ángulo AOB.
CLASIFICACIÓN DE LOS ÁNGULOS
Los ángulos se clasificar según tres criterios diferentes: su medida, su posición y la suma de sus medidas con otros ángulos.
¿Sabías qué?
Los ángulos se miden en grados (°).
Ángulos según su medida
Ángulo completo: tiene una amplitud de 360°, significa que es un giro completo.
Ángulo nulo: tiene una amplitud de 0°.
Ángulo llano: tiene una amplitud de 180°, podrás verlo representado como una línea recta.
Ángulo cóncavo: tiene una amplitud mayor que 180° pero menor que 360°.
Ángulo convexo: tiene una amplitud menor que 180°.
Dentro de los ángulos convexos encontramos otras clasificaciones:
Ángulos rectos: miden 90°.
Ángulos obtusos: miden más de 90°.
Ángulos agudos: miden menos de 90°.
Ángulos según su posición
Según su posición los ángulos pueden ser:
Adyacentes: son aquellos que tienen el vértice y un lado en común. Al sumar las amplitudes de cada uno de ellos el resultado será 180°.
Consecutivos: son aquellos que comparten tanto el vértice como uno de sus lados.
Opuestos por el vértice: son aquellos que solo tienen el vértice en común.
Ángulos según la suma de su medida con otros ángulos
Los ángulos también pueden clasificarse según el resultado obtenido al sumar la medida de la amplitud de un ángulo con la de otro ángulo, así sabrás que:
Un ángulo es suplementario con otro si la suma de sus amplitudes da como resultado un ángulo de 180°.
Un ángulo es complementario con otro si la suma de sus amplitudes da como resultado un ángulo de 90°.
MEDICIÓN DE ÁNGULOS
Por lo general, la medición de los ángulos se realiza por medio de un transportador.
¿Qué es un transportador?
Es un instrumento geométrico que puede tener una forma circular o semicircular y se utiliza para medir gráficamente un ángulo así como para construirlo. Cuenta con graduaciones o marcas iguales que sirven de escala para identificar la medida del ángulo. Los transportadores circulares están divididos en 360 partes iguales, mientras que los semicirculares están divididos en 180 partes iguales. Cada una de estas partes representa un grado (1°) .
Para medir un ángulo con transportador seguimos estos pasos:
1. Identificamos el vértice, es decir, el punto del que nacen las semirrectas y hacemos que coincida con el centro del transportador.
2. Verificamos que el cero (0) en el transportador esté justo sobre uno de los lados del ángulo.
3. Observamos el valor que marca el otro lado que pasa por la escala graduada. En este caso, la medida del ángulo â = 165°.
¿Sabías qué?
Los transportadores tienen escalas graduadas dobles: una va en sentido de las manecillas del reloj y las otra en sentido contrario. Siempre debes recordar comenzar a medir a partir del cero.
LOS ÁNGULOS EN LAS FIGURAS GEOMÉTRICAS
Las figuras geométricas planas poseen ángulos interiores, ubicados dentro de la figuras; y ángulos exteriores, ubicados entre un lado de la figura y el otro lado siguiente.
Los ángulos interiores de los triángulos siempre suman 180°. Según sus ángulos los triángulos pueden ser:
Nombre
Figura
Características
Triángulo rectángulo
Tiene un ángulo recto (90°).
Triángulo acutángulo
Tiene todos sus ángulos agudos (menores a 90°).
Triángulo obtusángulo
Tiene un ángulo obtuso (mayores a 90° pero menores a 180°).
Ángulos interiores de los cuadriláteros
En el caso de los cuadriláteros, la suma de sus cuatro ángulos internos siempre es igual a 360°. De acuerdo al tipo de cuadrilátero el valor del ángulo puede variar. Su clasificación es la siguiente:
Nombre
Figura
Característica
Cuadrado
Tiene cuatro ángulos rectos (90°).
Rectángulo
Tiene cuatro ángulos rectos (90°).
Rombo
Tiene ángulos opuestos iguales.
Romboide
Tiene ángulos opuestos iguales.
Trapecio rectángulo
Tiene dos ángulos rectos (90°).
Trapecio isósceles
Los dos ángulos de la base menor son iguales. Los dos ángulos de la base mayor son iguales.
Trapecio escaleno
Todos sus ángulos son diferentes.
¿Sabías qué?
La palabra “geometría” viene de geo que significa “Tierra”, y de metría que significa “medir”.
Ángulos internos de polígonos regulares
Los polígonos regulares son aquellos que tienen todos sus ángulos internos iguales. Para calcular su valor se emplea la ecuación (n − 2) × 180°/n donde n es el número de lados que tiene el polígono. Por ejemplo, para un hexágono se sustituye la n por el número 6 que corresponde al número de sus lados y obtenemos que (6 − 2) × 180°/6 = 120°, lo que quiere decir que cada uno de los ángulos internos de un hexágono mide 120°.
¡A practicar!
1. Observa los ángulos entre estas rectas. Completa la tabla con los ángulos solicitados.
Tipo de ángulo
Nombre del ángulo
Recto
Ángulo α
Agudo
Obtuso
Complementario
Suplementario
Adyacente
Solución
Tipo de ángulo
Nombre del ángulo
Recto
Ángulo α
Agudo
Ángulo β
Obtuso
Ángulo GOC
Complementario
Ángulos BOE y EOC
Suplementario
Ángulos EOG y GOF
Adyacente
Ángulos AOC y COB
2. Calcula los ángulos complementarios y suplementarios para los siguientes ángulos:
β = 50°
Solución
Ángulo complementario = 40° porque 50° + 40° = 90°.
Ángulo suplementario = 130° porque 50° + 130° = 180°.
γ = 15°
Solución
Ángulo complementario = 75° porque 15° + 75° = 90°.
Ángulo suplementario = 165° porque 15° + 165° = 180°.
δ = 75°
Solución
Ángulo complementario = 15° porque 75° + 15 = 90°.
Ángulo suplementario = 105° porque 75° + 105° = 180°.
RECURSOS PARA DOCENTES
Artículo “Ángulos”
En el siguiente artículo encontrarás información sistematizada sobre las diferentes clasificaciones de los ángulos.
Los ángulos están presentes en la mayoría de las figuras geométricas y en nuestra vida cotidiana. Se los considera indispensables para realizar cálculos trigonométricos y estudios en balística, arquitectura e ingeniería. De acuerdo a su amplitud, los ángulos se clasifican en varios tipos.
El ángulo y sus elementos principales
Un ángulo es una región del plano comprendida por dos semirrectas que tienen un origen en común. Los elementos de un ángulos son los siguientes:
Vértice: es el punto en común de las dos semirrectas.
Lados: son las dos semirrectas que conforman al ángulo.
Amplitud: es la medida de abertura de los lados de un ángulo. Esta medida usualmente se lee en grados sexagesimales.
¿Sabías qué?
Los ángulos suelen nombrarse con letras del alfabeto griego.
El sistema sexagesimal
Se usa principalmente para medir el tiempo y los ángulos. En este último caso, las unidades que emplea son grados, minutos y segundos. Al dividir un ángulo llano en 180 partes iguales, una de esas partes equivale a un grado (°). Si se divide un grado en sesenta partes iguales, una de esas partes equivale a un minuto (′). Y si el minuto se divide en 60 partes iguales, una de esas partes corresponde a un segundo (″). En resumen:
1° = 60′
1′ = 60″
Observa que este sistema emplea como base el número 60 y de ahí viene el origen de su nombre. El instrumento usado para su medición es el transportador.
Ángulo agudo: cuando es mayor que 0° pero menor que 90°.
Ángulo recto: cuando mide exactamente 90°.
Ángulo obtuso: cuando es mayor de 90° pero menor que 180°.
Ángulo llano: cuando mide exactamente 180°.
Ángulo completo: cuando mide 360°.
Ángulos complementarios
Dos ángulos son complementarios si al ser sumados el resultado es igual a 90°. Al saber el valor de uno de los ángulos puedes calcular el valor del otro al restar 90° al ángulo conocido.
– Ejemplo:
Se tienen los ángulos complementarios α y β. El valor de β es de 35°. Calcula el valor de α.
Simplemente debes resolver la resta:
Por lo tanto el valor de α es 55°.
Ángulos suplementarios
Dos ángulos son suplementarios si alser sumados el resultado es igual a 180°. Al igual que en el caso anterior puedes determinar el valor de un ángulo de este tipo si conoces el valor de otro y lo restas a 180°.
– Ejemplo:
Se tienen los ángulos suplementarios θ y δ. El valor de θ es de 160°. Calcular el valor de δ.
Resuelve la resta:
El valor de δ es 20°.
Medida de un ángulo
La medición de los ángulos se realiza a menudo a través de un transportador, el cual puede ser de dos tipos: circular o semicircular. El circular mide los 360° de la circunferencia y el semicircular mide los 180°. Ambos transportadores cuentan con una marca en el centro que se debe colocar en el vértice del ángulo a medir. El 0° de la escala debe coincidir con uno de los lados del ángulo y la lectura del ángulo sería la que indica el otro lado en la escala.
Los transportadores suelen presentar dos numeraciones que van en diferentes sentidos según se lea el ángulo: en sentido horario (en el sentido de las manecillas del reloj) o en sentido antihorario.
Los ángulos en las figuras planas
Las figuras planas poseen ángulos interiores y ángulos exteriores. Los ángulos interiores, como su nombre lo indica, se ubican en el interior de la figura, mientras que los exteriores se ubican entre un lado de la figura y el otro lado siguiente. Por ejemplo:
Cálculo de ángulos internos en triángulos
Los ángulos interiores de los triángulos siempre suman 180°. De manera que si conoces la medida de dos de sus ángulos internos puedes calcular la medida del tercero. Lo único que debes hacer es restar los valores de los ángulos conocidos a 180°. Por ejemplo:
– Calcula el valor del ángulo θ.
Como ya sabes, la sumas de los ángulos internos de un triángulo es igual a 180°, entonces, si restas los valores de los ángulos conocidos a 180° obtendrás el valor de Θ:
El valor del ángulo θ es 48°.
¿Sabías qué?
La suma de los ángulos externos de un triángulo es igual a 360°.
Cálculo de ángulos internos en cuadriláteros
En el caso de los cuadriláteros se cumple que la suma de sus cuatro ángulos internos siempre es igual a 360°. De acuerdo al tipo de cuadrilátero el valor del ángulo puede variar. Por ejemplo, en el caso del cuadrado y del rectángulo sus cuatro ángulos internos son iguales y miden 90°. En el caso del rombo y del romboide sus ángulos opuestos son iguales. Si el trapecio es rectángulo posee dos ángulos consecutivos que miden 90°. Si es isósceles tiene los ángulos adyacentes a la base mayor con la misma medida y si el trapecio es escaleno ninguno de sus ángulos mide lo mismo.
Los trapezoides son otro tipo de cuadrilátero con el valor de cada uno de sus ángulos internos diferentes. En resumen:
Figuras
Características
El cuadrado y el rectángulo tienen ángulos internos iguales y miden 90°.
El rombo tiene todos sus ángulos iguales (pero son agudos, es decir, menores a 90°).
El romboide presenta cada par de ángulos opuestos con la misma medida.
El trapecio rectángulo tiene dos ángulos rectos (miden 90° cada uno).
El trapecio isósceles presenta los ángulos adyacentes a la base mayor con la misma medida.
El trapecio escaleno presenta todos sus ángulos con diferente medida.
El trapezoide no posee ningún ángulo con la misma medida.
Para calcular ángulos en un cuadrilátero simplemente tenemos que restar los ángulos conocidos a 360°.
– Ejemplo:
Calcula el valor del ángulo ε de la siguiente figura.
El valor del ángulo ε es 115°.
¡A practicar!
1. ¿Qué tipo de ángulo observas?
a)
Solución
Ángulo obtuso.
b)
Solución
Ángulo llano.
c)
Solución
Ángulo recto.
d)
Solución
Ángulo agudo.
2. Calcula el valor del ángulo γ.
Solución
γ = 55°
3. Calcula el valor del ángulo θ.
Solución
θ = 70°
4. Calcula el valor del ángulo φ.
Solución
φ = 58°
5. Calcula el valor del ángulo β.
Solución
β = 105°
RECURSOS PARA DOCENTES
Artículo “Ángulos en triángulos. Resolución mediante ecuaciones”
El artículo explica los diferentes tipos de ángulos y cómo determinarlos a través de ecuaciones. También muestra una serie de ejemplos y ejercicios relacionados al tema.
El perímetro es el contorno de una figura geométrica. En el caso de los polígonos regulares, el perímetro lo calculamos al multiplicar la cantidad de sus lados por la longitud de uno de estos. Otra forma de calcular el perímetro es a través de la suma de cada uno de los lados de una figura. En cambio, el perímetro del círculo es igual a la multiplicación del número pi por el diámetro de la circunferencia. Existen también figuras compuestas que están formadas por dos o más figuras geométricas, para calcular su perímetro basta con sumar cada uno de los lados.
Ángulos
Uno de los elementos fundamentales para la geometría es el ángulo, el cual está formado por un par de semirrectas denominadas lados que tienen un origen común o vértice. Uno de los sistemas más usados para medir ángulos es el sistema sexagesimal, en el que medimos los ángulos en grados, minutos y segundos. De acuerdo a su tamaño, los ángulos pueden clasificarse en agudos, rectos, obtusos y llanos. Los agudos son mayores a 0° pero menores a 90°, los rectos miden 90°, los obtusos son mayores a 90° pero menores de 180° y los llanos miden siempre 180°.
Área
Para calcular superficies usamos el área, que es la extensión comprendida por una figura. Para cada figura plana existe una fórmula que permite determinar su área. En el Sistema Internacional de Unidades se emplea el metro cuadrado (m2) como unidad de medida de área, pero también podemos usar otras unidades derivadas, como el centímetro cuadrado (cm2) o el milímetro cuadrado (mm2). Podemos obtener el área de las figuras compuestas al descomponerlas en figuras geométricas más simples, para luego sumar las áreas de cada una.
Sistemas de referencia
Uno de los sistemas de referencias más usados es el sistema cartesiano, el cual está formado por dos ejes en el plano: uno horizontal denominado eje X o de las abscisas y otro vertical denominado eje Y o de las ordenadas. Para representar un punto en el plano cartesiano necesitamos sus coordenadas en el eje X y en el eje Y: la intersección de ambas coordenadas constituye su ubicación. Por otro lado, las figuras pueden experimentar transformaciones isométricas, es decir, cambios de posición y orientación que no afectan su forma. Estas transformaciones son: traslación, rotación y simetría.
Cuadriláteros
Un cuadrilátero es un polígono de cuatro lados, y aunque se pueden clasificar en varios grupos, comparten elementos en común: tienen cuatro ángulos, la suma de estos es siempre igual 360° y tienen dos diagonales que dividen al cuadrado en triángulos. De manera general, los cuadriláteros son clasificados como paralelogramos, trapecios y trapezoides. Los paralelogramos tienen sus lados opuestos paralelos y pueden ser cuadrados, rombos y rectángulos. Los trapecios tienen dos de sus lados paralelos y los trapezoides no tienen ningún lado paralelo.
Capacidad y volumen
El volumen es el espacio que ocupa un objeto mientras que la capacidad indica la cantidad que un objeto puede contener dentro de él. Todos los objetos tienen volumen pero no todos tienen capacidad. En el caso de los sólidos y los líquidos mientras mayor sea su volumen, mayor espacio van a ocupar. No es lo mismo el volumen de un grano de arroz que el de un edificio. Algunas unidades de volumen son el metro cúbico (m3), el centímetro cúbico (cm3) y milímetro cúbico (mm3), entre otras. El litro es una medida de capacidad que equivale a 1.000 cm3.
La circunferencia
La circunferencia es una curva plana con todos sus puntos ubicados a la misma distancia del origen o centro. No debe ser confundida con el círculo que corresponde al área contenida dentro de ella, es decir, la circunferencia es el perímetro del círculo. Presenta ciertos elementos como el radio, el diámetro, la tangente, la cuerda, el arco y la semicircunferencia. Uno de los instrumentos usados para su trazado es el compás.
Vemos cuadriláteros en todas partes: desde la cara de un dado hasta una hoja de papel. Estas figuras geométricas son polígonos de cuatro lados con múltiples aplicaciones en la geometría. Se caracterizan por su diversidad y de acuerdo a ciertos criterios se pueden clasificar como paralelogramos, trapecios y trapezoides.
Características de los cuadriláteros
La palabra “cuadrilátero” proviene del latín y quiere decir “que tiene cuatro lados”. Entonces, los cuadriláteros son polígonos con cuatro lados que forman entre sí cuatro ángulos. Estas características permiten clasificarlos en varios tipos.
Curiosidades de los cuadriláteros
1. Presentan cuatro lados, cuatro vértices y cuatro ángulos.
2. Todo cuadrilátero tiene dos diagonales.
3. Las dos diagonales del cuadrilátero dividen al mismo en cuatro triángulos.
4. También se denominan cuadrángulo y tetrágono (ambas hacen mención a sus cuatro ángulos y lados).
¿Sabías qué?
La suma de los ángulos interiores de cualquier cuadrilátero siempre es igual a 360°.
Un ángulo es la porción de plano comprendida entre dos semirrectas que tienen un origen común. Existen muchos tipos, algunos son:
Ángulo agudo: que tiene una amplitud menor a 90° pero mayor a 0°.
Ángulo recto: que tiene una amplitud igual a 90°.
Ángulo obtuso: que tiene una amplitud mayor a 90° pero menor a 180°.
Ángulo oblicuo: que no es recto. Los ángulos agudos y obtusos son ejemplo de ángulos oblicuos.
Clasificación de los cuadriláteros
La forma de un campo de fútbol no es igual a la forma de un campo de béisbol, pero en ambos casos hablamos de cuadriláteros. Este tipo de figuras se clasifica en tres grandes grupos: paralelogramos, trapecios y trapezoides.
Paralelogramos
Son cuadriláteros que presentan dos pares de lados paralelos. Los lados opuestos de todo cuadrilátero tienen la misma longitud. Se clasifican en:
Cuadrilátero
Nombre
Características
Cuadrado
– Todos sus lados son iguales.
– Sus ángulos internos son iguales y miden 90° (ángulo recto).
Rectángulo
– Sus lados contiguos (lados que están juntos) no son iguales, pero sus lados opuestos sí lo son.
– Sus ángulos interiores son iguales y miden 90° (ángulo recto).
Rombo
– Todos sus lados son iguales.
– Sus ángulos interiores son agudos (menores a 90°).
Romboide
– Sus lados contiguos son desiguales.
– Sus ángulos opuestos son iguales.
– De sus cuatro ángulos interiores siempre hay un par de ángulos mayor que el otro.
¿Sabías qué?
Los ángulos opuestos de un paralelogramo son congruentes, es decir, tienen la misma medida.
Trapecios
Son cuadriláteros en los que solo dos de sus lados son paralelos, estos lados son llamados bases y siempre hay una de mayor longitud, denominada base mayor; y otra de menor longitud, denominada base menor. Se clasifican en:
Cuadrilátero
Nombre
Características
Trapecio rectángulo
– Dos de sus ángulos interiores son iguales a 90°, es decir, son rectos.
Trapecio isósceles
– Sus lados no paralelos tienen la misma medida.
– Presentan dos ángulos agudos del mismo valor en una de las bases y dos ángulos obtusos del mismo valor sobre la otra base.
Trapecio escaleno
– Ninguno de sus lados tiene la misma longitud.
– Ninguno de sus ángulos es recto.
Trapezoides
Son cuadriláteros que no poseen ninguno de sus lados paralelos.
Cuadrilátero
Nombre
Características
Trapezoide
– Ninguno de sus lados consecutivos es igual.
Diagonales de los cuadriláteros
Las diagonales son los segmentos de rectas que unen el vértice de un ángulo con el vértice del ángulo opuesto no consecutivo. Todos los cuadriláteros tienen dos diagonales, pero sus características varían de acuerdo al tipo.
Paralelogramos
Las diagonales se cortan en el punto medio de ambas.
De acuerdo al tipo de paralelogramo las diagonales presentan estas características:
Cuadrado: sus diagonales son iguales y se cortan en ángulo recto.
Rombo: sus diagonales no son iguales pero se cortan en ángulo recto.
Rectángulo: sus diagonales tienen la misma longitud pero se cortan en un ángulo oblicuo.
Romboide: sus diagonales no son iguales y se cortan en un ángulo oblicuo.
Trapecios
Solo en los trapecios isósceles las diagonales son iguales, en los demás casos ambas diagonales son diferentes. En este tipo de figuras las diagonales siempre se cortan en un ángulo oblicuo.
Trapezoide
Los trapezoides presentan diagonales diferentes y oblicuas.
¿Dónde podemos observar cuadriláteros?
Si prestamos atención a nuestro entorno seguramente vamos a ver más cuadriláteros de los que imaginábamos: las baldosas del piso, el techo de la casa, las puertas y ventanas… Incontables objetos tienen forma de cuadriláteros.
Conocer los cuadriláteros tiene muchas aplicaciones. Por ejemplo, si deseamos encontrar el punto medio de un objeto cuadrado como un cartón, basta con trazar dos diagonales y ubicar su punto de intersección.
¡A practicar!
Responde las siguientes preguntas.
a) ¿Cuántas diagonales tienen los cuadriláteros?
Solución
Dos diagonales.
b) ¿Qué tipo de trapecio tiene dos ángulos rectos?
Solución
Trapecio rectángulo.
c) ¿Qué tipo de paralelogramo tiene las dos diagonales diferentes pero se cortan en ángulo recto?
Solución
El rombo.
d) ¿Qué cuadrilátero no presenta ningún lado paralelo?
Solución
El trapezoide.
2. Identifica si las siguientes figuras corresponden a un paralelogramo, trapecio o trapezoide.
a)
Solución
Trapezoide.
b)
Solución
Paralelogramo.
c)
Solución
Paralelogramo.
d)
Solución
Trapecio.
e)
Solución
Paralelogramo.
f)
Solución
Trapecio.
g)
Solución
Paralelogramo.
h)
Solución
Trapecio.
RECURSOS PARA DOCENTES
Artículo “Cuadriláteros”
Este artículo destacado describe los tipos de cuadriláteros y sus diferentes tipos y subtipos. También explica la importancia de reconocerlos y sus aplicaciones en la geometría y la publicidad.
Esta infografía permite comprender de manera ilustrada qué son los rectángulos y sus propiedades. También se enfoca en cómo construir este tipo de figura geométrica.