Desde la elaboración de planos y dibujos a escalas en hojas cuadriculadas, hasta la localización de estrellas en la galaxia, la unión de rectas perpendiculares nos ayuda a distinguir la posición de cualquier objeto. Una cuadrícula es un sistema de coordenadas compuesto por líneas perpendiculares verticales y horizontales, que funciona como sistema de referencias y permite ubicar elementos en un espacio definido. El conjunto de líneas horizontales y verticales, también llamadas ejes, suelen nombrarse con números y letras.
TIPOS DE LÍNEAS
Las líneas son un conjunto de puntos ubicados uno junto al otro que generan un trazo continuo. Si los puntos están orientados en una misma dirección, entonces, forman una línea recta. Las líneas rectas son continuas e infinitas, no tienen ni principio ni final y se pueden clasificar según la forma en que interaccionan entre ellas en rectas paralelas (aquellas que nunca se cortan), rectas secantes perpendiculares (aquellas que se cortan formando ángulos rectos) y rectas secantes oblicuas (aquellas que se cortan sin formar ángulos rectos).
LOS ÁNGULOS Y SUS TIPOS
Un ángulo es una porción del plano delimitado por dos semirrectas. Cada semirrecta es uno de los lados del ángulo y coinciden en un punto de origen al que se denomina vértice. A la distancia entre lado y lado del ángulo se la denomina amplitud, y esta se mide en grados (°). Si queremos medir o trazar un ángulo es indispensable el uso del transportador. Según su amplitud, un ángulo puede ser convexo, cóncavo, nulo, completo, llano, agudo, recto u obtuso.
LOS TRIÁNGULOS
Los triángulos son polígonos regulares cerrados de tres lados, tres ángulos y tres vértices. Los ángulos interiores de un triángulo siempre suman 180° y los ángulos exteriores suman 360°. Son varios los criterios de clasificación que permiten agrupar a los triángulos de acuerdo a ciertas particularidades, los más utilizados son: la medida de sus lados y la medida de sus ángulos. Según la medida de sus lados, los triángulos se clasifican en equiláteros, isósceles y escalenos; mientras que, según la medida de sus ángulos se clasifican en acutángulo, obtusángulo y rectángulo.
CUADRILÁTEROS
Los cuadriláteros tienen cuatro lados, cuatro ángulos internos, cuatro ángulos externos, cuatro vértices y dos diagonales. Estos se clasifican en paralelogramos, trapecios y trapezoides. Los paralelogramos son aquellos cuadriláteros que poseen dos pares de lados opuestos paralelos y que comparten algunas propiedades específicas; los trapecios, por su parte, son figuras que presentan un par de lados opuestos paralelos a los que se suele denominar base; y los trapezoides son aquellos cuyos lados no son paralelos.
POLIEDROS
Los poliedros son cuerpos geométricos tridimensionales con caras planas formados por polígonos. Cada una de las caras de un poliedro es un polígono (triángulo, cuadrado, rombo, etc.). Los poliedros pueden ser regulares cuando sus caras están compuestas por el mismo polígono regular; o irregulares si sus caras presentan diferentes formas. En estos poliedros el número de caras no presenta límites como ocurre con los poliedros regulares y se dividen en prismas (tienen dos bases) y pirámides (tienen una sola base).
Es posible que identifiques diversas figuras geométricas al observar el mundo que te rodea y los objetos presentes en él. La mayoría de estas figuras están compuestas por semirrectas unidas por un punto en común, es decir, un vértice. Esa porción del plano delimitada por dos semirrectas que nacen de un mismo punto se conoce como ángulo y según su medida puede ser de distintos tipos.
¿qué es un ángulo?
Es una porción del plano delimitada por dos semirrectas, las cuales también son llamadas lados. Ambos lados coinciden en un punto de origen o vértice. La abertura de un lado con respecto al otro es la que denominamos ángulo.
Con una letra griega, por ejemplo α y se lee “ángulo alpha”. En esta imagen vemos un ángulo α = 52,13°.
Con los puntos correspondientes a las semirrectas que lo constituyen y al vértice. Estos puntos se nombran mediante letras, por ejemplo, en la imagen vemos el ángulo AOB.
CLASIFICACIÓN DE LOS ÁNGULOS
Los ángulos se clasificar según tres criterios diferentes: su medida, su posición y la suma de sus medidas con otros ángulos.
¿Sabías qué?
Los ángulos se miden en grados (°).
Ángulos según su medida
Ángulo completo: tiene una amplitud de 360°, significa que es un giro completo.
Ángulo nulo: tiene una amplitud de 0°.
Ángulo llano: tiene una amplitud de 180°, podrás verlo representado como una línea recta.
Ángulo cóncavo: tiene una amplitud mayor que 180° pero menor que 360°.
Ángulo convexo: tiene una amplitud menor que 180°.
Dentro de los ángulos convexos encontramos otras clasificaciones:
Ángulos rectos: miden 90°.
Ángulos obtusos: miden más de 90°.
Ángulos agudos: miden menos de 90°.
Ángulos según su posición
Según su posición los ángulos pueden ser:
Adyacentes: son aquellos que tienen el vértice y un lado en común. Al sumar las amplitudes de cada uno de ellos el resultado será 180°.
Consecutivos: son aquellos que comparten tanto el vértice como uno de sus lados.
Opuestos por el vértice: son aquellos que solo tienen el vértice en común.
Ángulos según la suma de su medida con otros ángulos
Los ángulos también pueden clasificarse según el resultado obtenido al sumar la medida de la amplitud de un ángulo con la de otro ángulo, así sabrás que:
Un ángulo es suplementario con otro si la suma de sus amplitudes da como resultado un ángulo de 180°.
Un ángulo es complementario con otro si la suma de sus amplitudes da como resultado un ángulo de 90°.
MEDICIÓN DE ÁNGULOS
Por lo general, la medición de los ángulos se realiza por medio de un transportador.
¿Qué es un transportador?
Es un instrumento geométrico que puede tener una forma circular o semicircular y se utiliza para medir gráficamente un ángulo así como para construirlo. Cuenta con graduaciones o marcas iguales que sirven de escala para identificar la medida del ángulo. Los transportadores circulares están divididos en 360 partes iguales, mientras que los semicirculares están divididos en 180 partes iguales. Cada una de estas partes representa un grado (1°) .
Para medir un ángulo con transportador seguimos estos pasos:
1. Identificamos el vértice, es decir, el punto del que nacen las semirrectas y hacemos que coincida con el centro del transportador.
2. Verificamos que el cero (0) en el transportador esté justo sobre uno de los lados del ángulo.
3. Observamos el valor que marca el otro lado que pasa por la escala graduada. En este caso, la medida del ángulo â = 165°.
¿Sabías qué?
Los transportadores tienen escalas graduadas dobles: una va en sentido de las manecillas del reloj y las otra en sentido contrario. Siempre debes recordar comenzar a medir a partir del cero.
LOS ÁNGULOS EN LAS FIGURAS GEOMÉTRICAS
Las figuras geométricas planas poseen ángulos interiores, ubicados dentro de la figuras; y ángulos exteriores, ubicados entre un lado de la figura y el otro lado siguiente.
Los ángulos interiores de los triángulos siempre suman 180°. Según sus ángulos los triángulos pueden ser:
Nombre
Figura
Características
Triángulo rectángulo
Tiene un ángulo recto (90°).
Triángulo acutángulo
Tiene todos sus ángulos agudos (menores a 90°).
Triángulo obtusángulo
Tiene un ángulo obtuso (mayores a 90° pero menores a 180°).
Ángulos interiores de los cuadriláteros
En el caso de los cuadriláteros, la suma de sus cuatro ángulos internos siempre es igual a 360°. De acuerdo al tipo de cuadrilátero el valor del ángulo puede variar. Su clasificación es la siguiente:
Nombre
Figura
Característica
Cuadrado
Tiene cuatro ángulos rectos (90°).
Rectángulo
Tiene cuatro ángulos rectos (90°).
Rombo
Tiene ángulos opuestos iguales.
Romboide
Tiene ángulos opuestos iguales.
Trapecio rectángulo
Tiene dos ángulos rectos (90°).
Trapecio isósceles
Los dos ángulos de la base menor son iguales. Los dos ángulos de la base mayor son iguales.
Trapecio escaleno
Todos sus ángulos son diferentes.
¿Sabías qué?
La palabra “geometría” viene de geo que significa “Tierra”, y de metría que significa “medir”.
Ángulos internos de polígonos regulares
Los polígonos regulares son aquellos que tienen todos sus ángulos internos iguales. Para calcular su valor se emplea la ecuación (n − 2) × 180°/n donde n es el número de lados que tiene el polígono. Por ejemplo, para un hexágono se sustituye la n por el número 6 que corresponde al número de sus lados y obtenemos que (6 − 2) × 180°/6 = 120°, lo que quiere decir que cada uno de los ángulos internos de un hexágono mide 120°.
¡A practicar!
1. Observa los ángulos entre estas rectas. Completa la tabla con los ángulos solicitados.
Tipo de ángulo
Nombre del ángulo
Recto
Ángulo α
Agudo
Obtuso
Complementario
Suplementario
Adyacente
Solución
Tipo de ángulo
Nombre del ángulo
Recto
Ángulo α
Agudo
Ángulo β
Obtuso
Ángulo GOC
Complementario
Ángulos BOE y EOC
Suplementario
Ángulos EOG y GOF
Adyacente
Ángulos AOC y COB
2. Calcula los ángulos complementarios y suplementarios para los siguientes ángulos:
β = 50°
Solución
Ángulo complementario = 40° porque 50° + 40° = 90°.
Ángulo suplementario = 130° porque 50° + 130° = 180°.
γ = 15°
Solución
Ángulo complementario = 75° porque 15° + 75° = 90°.
Ángulo suplementario = 165° porque 15° + 165° = 180°.
δ = 75°
Solución
Ángulo complementario = 15° porque 75° + 15 = 90°.
Ángulo suplementario = 105° porque 75° + 105° = 180°.
RECURSOS PARA DOCENTES
Artículo “Ángulos”
En el siguiente artículo encontrarás información sistematizada sobre las diferentes clasificaciones de los ángulos.
Los ángulos están presentes en la mayoría de las figuras geométricas y en nuestra vida cotidiana. Se los considera indispensables para realizar cálculos trigonométricos y estudios en balística, arquitectura e ingeniería. De acuerdo a su amplitud, los ángulos se clasifican en varios tipos.
El ángulo y sus elementos principales
Un ángulo es una región del plano comprendida por dos semirrectas que tienen un origen en común. Los elementos de un ángulos son los siguientes:
Vértice: es el punto en común de las dos semirrectas.
Lados: son las dos semirrectas que conforman al ángulo.
Amplitud: es la medida de abertura de los lados de un ángulo. Esta medida usualmente se lee en grados sexagesimales.
¿Sabías qué?
Los ángulos suelen nombrarse con letras del alfabeto griego.
El sistema sexagesimal
Se usa principalmente para medir el tiempo y los ángulos. En este último caso, las unidades que emplea son grados, minutos y segundos. Al dividir un ángulo llano en 180 partes iguales, una de esas partes equivale a un grado (°). Si se divide un grado en sesenta partes iguales, una de esas partes equivale a un minuto (′). Y si el minuto se divide en 60 partes iguales, una de esas partes corresponde a un segundo (″). En resumen:
1° = 60′
1′ = 60″
Observa que este sistema emplea como base el número 60 y de ahí viene el origen de su nombre. El instrumento usado para su medición es el transportador.
Ángulo agudo: cuando es mayor que 0° pero menor que 90°.
Ángulo recto: cuando mide exactamente 90°.
Ángulo obtuso: cuando es mayor de 90° pero menor que 180°.
Ángulo llano: cuando mide exactamente 180°.
Ángulo completo: cuando mide 360°.
Ángulos complementarios
Dos ángulos son complementarios si al ser sumados el resultado es igual a 90°. Al saber el valor de uno de los ángulos puedes calcular el valor del otro al restar 90° al ángulo conocido.
– Ejemplo:
Se tienen los ángulos complementarios α y β. El valor de β es de 35°. Calcula el valor de α.
Simplemente debes resolver la resta:
Por lo tanto el valor de α es 55°.
Ángulos suplementarios
Dos ángulos son suplementarios si alser sumados el resultado es igual a 180°. Al igual que en el caso anterior puedes determinar el valor de un ángulo de este tipo si conoces el valor de otro y lo restas a 180°.
– Ejemplo:
Se tienen los ángulos suplementarios θ y δ. El valor de θ es de 160°. Calcular el valor de δ.
Resuelve la resta:
El valor de δ es 20°.
Medida de un ángulo
La medición de los ángulos se realiza a menudo a través de un transportador, el cual puede ser de dos tipos: circular o semicircular. El circular mide los 360° de la circunferencia y el semicircular mide los 180°. Ambos transportadores cuentan con una marca en el centro que se debe colocar en el vértice del ángulo a medir. El 0° de la escala debe coincidir con uno de los lados del ángulo y la lectura del ángulo sería la que indica el otro lado en la escala.
Los transportadores suelen presentar dos numeraciones que van en diferentes sentidos según se lea el ángulo: en sentido horario (en el sentido de las manecillas del reloj) o en sentido antihorario.
Los ángulos en las figuras planas
Las figuras planas poseen ángulos interiores y ángulos exteriores. Los ángulos interiores, como su nombre lo indica, se ubican en el interior de la figura, mientras que los exteriores se ubican entre un lado de la figura y el otro lado siguiente. Por ejemplo:
Cálculo de ángulos internos en triángulos
Los ángulos interiores de los triángulos siempre suman 180°. De manera que si conoces la medida de dos de sus ángulos internos puedes calcular la medida del tercero. Lo único que debes hacer es restar los valores de los ángulos conocidos a 180°. Por ejemplo:
– Calcula el valor del ángulo θ.
Como ya sabes, la sumas de los ángulos internos de un triángulo es igual a 180°, entonces, si restas los valores de los ángulos conocidos a 180° obtendrás el valor de Θ:
El valor del ángulo θ es 48°.
¿Sabías qué?
La suma de los ángulos externos de un triángulo es igual a 360°.
Cálculo de ángulos internos en cuadriláteros
En el caso de los cuadriláteros se cumple que la suma de sus cuatro ángulos internos siempre es igual a 360°. De acuerdo al tipo de cuadrilátero el valor del ángulo puede variar. Por ejemplo, en el caso del cuadrado y del rectángulo sus cuatro ángulos internos son iguales y miden 90°. En el caso del rombo y del romboide sus ángulos opuestos son iguales. Si el trapecio es rectángulo posee dos ángulos consecutivos que miden 90°. Si es isósceles tiene los ángulos adyacentes a la base mayor con la misma medida y si el trapecio es escaleno ninguno de sus ángulos mide lo mismo.
Los trapezoides son otro tipo de cuadrilátero con el valor de cada uno de sus ángulos internos diferentes. En resumen:
Figuras
Características
El cuadrado y el rectángulo tienen ángulos internos iguales y miden 90°.
El rombo tiene todos sus ángulos iguales (pero son agudos, es decir, menores a 90°).
El romboide presenta cada par de ángulos opuestos con la misma medida.
El trapecio rectángulo tiene dos ángulos rectos (miden 90° cada uno).
El trapecio isósceles presenta los ángulos adyacentes a la base mayor con la misma medida.
El trapecio escaleno presenta todos sus ángulos con diferente medida.
El trapezoide no posee ningún ángulo con la misma medida.
Para calcular ángulos en un cuadrilátero simplemente tenemos que restar los ángulos conocidos a 360°.
– Ejemplo:
Calcula el valor del ángulo ε de la siguiente figura.
El valor del ángulo ε es 115°.
¡A practicar!
1. ¿Qué tipo de ángulo observas?
a)
Solución
Ángulo obtuso.
b)
Solución
Ángulo llano.
c)
Solución
Ángulo recto.
d)
Solución
Ángulo agudo.
2. Calcula el valor del ángulo γ.
Solución
γ = 55°
3. Calcula el valor del ángulo θ.
Solución
θ = 70°
4. Calcula el valor del ángulo φ.
Solución
φ = 58°
5. Calcula el valor del ángulo β.
Solución
β = 105°
RECURSOS PARA DOCENTES
Artículo “Ángulos en triángulos. Resolución mediante ecuaciones”
El artículo explica los diferentes tipos de ángulos y cómo determinarlos a través de ecuaciones. También muestra una serie de ejemplos y ejercicios relacionados al tema.
Gracias al estudio de la geometría y la trigonometría, la humanidad evolucionó de tal manera que logró edificar ciudades, construir herramientas y diseñar su vestimenta; y los ángulos son parte de esto. Si observamos a nuestro alrededor todos los objetos tienen algún tipo de ángulo.
¿Qué es un ángulo?
Un ángulo es la porción comprendida entre dos semirrectas con un origen en común llamado vértice.
Tipos de ángulos
La clasificación de los ángulos dependerá por un lado de sus medidas y por el otro de sus posiciones.
Según sus medidas un ángulo puede ser:
Convexo: es el que mide menos de 180°.
Nulo: es que el que no tiene amplitud, mide 0°.
Agudo: es el que mide menos de 90°.
Recto: es el que mide 90°.
Obtuso: es el que mide más de 90° y menos de 180°.
Cóncavo: es el que mide más de 180°.
Llano: es el que mide 180°.
Completo: es el que mide 360°.
¿Sabías qué?
Los ángulos agudos, rectos y obtusos están dentro de la clasificación de ángulos convexos.
Según su posición, dos ángulos pueden ser:
Adyacentes: tienen un lado y un vértice en común. La suma de sus ángulos suma 180°.
Consecutivos: tienen un lado y un vértice en común.
Opuestos por el vértice: tienen en común solamente el vértice.
Los egipcios fueron los primeros en establecer la medida de los ángulos en grados, minutos y segundos.
¡Encuentra los ángulos!
Observa la siguiente imagen:
¿Qué tipos de ángulos encuentras en la casa?
Solución
Agudos, rectos y obtusos.
¿Dónde encontraste los ángulos agudos?
Solución
En el triángulo de la chimenea y en la unión de la pared con el techo.
¿Dónde encontraste los ángulos rectos?
Solución
En la puerta, en las ventanas y en la unión del suelo con las paredes.
¿Dónde encontraste los ángulos obtusos?
Solución
En el techo.
La vuelta del Sol
En la Antigüedad, los babilonios hicieron varios estudios sobre los astros porque creían que en ellos estaba escrito el futuro. Tras observar el cielo, consideraban que el Sol tardaba 360 días en volver a estar en la misma posición. Por esto decidieron dividir la circunferencia en 360 partes iguales. Llamamos grado a cada una de las 360 partes iguales en la que dividimos a un ángulo completo.
elementos de los ángulos
Como ya vimos, un ángulo es el espacio que existe entre dos semirrectas que parten desde un mismo punto. Los elementos que componen al ángulo son los siguientes:
Lado: es lo que antes llamábamos semirrecta.
Vértice: es el punto en el que coinciden las dos semirrectas.
Amplitud: es la apertura que hay entre los dos lados. Medimos la amplitud en grados y usamos un transportador para eso.
Transportador
El transportador es el instrumento que nos permite medir y construir un ángulo gráficamente. Por lo general son de plástico y poseen una forma circular o semicircular. Para utilizarlo apoyamos el centro del semicírculo en el vértice del ángulo, hacemos coincidir uno de los lados con el 0° y el otro lado del ángulo marcará la abertura en el punto del semicírculo graduado.
Estimación de ángulos
Para conocer la medida exacta de un ángulo se usa el transportador, pero también podemos estimar su valor. Para esto podemos usar como referencia medidas ya conocidas, como el ángulo de 45° y el ángulo de 90°; y así poder saber una medida aproximada del ángulo.
Escuadra y estimación
La escuadra es una herramienta de geometría que podemos utilizar para estimar ángulos, pues posee un ángulo de 90° como se observa en la imagen. El ángulo de 45° se obtiene de dividir a la mitad el ángulo de 90°. En la última escuadra vemos la estimación de un ángulo de 30° y otro de 80°. Para aproximar usamos las referencias de los ángulos conocidos. La abertura del ángulo de 30° es más pequeña que la de 45°, por eso el ángulo es menor. Lo mismo nos pasa con el ángulo de 80°, su apertura es menor que 90°.
Cuando un ángulo es mayor que 90°, uno de los lados del ángulo quedará a la izquierda de la escuadra. Veamos un ejemplo:
¡Estima medidas!
Estima las medidas de los ángulos marcados:
¿Cuánto estimas que mide el ángulo del objeto A?
Solución
Como la abertura es más pequeña que 45°, pero más grande que 0°, podemos decir que mide aproximadamente 30°.
¿Cuánto estimas que mide el ángulo objeto B?
Solución
Como la abertura es un poco más pequeña que 90°, pero mayor a 45°, podemos decir que mide aproximadamente 60°.
¿Cuánto estimas que mide el ángulo del objeto C?
Solución
Mide 90°.
¿Cuánto estimas que mide el ángulo del objeto D?
Solución
Como la abertura es mayor a los 90°, pero está lejos de llegar a 180°, podemos decir que mide aproximadamente 120°.
¿Cuánto estimas que mide el ángulo del objeto E?
Solución
Como la abertura es un poco más pequeña que 90°, pero mayor a 45°, podemos decir que mide aproximadamente 75°.
RECURSOS PARA DOCENTES
Artículo “Ángulos”
Este recurso le permitirá profundizar la información sobre los ángulos y su clasificación.