CAPÍTULO 1 / TEMA 5 (REVISIÓN)

SISTEMA DE NUMERACIÓN | ¿QUÉ APRENDIMOS?

ALGUNOS SISTEMAS DE NUMERACIÓN

Desde la Antigüedad, el hombre ha usado diversos sistemas con símbolos que le permiten contar. Algunos son no posicionales, como los números romanos; y otros son posicionales, como el sistema decimal, binario o sexagesimal. Los números romanos cuentan con solo siete símbolos, iguales a algunas letras de nuestro alfabeto. El sistema binario tiene base 2 y solo utiliza 2 cifras: el 1 y el 0. El sistema de numeración sexagesimal tiene como base el número 60. Y el sistema decimal, el que usamos normalmente, tiene como base el 10 y emplea diez dígitos: 0, 1, 2, 3, 4, 5, 6, 7, 8 y 9.

El sistema binario se considera fundamental en la computación. La base de este sistema son los números 0 y 1 y su combinación en cadena para generar algoritmos.

CONJUNTO DE LOS NÚMEROS ENTEROS

Este conjunto está conformado por los números naturales (\mathbb{N}), los enteros negativo (\mathbb{Z}^{-}) y el cero que es neutro. Este conjunto de números lo utilizamos, por ejemplo, para expresar alturas que se encuentran por encima y por debajo de un sistema de referencia, o bien para indicar temperaturas por encima y debajo del cero.

Las temperaturas por encima de cero se leen como números positivos, mientras que las que están por debajo de cero se leen como números negativos. Ejemplo, 20 ºC y −10 ºC.

CONJUNTO DE LOS NÚMEROS RACIONALES

El conjunto de los números racionales se denota con la letra \mathbb{Q} e incluye todas las fracciones, es decir, las divisiones de dos números enteros. Tienen gran utilidad cuando deseamos expresar partes de una totalidad, por ejemplo, cantidades de ingredientes en una receta (1/2 taza de harina) o porciones de pizza (3/4 de pizza).

Los gráficos circulares son visualmente muy útiles cuando deseamos expresar un número racional.

LOS NÚMEROS DECIMALES

Los números decimales constituyen un amplio grupo de números que incluyen al conjunto de números racionales (\mathbb{Q}) e irracionales (\mathbb{I}). Están conformados por una parte entera y una parte decimal separados por una coma o un punto. Los empleamos para expresar valores que se encuentran entre dos números consecutivos.

Los números decimales se aplican en la vida cotidiana y en el campo laboral. Muchas unidades monetarias son expresadas con números decimales para indicar precios, porcentajes, ventas, ganancias o pérdidas.

CAPÍTULO 5 / TEMA 2

Ángulos

Los ángulos están presentes en la mayoría de las figuras geométricas y en nuestra vida cotidiana. Se los considera indispensables para realizar cálculos trigonométricos y estudios en balística, arquitectura e ingeniería. De acuerdo a su amplitud, los ángulos se clasifican en varios tipos.

El ángulo y sus elementos principales

Un ángulo es una región del plano comprendida por dos semirrectas que tienen un origen en común. Los elementos de un ángulos son los siguientes:

  • Vértice: es el punto en común de las dos semirrectas.
  • Lados: son las dos semirrectas que conforman al ángulo.
  • Amplitud: es la medida de abertura de los lados de un ángulo. Esta medida usualmente se lee en grados sexagesimales.

¿Sabías qué?
Los ángulos suelen nombrarse con letras del alfabeto griego.

El sistema sexagesimal

Se usa principalmente para medir el tiempo y los ángulos. En este último caso, las unidades que emplea son grados, minutos y segundos. Al dividir un ángulo llano en 180 partes iguales, una de esas partes equivale a un grado (°). Si se divide un grado en sesenta partes iguales, una de esas partes equivale a un minuto (′). Y si el minuto se divide en 60 partes iguales, una de esas partes corresponde a un segundo (″). En resumen:

1° = 60′
1′ = 60″

Observa que este sistema emplea como base el número 60 y de ahí viene el origen de su nombre. El instrumento usado para su medición es el transportador.

VER INFOGRAFÍA

Clasificación de los ángulos

Los ángulos pueden clasificarse en:

  • Ángulo nulo: cuando mide 0°.
  • Ángulo agudo: cuando es mayor que 0° pero menor que 90°.
  • Ángulo recto: cuando mide exactamente 90°.
  • Ángulo obtuso: cuando es mayor de 90° pero menor que 180°.
  • Ángulo llano: cuando mide exactamente 180°.
  • Ángulo completo: cuando mide 360°.

Ángulos complementarios

Dos ángulos son complementarios si al ser sumados el resultado es igual a 90°. Al saber el valor de uno de los ángulos puedes calcular el valor del otro al restar 90° al ángulo conocido.

– Ejemplo:

Se tienen los ángulos complementarios α y β. El valor de β es de 35°. Calcula el valor de α.


Simplemente debes resolver la resta:

\boldsymbol{\alpha =90^{\circ}-\beta}

\boldsymbol{\alpha =90^{\circ}-35^{\circ}}

\boldsymbol{\alpha =55^{\circ}}

Por lo tanto el valor de α es 55°.

Ángulos suplementarios

Dos ángulos son suplementarios si al ser sumados el resultado es igual a 180°. Al igual que en el caso anterior puedes determinar el valor de un ángulo de este tipo si conoces el valor de otro y lo restas a 180°.

– Ejemplo:

Se tienen los ángulos suplementarios θ y δ. El valor de θ es de 160°. Calcular el valor de δ.

Resuelve la resta:

\boldsymbol{\delta =180^{\circ}-\theta}

\boldsymbol{\delta =180^{\circ}-160^{\circ}}

\boldsymbol{\delta =20^{\circ}}

El valor de δ es 2.

Medida de un ángulo

La medición de los ángulos se realiza a menudo a través de un transportador, el cual puede ser de dos tipos: circular o semicircular. El circular mide los 360° de la circunferencia y el semicircular mide los 180°. Ambos transportadores cuentan con una marca en el centro que se debe colocar en el vértice del ángulo a medir. El 0° de la escala debe coincidir con uno de los lados del ángulo y la lectura del ángulo sería la que indica el otro lado en la escala.

Los transportadores suelen presentar dos numeraciones que van en diferentes sentidos según se lea el ángulo: en sentido horario (en el sentido de las manecillas del reloj) o en sentido antihorario.

Existe el convencionalismo de que los ángulos que se miden en sentido horario se consideran positivos mientras que los que se leen en sentido antihorario se consideran negativos. En el ámbito matemático, el enfoque se orienta más a la abertura de los ángulos. Otro dato importante es que aunque los transportadores son útiles, existen otros instrumentos más precisos como el goniómetro.

Los ángulos en las figuras planas

Las figuras planas poseen ángulos interiores y ángulos exteriores. Los ángulos interiores, como su nombre lo indica, se ubican en el interior de la figura, mientras que los exteriores se ubican entre un lado de la figura y el otro lado siguiente. Por ejemplo:

Cálculo de ángulos internos en triángulos

Los ángulos interiores de los triángulos siempre suman 180°. De manera que si conoces la medida de dos de sus ángulos internos puedes calcular la medida del tercero. Lo único que debes hacer es restar los valores de los ángulos conocidos a 180°. Por ejemplo:

– Calcula el valor del ángulo θ.

Como ya sabes, la sumas de los ángulos internos de un triángulo es igual a 180°, entonces, si restas los valores de los ángulos conocidos a 180° obtendrás el valor de Θ:

\boldsymbol{\theta = 180^{\circ}-\alpha -\beta}
\boldsymbol{\theta = 180^{\circ}-65^{\circ} -67^{\circ}}
\boldsymbol{\theta = 48^{\circ}}

El valor del ángulo θ es 48°.

¿Sabías qué?
La suma de los ángulos externos de un triángulo es igual a 360°.

Cálculo de ángulos internos en cuadriláteros

En el caso de los cuadriláteros se cumple que la suma de sus cuatro ángulos internos siempre es igual a 360°. De acuerdo al tipo de cuadrilátero el valor del ángulo puede variar. Por ejemplo, en el caso del cuadrado y del rectángulo sus cuatro ángulos internos son iguales y miden 90°. En el caso del rombo y del romboide sus ángulos opuestos son iguales. Si el trapecio es rectángulo posee dos ángulos consecutivos que miden 90°. Si es isósceles tiene los ángulos adyacentes a la base mayor con la misma medida y si el trapecio es escaleno ninguno de sus ángulos mide lo mismo.

Los trapezoides son otro tipo de cuadrilátero con el valor de cada uno de sus ángulos internos diferentes. En resumen:

Figuras Características
El cuadrado y el rectángulo tienen ángulos internos iguales y miden 90°.
El rombo tiene todos sus ángulos iguales (pero son agudos, es decir, menores a 90°).

El romboide presenta cada par de ángulos opuestos con la misma medida.

El trapecio rectángulo tiene dos ángulos rectos (miden 90° cada uno).

 

El trapecio isósceles presenta los ángulos adyacentes a la base mayor con la misma medida.

 

El trapecio escaleno presenta todos sus ángulos con diferente medida.

El trapezoide no posee ningún ángulo con la misma medida.

Para calcular ángulos en un cuadrilátero simplemente tenemos que restar los ángulos conocidos a 360°.

– Ejemplo:

Calcula el valor del ángulo ε de la siguiente figura.

\boldsymbol{\varepsilon =360^{\circ}-\delta -\theta -\rho}

\boldsymbol{\varepsilon =360^{\circ}-88^{\circ} -77^{\circ} -80^{\circ}}

\boldsymbol{\varepsilon =115^{\circ}}

El valor del ángulo ε es 115°.

En los polígonos regulares los ángulos internos miden igual. Para calcular su valor se emplea la ecuación (n − 2) × 180°/n donde n es el número de lados que presenta el polígono. Por ejemplo, para un pentágono se sustituye la n por el número 5 que corresponde al número de sus lados y se obtiene que (5 − 2) × 180°/5 = 108°, lo que quiere decir que cada uno de los ángulos internos de un pentágono mide 108°.

¡A practicar!

1. ¿Qué tipo de ángulo observas?

a)

Solución
Ángulo obtuso.

b)

Solución
Ángulo llano.

c)

Solución
Ángulo recto.

d)

Solución
Ángulo agudo.

2. Calcula el valor del ángulo γ.


Solución
γ = 55°

3. Calcula el valor del ángulo θ.


Solución
θ = 70°

4. Calcula el valor del ángulo φ.

Solución
φ = 58°

5. Calcula el valor del ángulo β.

Solución
β = 105°

RECURSOS PARA DOCENTES

Artículo “Ángulos en triángulos. Resolución mediante ecuaciones”

El artículo explica los diferentes tipos de ángulos y cómo determinarlos a través de ecuaciones. También muestra una serie de ejemplos y ejercicios relacionados al tema.

VER

Artículo “Ángulos”

Este artículo plantea de forma resumida lo relacionado con los ángulos, como la manera de nombrarlos, su clasificación y el uso del transportador.

VER

Video “Tipo de triángulos según sus ángulos”

En el video se muestra la manera de clasificar los triángulos a partir de los ángulos y muestra ejemplos gráficos de cada uno de ellos.

VER

CAPÍTULO 5 / TEMA 2

Ángulos

El ángulo es uno de los elementos fundamentales para la geometría porque está presente en las figuras ¡Incluso las paredes de nuestras casas forman ángulos entre ellas! Se puede definir como la porción del plano que se encuentra delimitada por dos semirrectas que comparten el mismo origen. 

Tipos de ángulos

Antes de poder reconocer los diferentes tipos de ángulos es necesario comprender los elementos que los forman.

  • Lado: es cada una de las semirrectas que conforman el ángulo y que tienen un origen en común.
  • Vértice: es el punto común o de origen de los lados.

 

Sistema de medida

El sistema usado para medir ángulos se denomina sistema sexagesimal, su unidad de medida es el grado (°) y resulta de dividir un ángulo llano en 180 partes, cada una de ellas representa un grado. Para medidas más pequeñas se usa el minuto (′) y el segundo (′′). Se denomina sexagesimal porque cada unidad es 60 veces mayor que la siguiente y 60 veces inferior que la anterior. Es por ello que 1° = 60′ y 1′ = 60′′.

De acuerdo a su tamaño los ángulos se clasifican en:

  • Ángulo agudo: es aquel mayor a 0° pero menor a 90°.
  • Ángulo recto: es aquel que mide 90°.
  • Ángulo obtuso: es aquel cuya medida es mayor a 90°pero menor a 180°.
  • Ángulo llano: es aquel cuyo ángulo es igual a 180°.

VER INFOGRAFÍA

Medición de ángulos

Uno de los instrumentos más usados para medir ángulos es el transportador, este presenta una serie de marcas que indican los grados. El más común es el transportador semicircular el cual viene graduado en 180°. Sus partes fundamentales son:

Para medir un ángulo con el transportador debemos seguir los siguientes pasos:

  1. Ubicar el origen del transportador en el vértice del ángulo que se va a medir.
  2. Hacer coincidir uno de los lados del ángulo con la línea horizontal de la base.
  3. Leer el ángulo que corta el segundo lado. Si el ángulo está abierto hacia la izquierda se usa la escala externa, si está abierto hacia la derecha se usa la escala interna (de acuerdo al tipo de instrumento las escalas pueden invertirse).

¿Sabías qué?
El teodolito es un instrumento con mayor precisión que el transportador que permite medir grados, minutos y segundos.

Construcción de ángulos

Una de las formas de construir ángulos es a través de una regla y un transportador. Para ello debemos realizar los siguientes pasos:

1. Trazamos con ayuda de la regla una semirrecta que será más adelante uno de los lados del ángulo.

 

2. Ubicamos el origen del transportador en uno de los extremos de la semirrecta (este también será el origen del ángulo), de manera que el número cero de la escala coincida con el otro extremo.

 

3. Ubicamos en la escala el ángulo que deseamos construir, para este ejemplo queremos construir un ángulo de 40°.

 

4. Hacemos una marca en el punto donde leímos el ángulo deseado.

 

5. Unimos el origen con la lectura marcada, de esta forma construimos un ángulo agudo de 40°.

Además del transportador, otros instrumentos usados para construir ángulos son el compás y la escuadra. Esta última permite construir ángulos rectos. Disciplinas como la arquitectura hacen uso de los ángulos en sus diseños. La exactitud en las mediciones es importante porque de lo contrario muchas de las estructuras podrían sufrir daños y afectar a las personas.

 

Comparación de ángulos

Luego de conocer cómo funciona el sistema sexagesimal en la medición de ángulos, podemos concluir que los ángulos llanos son mayores que los obtusos, que los obtusos son mayores que los rectos y que estos últimos son mayores que los agudos.

De manera que cuando necesitemos comparar ángulos lo primero que debemos hacer es identificar qué tipo de ángulo es. En el caso de conocer los valores de los ángulos, realizamos la comparación de de los números de acuerdo a la cantidad que representan, es decir: un ángulo de 35° es mayor que uno de 20°, pero es menor que uno de 150°.

Los ángulos y el triángulo

Los ángulos son tan importantes que en sí mismos determinan un criterio de clasificación de los triángulos. En este sentido, los triángulos se clasifican en acutángulos, rectángulos y obtusángulos. Los triángulos acutángulos tienen todos sus ángulos internos agudos, los triángulos rectángulos tienen un ángulo recto y los otros dos agudos, los triángulos obtusángulos tienen un ángulo obtuso y los otros dos agudos. En los triángulos se cumple que la suma de sus ángulos internos siempre es igual 180°.

¡A practicar!

1. ¿A qué tipo de ángulo corresponde cada imagen?

a)

Solución
Ángulo recto.
b) 
Solución
Ángulo llano.
c) 
Solución
Ángulo obtuso.
d) 
Solución
Ángulo agudo.

2. ¿Cuál de los siguientes ángulos no es agudo?

a) 95°

b) 30°

c) 3°

d) 84°

Solución
a) 95°. No es agudo porque no es menor a 90°.

3. ¿Cuál de los siguientes ángulos no es obtuso?

a) 125°

b) 95°

c) 160°

d) 180°

Solución
d) 180°. No es obtuso porque es igual a 180°, los ángulos obtusos deben ser mayores a 90° y menores a 180°.

4. ¿Cuál de los siguientes ángulos es agudo?

a) 90°

b) 180°

c) 200°

d) 50°

Solución
d) 50°. Es agudo por ser menor a 90°.

RECURSOS PARA DOCENTES

Artículo “Ángulos”

El presente artículo profundiza más en los diferentes tipos de ángulos que existen según su medida, su posición y sus características.

VER

Video “Propiedades de los ángulos de los polígonos”

En el presente video se muestra de manera animada cómo varían los ángulos externos e internos de los principales polígonos regulares.

VER

Artículo “Ángulo”

Este artículo detalla los elementos y tipos de ángulos, su construcción y el uso del transportador. Al final se proponen una serie de ejercicios relacionados.

VER

 

CAPÍTULO 1 / TEMA 1

Algunos sistemas de numeración

Todas las sociedades, desde las prehistóricas hasta las modernas, han empleado técnicas para saber cantidades. Desde palos, piedras y marcas, hasta llegar a los símbolos actuales, todos los sistemas de numeración nos ayudan a una importarte y necesaria tarea diaria: contar.

Sistema decimal

Es un sistema de numeración posicional compuesto por diez símbolos o cifras llamados números arábigos: 1, 2, 3, 4, 5, 6, 7, 8, 9 y 0. Es el sistema que más se utiliza en la vida cotidiana.

Al ser posicional, cada cifra adquiere un valor relativo de acuerdo a la posición en que se encuentre: unidades, decenas y centenas. De este modo, cada dígito del número 333 tiene un valor distinto a pesar de ser el mismo.

Observa que 300 + 30 + 3 = 333

También puedes escribir el número 333 como 33310 por pertenecer a un sistema de base diez.

Hallar la respuesta a la pregunta ¿cuántos hay? ha sido la razón principal por la que el hombre desarrolló distintos métodos de recuento y dio origen al concepto de “número”. Nuestro sistema de numeración decimal permite no solo escribir de manera efectiva cantidades muy grandes, sino también cantidades muy pequeñas por medio de un posicionamiento visible.

Orden y clase

El sistema de numeración decimal tiene órdenes y clases. La unidad, la decena y la centena son el primero, segundo y tercer orden, respectivamente. Cada orden superior equivale a 10 unidades del orden anterior, es decir, una decena equivale a diez unidades y una centena equivale a 10 decenas.

1 U = 1 U

1 D = 10 U

1 C = 10 D = 100 U

Donde:

U: unidad

D: decena

C: centena

Cada grupo de tres órdenes representa una clase. Así, el número 94.256.328.100.079 tienen dígitos en distintas clases. Observa la tabla:

Este número se lee: “noventa y cuatro billones doscientos cincuenta y seis mil trescientos veintiocho millones cien mil setenta y nueve”.

Equivalencias

 

1 unidad = 1 unidad

1 decena = 10 unidades

1 centena = 100 unidades

1 unidad de mil (millar) = 1.000 unidades

1 decena de mil (millar) = 10.000 unidades

1 centena de mil (millar) = 100.000 unidades

1 unidad de millón = 1.000.000 unidades

1 decena de millón = 10.000.000 unidades

1 centena de millón = 100.000.000 unidades

1 unidad de millar de millón = 1.000.000.000 unidades

1 decena de millar de millón = 10.000.000.000 unidades

1 centena de millar de millón = 100.000.000.000 unidades

1 unidad de billón = 1.000.000.000.000 unidades

1 decena de billón = 10.000.000.000.000 unidades

1 centena de billón = 100.000.000.000.000 unidades

¡A practicar!

  • ¿Cuántas unidades equivalen a 15 centenas?
Solución

Si 1 centena = 100 unidades, entonces:

15\: C \times \frac{100\: U}{1\: C} = 1.500\: U

15 centenas equivalen a 1.500 unidades.

  • ¿Cuántas unidades equivalen a 3 decenas de millón?
Solución

Si 1 decena de millón = 10.000.000 unidades, entonces:

3\: DM \times \frac{10.000.000 \: U}{1\: DM}= 30.000.000\: U

También lo puedes representar así:

3\: DM \times \frac{10^{7} \: U}{1\: DM}= 3 \times 10^{7}\: U

3 decenas de millón equivalen a 30.000.000 unidades.

Sistema binario

Es un sistema de numeración posicional que está constituido solo por dos dígitos: 1 y 0. Este sistema utiliza como base el número 2. Un ejemplo de número binario es:

1000100101002

¿Sabías qué?
El sistema de numeración binario se encuentra con frecuencia en los algoritmos usados en las computadoras y otros equipos electrónicos, pues resulta más sencillo operar solo con los dígitos 0 y 1.
Los sistemas electrónicos emplean una lógica binaria, es decir, manejan la información en base a 0 y 1, donde cero (0) significa que no circula corriente y uno (1) significa que circula corriente. Las computadoras procesan y almacenan en cuestión de segundos gran cantidad de información escrita mediante este sistema.

¿Cómo convertir un número del sistema binario al sistema decimal?

Para transformar un número binario, como 1012, al sistema decimal debes seguir estos pasos:

1. Como el número tiene tres cifras, calcula las tres primeras potencias de 2. Inicia por 20 y escríbelas en orden decreciente.

22 = 4

21 = 2

20 = 1

2. Multiplica cada resultado por el dígito correspondiente al número binario. En este caso 1012.

4 x 1 = 4

2 x 0 = 0

1 x 1 = 1

3. Suma los productos. El resultado será el número en el sistema decimal.

4 + 0 + 1 = 5

Por lo tanto:

1012 = 510

¿Cómo convertir un número del sistema decimal al binario?

Para transformar un número del sistema decimal, como 2510, al sistema binario debes seguir estos pasos:

1. Divide el número sucesivamente entre 2 hasta que el cociente sea igual a 1.

2. Lee la cifra, de derecha a izquierda, de abajo hacia arriba. Ese es el número binario equivalente.

2510 = 110012

 

¡A practicar!

Transforma los siguiente números al sistema de numeración decimal o binario según sea el caso.

  • 11001002

Solución
En el sistema decimal es 10010.
  • 3610

Solución
En el sistema binario es 1001002.
  • 1110102

Solución
En el sistema decimal es 5810.

Sistema sexagesimal

Es un sistema de numeración posicional conformado por los mismos símbolos del sistema decimal: 1, 2, 3, 4, 5, 6, 7, 8, 9 y 0, pero a diferencia de este último, 60 unidades de un orden forman una unidad de orden superior. Sirve para medir los ángulos y el tiempo.

En el sistema sexagesimal se divide un grado en 60 partes iguales. Cada una de estas partes se llama minuto, y este, a su vez, se divide en otras 60 partes iguales para obtener segundos. Observa la equivalencia:

1 grado = 60 minutos = 3.600 segundos

La unidad de medida de los ángulos es el grado. Esta unidad es el resultado de dividir un ángulo llano (ángulo de 180°) en 180 partes iguales. Por lo general, se utiliza el transportador para medir la amplitud de ángulos. Cada línea en el transportador representa un grado, o lo que es igual, la 1 / 180 parte de un ángulo llano.

¿Cómo se miden los ángulos?

La unidad principal para medir los ángulos es el grado. Si queremos medirlos con mayor precisión utilizamos, además de los grados, los minutos y los segundos.

  • Un grado se escribe .
  • Un minuto se escribe 1′.
  • Un segundo se escribe 1”.

De este modo, 35° 22′ 36” se lee: “35 grados, 22 minutos y 36 segundos”.

Equivalencias

  • 1° = 60′
  • 1′ = 60″
  • 1° = 3.600″

Observa el esquema:

Por ejemplo, para convertir 17 grados a minutos solo debes multiplicar por 60.

17 x 60 = 1.020

17° = 1.020′

Entonces, 17 grados son iguales a 1.020 minutos.

Si quieres convertir esos 17 grados a segundos solo debes multiplicar por 3.600 (60 x 60).

17 x 3.600 = 61.200

17° = 61.200″

Así, 17 grados son iguales a 61.200 segundos.

Esta tabla muestra algunos ejemplos:

Grados (°) Minutos (‘) Segundos (“)
17 17 x 60 = 1.020 17 x 3.600 = 61.200
45 45 x 60 = 2.700 45 x 3.600 = 162.000
22 22 x 60 = 1.320 22 x 3.600 = 79.200

También puedes convertir todas las medidas de un ángulo si sumas sus partes. De esta manera, si quieres pasar a segundos la medida del ángulo 6° 9′ 52″, solo sigue estos pasos:

1. Convierte los grados a segundos. Para esto debes multiplicar por 3.600.

6° = 6 x 3.600 = 21.600″

2. Convierte los minutos a segundos. Para estos debes multiplicar por 60.

9′ = 9 x 60 = 540″

3. Como el resultado final debe ser en segundos, los segundos quedan iguales.

52″ = 52″

4. Suma todos los resultados, lo que es igual a:

6° 9′ 52″ = (6 x 3.600) + (9 x 60) + 52 = 22.192″

Pasa a segundos estas medidas de ángulos

  • 4° 35′ 17″
Solución
4° 35′ 17″ = (4 x 3.600) + (35 x 60) + 17 = 16.517″
  • 5° 8′ 45″
Solución
5° 8′ 45″ = (5 x 3.600) + (8 x 60) + 45 = 18.525″

¿Cómo se mide el tiempo?

Las unidades para medir el tiempo son diversas y van desde los milenios hasta los segundos. Para medir tiempos menores a un día usamos las horas, los minutos y los segundos.

  • 1 hora se escribe 1 h.
  • 1 minuto se escribe 1 min.
  • 1 segundo se escribe 1 s.
Equivalencias

  • 1 h = 60 min
  • 1 min = 60 s
  • 1 h = 3.600 s

Observa el esquema:

Por ejemplo, 3 horas, 20 minutos y 2 segundos se representan así: 3 h 20 min 2 s; y si deseas expresar todo en una sola unidad, como segundos, el procedimiento es similar al de los ángulos. Observa:

  1. 3 h = 3 x 3.600 = 10.800 s
  2. 20 min = 20 x 60 = 1.200 s
  3. 2 s = 2 s

Luego sumas todos los resultados, lo que es igual a:

3 h 20 min 2 s = (3 x 3.600) + (20 x 60) + 2 = 12.002 s

Pasa a segundos estas medidas de tiempo

  • 2 h 31 min 23 s

Solución
2 h 31 min 23 s = (2 x 3.600) + (31 x 60) + 23 = 9.083 s
  • 5 h 50 min 5 s

Solución
5 h 50 min 5 s = (5 x 3.600) + (50 x 60) + 5 = 21.005

Números romanos

Este sistema de numeración desarrollado en la Antigua Roma es no posicional y se caracteriza por usar siete letras mayúsculas del alfabeto latino.

En la actualidad, el sistema decimal es el más utilizado para realizar operaciones, aunque, los números romanos también puedes verlos en la vida cotidiana. Este sistema de numeración romano se utiliza para dar la hora en algunos relojes, nombrar siglos, papas y reyes; también se usa en la enumeración de tomos de libros, sagas de películas, leyes, reformas y lápidas conmemorativas.

Sin importar la posición que ocupe cada letra, esta siempre tendrá el mismo valor. No obstante, es de gran importancia seguir las reglas de escritura:

  • I, X, C y M no pueden escribirse más de tres veces consecutivas en un mismo número.
  • Un símbolo de menor valor ubicado a la derecha de otro de mayor valor, se suma.
  • Un símbolo de menor valor ubicado a la izquierda de otro de mayor valor, se resta.
  • V, L y D se permite escribirlos solamente una vez y no se pueden escribir a la izquierda de otro de mayor valor.
  • I solo puede colocarse a la izquierda de V o X.
  • X solo puede colocarse a la izquierda de L o C.
  • C únicamente se coloca a la izquierda de D o M.
  • Cuando el número supera el valor 3.999, se traza una línea horizontal sobre el número romano la cual multiplica su valor por mil.
  • Si se colocan dos rayas horizontales sobre un número romano, su valor se multiplica por un millón.

¿Cómo se convierte un número romano a número arábigo?

Para conocer qué cantidad corresponde a un número romano se deben aplicar las reglas antes mencionadas. Por ejemplo, si deseas saber el número arábigo correspondiente al número romano \overline{DCLXXIX}, sigue estos pasos:

1. Determina los valores de cada letra.

D = 500

C = 100

L = 50

X = 10

I = 1

2. Suma los valores de las letras a la derecha de otra de mayor valor.

DC = 500 + 100 = 600

LXX = 50 + 10 + 10 = 70

3. Resta los valores de las letras a la izquierda de otras de mayor valor.

IX = 10 − 1 = 9

4. Suma todos los resultados, y como el número tiene una barra, multiplica su valor por mil.

\overline{DCLXXIX} = (600 + 70 + 9) \times 1.000 = 679.000

¿Existen estos números?

  • VL

Solución
No. V no puede estar delante de un número de valor mayor como L. Para escribir el número 45 lo correcto es XLV.
  • LXXXXV

Solución
No. X solo puede escribirse un máximo de tres veces consecutivas en un número. Para escribir el número 95 lo correcto es XCV.

VER INFOGRAFÍA

¿Sabías qué?
El número cero (0) fue posterior al sistema de numeración romana, se originó con la creación de los números arábigos.
Ejercicios

1. ¿A cuántas unidades equivalen?

  • 2 unidades de millón.
Solución
2.000.000 unidades.
  • 5 centenas de mil.
Solución
500.000 unidades.
  • 4 decenas de billón.
Solución
40.000.000.000.000 unidades.

2) Indica orden y clase del número 3 en las siguientes cifras.

  • 32.512.874
Solución
Decena de millón.
  • 35.294
Solución
Decena de mil.
  • 953.812.549.798.400
Solución
Unidad de billón.

3) Transforma los siguientes números al sistema de numeración decimal o binario según sea el caso.

  • 11012
Solución
1310
  • 110002
Solución
2410 
  • 2310
Solución
101112

4) Convierte a segundos.

  • 1° 22′ 15”
Solución
4.935”
  • 2° 1′ 30”
Solución
7.290”
  • 35 min 3 s
Solución
2.103 s

5) Completa la siguiente tabla.

Solución

RECURSOS PARA DOCENTES

Enciclopedia “Matemáticas primaria”

El siguiente recurso le brindará nociones sobre los sistemas de numeración y una variedad de ejercicios prácticos para desarrollar el tema.

VER

Tarjetas educativas “Números romanos”

Estas tarjetas le brindarán una herramienta pedagógica mediante imágenes para la enseñanza del tema.

VER