CAPÍTULO 4 / TEMA 5

CONSTRUCCIÓN DE FIGURAS GEOMÉTRICAS

¿QUÉ FORMA TIENE UNA HOJA DE TU CUADERNO? ¿Y UNA LATA DE GASEOSA? LA PRIMERA ES UN RECTÁNGULO Y LA SEGUNDA ES UN CILINDRO. AMBAS SON FIGURAS GEOMÉTRICAS Y PUEDES DIBUJARLAS O CONSTRUIRLAS SI UTILIZAS LOS INSTRUMENTOS ADECUADOS. ES MUY SENCILLO, LEE ESTE ARTÍCULO Y APRENDERÁS CÓMO HACERLO. 

¿QUÉ SON LAS FIGURAS GEOMÉTRICAS?

LAS FIGURAS GEOMÉTRICAS SON TODAS AQUELLAS QUE ESTÁN DEFINIDAS POR LÍNEAS RECTAS O CURVAS. PUEDEN TENER DOS O TRES DIMENSIONES Y ADEMÁS CONFORMAN LA SUPERFICIE DE LA MAYORÍA DE LOS OBJETOS QUE NOS RODEAN, POR EJEMPLO, LA PANTALLA DE UN TELÉFONO TIENE FORMA DE RECTÁNGULO Y UNA PELOTA TIENE FORMA DE ESFERA.

LAS FIGURAS GEOMÉTRICAS PLANAS O CON DOS DIMENSIONES SON:

CUADRADO

 

TRIÁNGULO

CÍRCULO

RECTÁNGULO

 

LAS FIGURAS GEOMÉTRICAS TRIDIMENSIONALES O CON TRES DIMENSIONES SON:

CUBO

PRISMA RECTANGULAR

PIRÁMIDE

CONO

CILINDRO

ESFERA

¿QUÉ ES UNA LÍNEA?

UNA LÍNEA ES LA UNIÓN DE MUCHOS PUNTOS CONTINUOS EN EL PLANO. PUEDEN SER ABIERTAS, CERRADAS, RECTAS O CURVAS.

  • LA LÍNEA DE COLOR AZUL ES RECTA Y ABIERTA.
  • LA LÍNEA DE COLOR AMARILLO ES CURVA Y ABIERTA.
  • LA LÍNEA DE COLOR VERDE ES RECTA Y CERRADA.
  • LA LÍNEA DE COLOR ROJO ES CURVA Y CERRADA.

¿SABÍAS QUÉ?
A LAS FIGURAS TRIDIMENSIONALES TAMBIÉN SE LAS CONOCE COMO SÓLIDOS GEOMÉTRICOS.

INSTRUMENTOS PARA CONSTRUIR FIGURAS GEOMÉTRICAS

REGLA

ES UN INSTRUMENTO PLANO Y LARGO QUE SIRVE PARA TRAZAR LÍNEAS RECTAS Y PARA MEDIR LONGITUDES. POR LO GENERAL VIENE CON MARCAS QUE REPRESENTAN LOS CENTÍMETROS. CON UNA REGLA PUEDES TRAZAR LAS RECTAS DE UN CUADRADO O UN RECTÁNGULO.

ESCUADRA Y CARTABÓN

LA ESCUADRA ES UNA PLANTILLA CON FORMA DE TRIÁNGULO RECTÁNGULO ISÓSCELES. SE USA PARA TRAZAR LÍNEAS PARALELAS O PERPENDICULARES JUNTO CON EL CARTABÓN O LA REGLA GRADUADA. EN LA IMAGEN, LA ESCUADRA ES LA DE COLOR ROJO Y EL CARTABÓN ES EL DE COLOR AZUL.

TRANSPORTADOR

ES UN INSTRUMENTO CIRCULAR O SEMICIRCULAR QUE SIRVE PARA MEDIR ÁNGULOS. ES DE MUCHA AYUDA CUANDO DIBUJAMOS TRIÁNGULOS SEGÚN SUS ÁNGULOS.

COMPÁS

ES UN INSTRUMENTO DE GRAN UTILIDAD PARA DIBUJAR CIRCUNFERENCIAS. TIENE DOS PARTES QUE SE UNEN POR UNA BISAGRA AJUSTABLE. UNA PUNTA TIENE UN EXTREMO DE METAL Y LA OTRA TIENE UN LÁPIZ CON EL CUAL SE HACE EL DIBUJO.

CONSTRUCCIÓN DE FIGURAS EN LO COTIDIANO

LA CONSTRUCCIÓN DE FIGURAS GEOMÉTRICAS ES FUNDAMENTAL PARA LOS ARQUITECTOS E INGENIEROS, QUIENES ELABORAN PLANOS QUE MUESTRAN LOS DETALLES DE UNA OBRA EN UN PAPEL. ASIMISMO, GRANDES ARTISTAS DE LA HISTORIA HAN PRODUCIDO INCREÍBLES CREACIONES EN LAS QUE TOMAN LAS FIGURAS GEOMÉTRICAS COMO BASE.

KANDINSKI FUE UN PINTOR RUSO DESTACADO EN EL ARTE ABSTRACTO. EN SU TRABAJO RESALTAN LOS COLORES VIVOS Y LA ABUNDANCIA DE FIGURAS GEOMÉTRICAS COMO LOS TRIÁNGULOS, CUADRADOS Y CÍRCULOS. EN 1913 CREÓ ESTA OBRA LLAMADA ESTUDIO DE COLOR CON CUADROS EN LA QUE PUEDES VER CÍRCULOS UNO DENTRO DE OTRO, CADA UNO DE UN COLOR DIFERENTE.

¡CONSTRUYE TUS PROPIAS FIGURAS!

CON ESTAS PLANTILLAS PUEDES CREAR FIGURAS TRIDIMENSIONALES. SOLO TIENES QUE COPIAR LA PLANTILLA, CORTAR Y PEGAR SUS LADOS. ¡INTÉNTALO!

CILINDRO

CONO

CUBO

PIRÁMIDE

PRISMA RECTANGULAR

 

¡A PRACTICAR!

1. ¿CÓMO SE LLAMAN ESTOS INSTRUMENTOS?

SOLUCIÓN
TRANSPORTADOR.

SOLUCIÓN
REGLA.

SOLUCIÓN
ESCUADRA.

SOLUCIÓN
COMPÁS.

SOLUCIÓN
CARTABÓN.

 

2. UNE LOS PUNTOS DEL MISMO COLOR EN ESTA CUADRÍCULA. UTILIZA TU REGLA O COMPÁS PARA CREAR LAS FIGURAS.

  • LOS PUNTOS VERDES FORMAN UN TRIÁNGULO.
  • LOS PUNTOS ROJOS FORMAN UN CUADRADO.
  • LOS PUNTOS AZULES FORMAN UN RECTÁNGULO.
  • EL PUNTO AMARILLO ES EL CENTRO DE UN CÍRCULO.

SOLUCIÓN

 

CAPÍTULO 5 / TEMA 6

Aplicación de la geometría

La geometría se encuentra inmersa dentro de diferentes ciencias y situaciones de la vida. Muchos desarrollos de la actualidad no se habrían logrado sin los aportes de la geometría. La astronomía, la computación y la cartografía son algunos de los muchos campos donde la geometría es empleada. 

Cálculo de área de una superficie

Para el cálculo de superficies usamos las fórmulas de área de las principales figuras geométricas. Las principales fórmulas son las siguientes:

Nombre Figura Área
Cuadrado \boldsymbol{A = l^{2}}

 

Donde:

A = área

l = lado

Rectángulo \boldsymbol{A = a\times b}

 

Donde:

A = área

a = altura

b = base

Triángulo \boldsymbol{A = \frac{b\times h}{2}}

 

Donde:

A = área

b = base

h = altura

Rombo \boldsymbol{A = \frac{D\times d}{2}}

 

Donde:

A = área

D = diagonal mayor

d = diagonal menor

Paralelogramo \boldsymbol{A = b\times h}

 

Donde:

A = área

b = base

h = altura

Trapecio \boldsymbol{A = \left (\frac{a+ b}{2} \right )\times h}

 

Donde:

a = base menor

b = base mayor

h = altura

Círculo \boldsymbol{A = \pi \times r^{2}}

 

Donde:

A = área

π = número pi

r = radio

Polígono regular \boldsymbol{A = \frac{n\times b\times Ap}{2}}

 

Donde:

A = área

n = número de lados regulares

b = longitud de un lado

Ap = apotema

Las figuras compuestas

Una figura compuesta es aquella que está formada por dos o más figuras geométricas más simples. Para calcular el área de estas figuras se suelen calcular las áreas de las figuras más simples por separado y la sumatoria de estas será el área total de la figura. Por otra parte, para el cálculo de perímetro suelen usarse ecuaciones trigonométricas, y teoremas como el de Pitágoras para calcular las longitudes de los lados de la figura.

Ejercicios

– Una cancha de fútbol mide 105 metros de largo y 68 metros de ancho. ¿Cuántos metros cuadrados de césped artificial se necesitarían para cubrir toda la cancha?

Es un problema de área porque al calcular los metros cuadrados de césped artificial que se necesitan, se calcula la superficie. Como todos sabemos, una cancha de fútbol tiene una forma rectangular, por lo tanto se debe aplicar la fórmula del rectángulo:

A = a\times b
A = 105\, m\times 68\, m
A = \mathbf{7.140\, m^{2}}

Por lo tanto, para cubrir toda la cancha se necesitarían 7.140 m2 de césped artificial.


– La siguiente figura muestra el plano de una casa. ¿Cuántos metros cuadrados de cerámica se necesitan para cubrir el piso?

El piso de la casa forma una figura compuesta. Por lo tanto, antes de resolver el problema debemos separarlo en formas geométricas más simples:

La figura 1 corresponde a un rectángulo y la figura 2 a un cuadrado (ya que sus cuatro lados miden lo mismo). El área total del piso será igual a:

A_{t} = A_{1}+A_{2}

Donde:

At = área total del piso

A1 = área de la figura 1

A2 = área de la figura 2

Por lo tanto, para calcular el problema tenemos que resolver las áreas por separado:

En la figura 1 se cumple que:

A_{1} = a\times b

A_{1} = 13\, m\times 5\, m

A_{1} = 65\, m^{2}

En la figura 2 se cumple que:

A_{2} = l^{2}

A_{2} = (10\, m)^{2}

A_{2} = 100\, m^{2}

Al reemplazar los valores de A1 y A2 se tiene que:

A_{t} = 65\, m^{2}+100\, m^{2}

A_{t} = \mathbf{165\, m^{2}}

Por lo tanto, el piso de la casa necesita 165 m2 de cerámica para cubrirlo.

¿Sabías qué?
La hectárea (ha) es una medida de área que equivale a 10.000 m2.

Cálculo de volumen de un cuerpo

Todo cuerpo ocupa un lugar en el espacio. Se denomina volumen. Como ya sabemos, los principales cuerpos geométricos se calculan a través de fórmulas:

Nombre Figura Fórmula de volumen
Cubo \boldsymbol{V=l^{3}}

 

 

Donde:

V = volumen

l = lado

Prisma \boldsymbol{V = A_{b}\times h}

 

 

Donde:

V = volumen

Ab = área basal

h = altura

Pirámide \boldsymbol{V = \frac{A_{b}\times h}{3}}

 

 

Donde:

V = volumen

Ab = área basal

h = altura

Cilindro \boldsymbol{V =\pi \times r^{2}\times h}

 

 

Donde:

V = volumen

π = número pi (3,14…)

r = radio

h = altura

Cono \boldsymbol{V =\frac{\pi \times r^{2}\times h}{3}}

 

 

Donde:

V = volumen

π = número pi (3,14…)

r = radio

h = altura

Esfera \boldsymbol{V =\frac{4}{3}\times \pi \times r^{3}}

 

 

Donde:

V = volumen

π = número pi (3,14…)

r = radio

En el caso de las pirámides y los primas, las formas de sus bases pueden ser diferentes.

Estas ecuaciones pueden aplicarse a figuras similares para resolver diferentes problemas.

Ejercicios

– Calcula el volumen de la Gran Pirámide de Guiza, cuya base es un cuadrado de aproximadamente 230 m cada lado y de altura mide aproximadamente 186 m.

La fórmula para calcular el volumen de una pirámide es la siguiente:

V = \frac{A_{b}\times h}{3}

Lo primero es calcular el valor de Ab que es el área de la base. En este caso, su base es un cuadrado de 230 metros de cada lado. Por lo tanto:

A_{b} = l^{2}

A_{b} = (230\, m)^{2}

A_{b} = 52.900 \, m^{2}

Reemplazamos el valor del área de la base y el de la altura (que es 186 m) en la fórmula:

V = \frac{52.900\, m^{2}\times 186\, m}{3}

V = \frac{9.839.400\, m^{3}}{3}

V = \mathbf{3.279.800\, m^{3}}

El volumen aproximado de la pirámide de Guiza es de 3.279.800 m3 (si se considera la pirámide como un cuerpo rígido sin cámaras interiores).


– Calcula el volumen de una canica de 2 centímetros de diámetro.

La forma de una canica es igual a la de una esfera por lo tanto se utiliza la siguiente ecuación:

V =\frac{4}{3}\times \pi \times r^{3}

El problema nos dice que el diámetro de la canica es de 2 cm, pero la fórmula está expresada en función del radio. Como ya sabemos, el radio es la mitad del diámetro, por lo tanto, el radio de la canica es de 1 cm.

V =\frac{4}{3}\times \3,14 \times (1\, cm)^{3}

V =\frac{4}{3}\times \3,14 \times 1\, cm^{3}

V =\mathbf{4,18\, cm^{3}}

La leyenda de la corona

Hay una leyenda popular que cuenta cómo el rey Hieron II de Siracusa le encomendó al reconocido matemático griego Arquímedes que comprobara si la corona que había mandado a hacer era de oro puro o no. Arquímedes pasó mucho tiempo sin resolver el misterio y estaba frustrado hasta que un día, al meterse a la bañera, se percató que el agua que se desplazaba tenía el mismo volumen de su cuerpo. Enseguida dio un salto al tiempo que decía la frase “¡Eureka!”.

Posteriormente le demostró al rey que el volumen desplazado por la corona debía ser el mismo que el desplazado por un lingote de oro puro de la misma masa. Cuando realizó el experimento, la cantidad de agua desplazada no fue la misma y concluyó que la corona no era de oro puro.

Otros usos

Desde su aparición, la geometría ha permitido al ser humano destacarse en varios campos como la arquitectura, la escultura, la pintura y, por su puesto, en las ciencias aplicadas como la física o la química. Disciplinas como la ingeniería aplican la geometría para el cálculo de ángulo y otras medidas. La química emplea la geometría para entender las estructuras moleculares, la agrupación de los átomos y la forma de los cristales de algunos compuestos, entre otros usos.

En el ámbito de la cartografía y la agronomía, se aplica la geometría para determinar áreas, calcular perímetros y planos de terrenos. La astronomía y la computación son otras áreas que emplean conocimientos geométricos.

La geometría y la arquitectura

La arquitectura clásica no habría podido lograr obras de singular belleza o armonía sin hacer uso de conocimientos geométricos. En la actualidad, los arquitectos emplean la geometría para lograr estructuras que se vean bien estéticamente, que permitan un ahorro de materiales y un mejor aprovechamiento de los espacios.

¡A practicar!

1. Una fábrica de quesos compró una granja de 14.300 m2. ¿Cuáles son las medidas de la granja?

a) 150 m × 100 m
b) 130 m × 110 m
c) 40 m × 10 m
d) 280 m × 100 m

Solución
b) 130 m × 110 m

2. Un tablero de ajedrez mide 44 cm de alto y 44 cm de ancho, ¿cuál es el área del tablero?

a) 88 cm2
b) 1.936 cm2
c) 4.404 cm2
d) 3.854 cm2

Solución
b) 1.936 cm2

3. Una empresa inmobiliaria trabaja con propiedades que no superan los 20.000 m2. ¿Cuál de las siguientes propiedades no cumple con este requisito de la empresa inmobiliaria?

a) Casa de playa de 155 m de ancho por 84 m de alto.
b) Departamento en la ciudad de 18 m de ancho por 14 m de alto.
c) Cabaña en la montaña de 320 m de ancho por 124 m de alto.
d) Chalet de 24 m de ancho por 20 m de alto.

Solución
c) Cabaña en la montaña de 320 m de ancho por 124 m de alto. El área de esta propiedad es de 39.680 m2, por lo tanto, supera los 20.000 m2 aceptados por la inmobiliaria.

4. Una pelota de fútbol tiene 22 cm de diámetro, ¿cuál es su volumen?

a) 2026,34 cm3
b) 44 cm3
c) 220 cm3
d) 5.572,45 cm3

Solución
d) 5.572,45 cm3

5. Una lata de tomates es cilíndrica y tiene una altura de 9 cm y un radio de 3 cm, ¿cuál es su volumen?

a) 384,35 cm3
b) 127,17 cm3
c) 954.44 cm3
d) 506,58 cm3

Solución
c) 254.34 cm3

RECURSOS PARA DOCENTES

Artículo “Los números ocultos en el universo”

El artículo trata de mostrar cómo la mayoría de los fenómenos del universo pueden explicarse a través de los números. También explica algunas formas geométricas que podemos encontrar en nuestro planeta.

VER

Enciclopedia “Nana y Enriqueta en el país de las matemáticas”

En este tomo, se platean los principales elementos de la geometría de una manera didáctica y sencilla. También se dan ejemplos y aplicaciones de la geometría.

VER

Artículo “Superficies de figuras geométricas”

El artículo plantea el cálculo de superficie de las principales figuras geométricas. También resuelve una serie de ejercicios y muestra al final algunos problemas propuestos.

VER

CAPÍTULO 5 / TEMA 3

Polígonos

Podemos observar polígonos en múltiples objetos de nuestro alrededor. Estos son muy diversos y los hay con lados y ángulos iguales o desiguales entre sí. Son elementos fundamentales de la geometría y su conocimiento es esencial en diversos campos del conocimiento, como la ingeniería o la arquitectura.

¿Qué es un polígono?

En geometría, un polígono es una figura geométrica plana delimitada por un número finito de segmentos rectos.

¿Sabías qué?
La palabra “polígono” proviene del griego antiguo que quiere decir “muchos ángulos”.

Los polígonos presentan los siguientes elementos:

  • Lados: son los segmentos rectos que conforman al polígono.
  • Vértices: son los puntos en común entre dos lados consecutivos.
  • Diagonales: son los segmentos que unen a dos lados no consecutivos de un polígono.
  • Ángulos interiores: están formados por dos lados consecutivos en el interior del polígono.
  • Ángulos exteriores: están formados en el exterior del polígono entre un lado y la prolongación de otro lado consecutivo.

Polígonos regulares y sus tipos

Un polígono regular tiene lados con la misma longitud. Se caracterizan también porque sus ángulos internos y externos también son iguales. Otra característica es que poseen la misma cantidad de ejes de simetrías que de lados. Las diagonales en este tipo de polígonos tienen la misma longitud y siempre son interiores.

Polígono Número de lados Número de diagonales Medida de cada ángulo interno Medida de cada ángulo externo
Triángulo equilátero 3 0 60° 120°
Cuadrado 4 2 90° 90°
Pentágono 5 5 108° 72°
Hexágono 6 9 120° 60°
Heptágono 7 14 128,57° 51,43°
Octágono 8 20 135° 45°
Eneágono 9 27 140° 40°
Decágono 10 35 144° 36°
Endecágono 11 44 147,27° 32,73°
Dodecágono 12 54 150° 30°

VER INFOGRAFÍA

El círculo y los polígonos

Todo polígono regular puede estar circunscrito en una circunferencia, lo que quiere decir que cada uno de sus vértices corresponde a un punto de la circunferencia. Mientras más lados tenga el polígono, más se va a aproximar a la forma de la circunferencia. Por esta razón, se asocia a la circunferencia (de forma informal) a un polígono de infinitos lados.

Área de polígonos regulares

Para medir el área de los polígonos es necesario conocer las definiciones de perímetro y apotema.

  • Perímetro: es la suma de los lados que forman una figura geométrica. En el caso de los polígonos regulares, se calcula al multiplicar el número de lados por la longitud de uno de sus lados.

P= n\times L

Donde:

P: perímetro
n: número de lados del polígono regular.
L: longitud de uno de los lados del polígono.

  • Apotema: es la distancia perpendicular desde el centro de un polígono hasta uno de sus lados.

El área de un polígono regular se define como el producto de su perímetro por la apotema (a) dividido entre dos.

A = \frac{P\times a}{2}

Donde:

A: área

P: perímetro

a: apotema

 

– Ejemplo:

Calcular el área de un pentágono cuyos lados miden 6 cm y su apotema es de 4,13 cm.

Lo que debemos hacer es calcular primero el perímetro para luego sustituir en la fórmula junto con la apotema para calcular el área.

P= n\times L
P= 5\times 6\, cm
P= 30\, cm

El perímetro del apotema es 30 cm, al sustituir en la fórmula de área nos queda:

A = \frac{30\, cm\times 4,13\,cm }{2}

A = \frac{123,9\,cm^{2} }{2}

A = \mathbf{61,95\, cm^{2}}

El área del pentágono es de 61,95 cm2.

¿Sabías qué?
El Departamento de Defensa de los Estados Unidos es un edificio en forma de Pentágono que mide 140.000 metros cuadrados aproximadamente.
Debido a sus características geométricas, todo polígono regular puede estar inscrito o circunscrito a una circunferencia. Un polígono inscrito tiene todos sus vértices contenidos en la circunferencia. Por otro lado, un polígono circunscrito posee todos sus lados tangentes a la circunferencia. En ambos casos, el centro del polígono coincide con el centro de la circunferencia.

Polígonos irregulares y sus tipos

En los polígonos irregulares se pueden cumplir algunas de estas condiciones:

– Tener sus lados con igual longitud pero sus ángulos internos diferentes.
– Tener sus ángulos de igual medida pero sus lados con diferente longitud.
– Tener sus lados con diferente longitud y sus ángulos internos con diferente medida.

Ejemplos de polígonos irregulares

  • Rombo

El rombo tiene los cuatro lados con igual longitud pero sus cuatro ángulos internos son diferentes: solo los ángulos opuestos de este polígono son iguales. Por eso se trata de un polígono irregular.

  • Rectángulo (no cuadrado)

Es un cuadrilátero con sus cuatro ángulos iguales (90°), pero sus lados tienen diferente longitud entre sí. Solo los lados paralelos comparten la misma longitud.

  • Triángulo (no equilátero)

Todo triángulo con un ángulo interior diferente de 60 grados es un polígono irregular.

Triángulos regulares e irregulares

Según sus lados, los triángulos se clasifican en equiláteros, isósceles y escalenos. Los equiláteros son los únicos triángulos que cumplen con las características de un polígono regular. Los triángulos escalenos son aquellos en los que las longitudes de sus lados y la medida de sus ángulos internos son diferentes, por lo tanto no son polígonos regulares. Por otra parte, los triángulos isósceles al contar solo con dos lados y dos ángulos iguales tampoco son considerados como polígonos regulares.

Perímetro de polígonos

Calculamos el perímetro de los polígonos regulares a través de la fórmula planteada anteriormente:

P= n\times L

En cambio, en los polígonos irregulares, cuyos lados generalmente son diferentes, esta ecuación no siempre aplica. Para lo cual debemos sumar de forma separada las longitudes de cada uno de los lados.

P= L_{1}+L_{2}+L_{3}+...+L_{n}

Por ejemplo, para calcular el perímetro del siguiente triángulo isósceles simplemente sumamos cada una de las longitudes de sus lados.

P= 60\,\, cm+60\,\, cm+40\,\, cm

P= \mathbf{160\,\, cm}

El perímetro de este triángulo irregular es de 160 cm.

 

¡A practicar!

1. Determina el perímetro y el área de los siguientes polígonos regulares según los datos mostrados.

a) Un eneágono regular cuyos lados miden 7 cm y su apotema 9,62 cm.

Solución
P = 63 cm
A = 303,03 cm2

b) Un pentágono regular cuyos lados miden 6 cm y su apotema 4,13 cm.

Solución
P = 30 cm
A = 61,95 cm2

c) Un heptágono regular cuyos lados miden 8 cm y su apotema 8,31.

Solución
P = 56 cm
A = 232,68 cm2

d) Un triángulo regular (equilátero) cuyos lados miden 5 cm y su apotema 1,44 cm.

Solución
P= 15 cm
A = 10,8 cm2

e) Un decágono regular cuyos lados miden 3 cm y su apotema 4,62 cm.

Solución
P= 30 cm
A = 69,3 cm2

f) Un dodecágono regular cuyos lados miden 4 cm y su apotema 7,46 cm.

Solución
P= 48 cm
A = 179,04 cm2

g) Un hexágono regular cuyos lados miden 7 cm y su apotema 6,06 cm.

Solución
P= 42 cm
A = 127,26 cm2

h) Un octágono regular cuyos lados miden 2 cm y su apotema 2,41 cm.

Solución
P= 16 cm
A = 19,28 cm2

i) Un endecágono regular cuyos lados miden 3 cm y su apotema 5,11 cm.

Solución
P= 33 cm
A = 84,315 cm2

j) Un cuadrado cuyos lados miden 4 cm y su apotema 2 cm.

Solución
P= 16 cm
A = 16 cm2

 

2. ¿A qué polígono con una apotema de 4,33 cm le corresponde un área de 64,95 cm2.

a) Un decágono de 2 cm de lado.
b) Un hexágono de 5 cm de lado.
c) Un pentágono de 7 cm de lado.
d) Un octágono de 4 cm de lado.

Solución
b) Un hexágono de 5 cm de lado.

 

3. ¿Qué polígono irregular tiene sus lados de igual longitud pero sus ángulos internos son diferentes?

a) Círculo
b) Cuadrado
c) Rectángulo
d) Rombo

Solución
d) Rombo

RECURSOS PARA DOCENTES

Artículo “Perímetro de los polígonos”

Este artículo define qué es un polígono, cuáles son sus clasificaciones y cómo se calcula su el perímetro. También plantea una serie de ejercicios para resolver.

VER

Artículo “Cuadriláteros”

Este recurso explica los diferentes tipos de cuadriláteros que existen y sus características principales.

VER

Micrositio “Tarjetas Educativas – Geometría y medidas”

En este micrositio se puede encontrar una serie de tarjetas interactivas que resumen los elementos principales de la geometría, como los polígonos y sus principales características.

VER

CAPÍTULO 5 / TEMA 2

Ángulos

Los ángulos están presentes en la mayoría de las figuras geométricas y en nuestra vida cotidiana. Se los considera indispensables para realizar cálculos trigonométricos y estudios en balística, arquitectura e ingeniería. De acuerdo a su amplitud, los ángulos se clasifican en varios tipos.

El ángulo y sus elementos principales

Un ángulo es una región del plano comprendida por dos semirrectas que tienen un origen en común. Los elementos de un ángulos son los siguientes:

  • Vértice: es el punto en común de las dos semirrectas.
  • Lados: son las dos semirrectas que conforman al ángulo.
  • Amplitud: es la medida de abertura de los lados de un ángulo. Esta medida usualmente se lee en grados sexagesimales.

¿Sabías qué?
Los ángulos suelen nombrarse con letras del alfabeto griego.

El sistema sexagesimal

Se usa principalmente para medir el tiempo y los ángulos. En este último caso, las unidades que emplea son grados, minutos y segundos. Al dividir un ángulo llano en 180 partes iguales, una de esas partes equivale a un grado (°). Si se divide un grado en sesenta partes iguales, una de esas partes equivale a un minuto (′). Y si el minuto se divide en 60 partes iguales, una de esas partes corresponde a un segundo (″). En resumen:

1° = 60′
1′ = 60″

Observa que este sistema emplea como base el número 60 y de ahí viene el origen de su nombre. El instrumento usado para su medición es el transportador.

VER INFOGRAFÍA

Clasificación de los ángulos

Los ángulos pueden clasificarse en:

  • Ángulo nulo: cuando mide 0°.
  • Ángulo agudo: cuando es mayor que 0° pero menor que 90°.
  • Ángulo recto: cuando mide exactamente 90°.
  • Ángulo obtuso: cuando es mayor de 90° pero menor que 180°.
  • Ángulo llano: cuando mide exactamente 180°.
  • Ángulo completo: cuando mide 360°.

Ángulos complementarios

Dos ángulos son complementarios si al ser sumados el resultado es igual a 90°. Al saber el valor de uno de los ángulos puedes calcular el valor del otro al restar 90° al ángulo conocido.

– Ejemplo:

Se tienen los ángulos complementarios α y β. El valor de β es de 35°. Calcula el valor de α.


Simplemente debes resolver la resta:

\boldsymbol{\alpha =90^{\circ}-\beta}

\boldsymbol{\alpha =90^{\circ}-35^{\circ}}

\boldsymbol{\alpha =55^{\circ}}

Por lo tanto el valor de α es 55°.

Ángulos suplementarios

Dos ángulos son suplementarios si al ser sumados el resultado es igual a 180°. Al igual que en el caso anterior puedes determinar el valor de un ángulo de este tipo si conoces el valor de otro y lo restas a 180°.

– Ejemplo:

Se tienen los ángulos suplementarios θ y δ. El valor de θ es de 160°. Calcular el valor de δ.

Resuelve la resta:

\boldsymbol{\delta =180^{\circ}-\theta}

\boldsymbol{\delta =180^{\circ}-160^{\circ}}

\boldsymbol{\delta =20^{\circ}}

El valor de δ es 2.

Medida de un ángulo

La medición de los ángulos se realiza a menudo a través de un transportador, el cual puede ser de dos tipos: circular o semicircular. El circular mide los 360° de la circunferencia y el semicircular mide los 180°. Ambos transportadores cuentan con una marca en el centro que se debe colocar en el vértice del ángulo a medir. El 0° de la escala debe coincidir con uno de los lados del ángulo y la lectura del ángulo sería la que indica el otro lado en la escala.

Los transportadores suelen presentar dos numeraciones que van en diferentes sentidos según se lea el ángulo: en sentido horario (en el sentido de las manecillas del reloj) o en sentido antihorario.

Existe el convencionalismo de que los ángulos que se miden en sentido horario se consideran positivos mientras que los que se leen en sentido antihorario se consideran negativos. En el ámbito matemático, el enfoque se orienta más a la abertura de los ángulos. Otro dato importante es que aunque los transportadores son útiles, existen otros instrumentos más precisos como el goniómetro.

Los ángulos en las figuras planas

Las figuras planas poseen ángulos interiores y ángulos exteriores. Los ángulos interiores, como su nombre lo indica, se ubican en el interior de la figura, mientras que los exteriores se ubican entre un lado de la figura y el otro lado siguiente. Por ejemplo:

Cálculo de ángulos internos en triángulos

Los ángulos interiores de los triángulos siempre suman 180°. De manera que si conoces la medida de dos de sus ángulos internos puedes calcular la medida del tercero. Lo único que debes hacer es restar los valores de los ángulos conocidos a 180°. Por ejemplo:

– Calcula el valor del ángulo θ.

Como ya sabes, la sumas de los ángulos internos de un triángulo es igual a 180°, entonces, si restas los valores de los ángulos conocidos a 180° obtendrás el valor de Θ:

\boldsymbol{\theta = 180^{\circ}-\alpha -\beta}
\boldsymbol{\theta = 180^{\circ}-65^{\circ} -67^{\circ}}
\boldsymbol{\theta = 48^{\circ}}

El valor del ángulo θ es 48°.

¿Sabías qué?
La suma de los ángulos externos de un triángulo es igual a 360°.

Cálculo de ángulos internos en cuadriláteros

En el caso de los cuadriláteros se cumple que la suma de sus cuatro ángulos internos siempre es igual a 360°. De acuerdo al tipo de cuadrilátero el valor del ángulo puede variar. Por ejemplo, en el caso del cuadrado y del rectángulo sus cuatro ángulos internos son iguales y miden 90°. En el caso del rombo y del romboide sus ángulos opuestos son iguales. Si el trapecio es rectángulo posee dos ángulos consecutivos que miden 90°. Si es isósceles tiene los ángulos adyacentes a la base mayor con la misma medida y si el trapecio es escaleno ninguno de sus ángulos mide lo mismo.

Los trapezoides son otro tipo de cuadrilátero con el valor de cada uno de sus ángulos internos diferentes. En resumen:

Figuras Características
El cuadrado y el rectángulo tienen ángulos internos iguales y miden 90°.
El rombo tiene todos sus ángulos iguales (pero son agudos, es decir, menores a 90°).

El romboide presenta cada par de ángulos opuestos con la misma medida.

El trapecio rectángulo tiene dos ángulos rectos (miden 90° cada uno).

 

El trapecio isósceles presenta los ángulos adyacentes a la base mayor con la misma medida.

 

El trapecio escaleno presenta todos sus ángulos con diferente medida.

El trapezoide no posee ningún ángulo con la misma medida.

Para calcular ángulos en un cuadrilátero simplemente tenemos que restar los ángulos conocidos a 360°.

– Ejemplo:

Calcula el valor del ángulo ε de la siguiente figura.

\boldsymbol{\varepsilon =360^{\circ}-\delta -\theta -\rho}

\boldsymbol{\varepsilon =360^{\circ}-88^{\circ} -77^{\circ} -80^{\circ}}

\boldsymbol{\varepsilon =115^{\circ}}

El valor del ángulo ε es 115°.

En los polígonos regulares los ángulos internos miden igual. Para calcular su valor se emplea la ecuación (n − 2) × 180°/n donde n es el número de lados que presenta el polígono. Por ejemplo, para un pentágono se sustituye la n por el número 5 que corresponde al número de sus lados y se obtiene que (5 − 2) × 180°/5 = 108°, lo que quiere decir que cada uno de los ángulos internos de un pentágono mide 108°.

¡A practicar!

1. ¿Qué tipo de ángulo observas?

a)

Solución
Ángulo obtuso.

b)

Solución
Ángulo llano.

c)

Solución
Ángulo recto.

d)

Solución
Ángulo agudo.

2. Calcula el valor del ángulo γ.


Solución
γ = 55°

3. Calcula el valor del ángulo θ.


Solución
θ = 70°

4. Calcula el valor del ángulo φ.

Solución
φ = 58°

5. Calcula el valor del ángulo β.

Solución
β = 105°

RECURSOS PARA DOCENTES

Artículo “Ángulos en triángulos. Resolución mediante ecuaciones”

El artículo explica los diferentes tipos de ángulos y cómo determinarlos a través de ecuaciones. También muestra una serie de ejemplos y ejercicios relacionados al tema.

VER

Artículo “Ángulos”

Este artículo plantea de forma resumida lo relacionado con los ángulos, como la manera de nombrarlos, su clasificación y el uso del transportador.

VER

Video “Tipo de triángulos según sus ángulos”

En el video se muestra la manera de clasificar los triángulos a partir de los ángulos y muestra ejemplos gráficos de cada uno de ellos.

VER

CAPÍTULO 4 / TEMA 2

rADICALES

Seguramente ya conoces qué es la potenciación, pero ¿sabías que hay otro tipo de operación muy relacionada con ella? Esta es la radicación y consiste en encontrar un número que al multiplicarse por sí mismo tenga como producto otro número determinado. La radicación es la operación inversa a la potenciación. Hoy aprenderás qué es y cómo calcularla.

¿Qué es la radicación?

Es una operación en la que hallamos raíces de orden n de un determinado número. La raíz n-ésima de un número a es igual a un número b que elevado a la n resulta en a.

\boldsymbol{\sqrt[n]{a} = b\; \; \Leftrightarrow \; \; b^{n}=a}

Ejemplo:

\boldsymbol{\sqrt[3]{8} = 2}\; \; porque\; \; \boldsymbol{ 2^{3}= 2\times 2\times 2 = 8}

\boldsymbol{\sqrt[3]{27} = 3}\; \; porque\; \; \boldsymbol{ 3^{3} = 3\times 3\times 3 =27}

Como ves, la radicación y la potenciación tienen mucho en común, incluso en sus elementos. De modo que también podemos expresar a un radical como una potencia de exponente fraccionario.

\boldsymbol{\sqrt[n]{a^{x}} = a^{\frac{x}{n}}}

Ejemplo:

\boldsymbol{\sqrt[3]{8} = 8^{\frac{1}{3}}}

\boldsymbol{\sqrt[3]{27} = 27^{\frac{1}{3}}}

Relación entre potenciación y radicación

Existe una gran relación complementaria entre la potenciación y la radicación, y la podemos observar con la semejanza que existe entre los elementos que la componen.

  • Al exponente de la potencia se lo llama índice de radical.
  • Al resultado denominado potencia se lo llama raíz.
  • A la base de la potencia se la llama radicando.

Elementos de los radicales

Al igual que en la potenciación, aquí existen 3 elementos a definir que son los que componen la radicación:

  • Índice (n): orden de la raíz que se aplica al radicando. Indica cuántas veces multiplicamos un número por sí mismo para obtener el radicando.
  • Radicando (a): número sometido a la raíz del orden determinado por el índice.
  • Raíz (b): resultado de la radicación, el cual elevado al orden de la raíz da como resultado el radicando.

¿Sabías qué?
Si el radicando es un número negativo, y el índice es par, no podrá aplicarse la operación de radicación porque el resultado no pertenecerá a los reales.

Raíces cuadradas y cúbicas

De la misma manera que en la potenciación, cuando el índice de la raíz es n = 2 y n = 3 merece una distinción. Por lo tanto, a estos los vamos a denominar como raíz cuadrada y cúbica, respectivamente.

La raíz cuadrada es aquella cuyo índice es 2. No es necesario escribir el índice de la raíces cuadradas. Por ejemplo:

\boldsymbol{\sqrt[2]{9}=\sqrt{9}}     Se lee “raíz cuadrada de nueve”.

La raíz cúbica es aquella cuyo índice es 3. Por ejemplo:

\boldsymbol{\sqrt[3]{8}}     Se lee “raíz cúbica de 8”.

Para encontrar la solución de un radical se debe pensar: ¿qué número habrá que elevar al índice n para que el resultado sea el valor del radicando? Ese número será el resultado denominado como raíz. Por ejemplo, para resolver √9 se debe pensar: ¿qué número debo elevar al cuadrado (n = 2) para que el resultado sea 9?. La respuesta es 3.

Solución de raíces

La solución de una raíz depende principalmente del radicando y del índice de la raíz. En algunas ocasiones puede tener una o dos soluciones y, en otros casos, puede que no tenga solución.

  • Radicando mayor que cero con n par.

Hay dos soluciones: una positiva y una negativa.

\boldsymbol{\sqrt{4}=\pm 2}\; \; porque \; \; \boldsymbol{(-2)^{2}=4\; \; y\; \; 2^{2}=4}

  • Radicando mayor que cero con n impar.

Hay una solución positiva.

\boldsymbol{\sqrt[3]{125}=5}\; \; porque \; \; \boldsymbol{5^{3}=5\times 5\times 5=125}

  • Radicando menor que cero con n par.

No tiene solución dentro de los números reales.

\boldsymbol{\sqrt{-9}=}no \; existe \; en\; \mathbb{R}

  • Radicando menor que cero con n impar.

Hay una sola negativa.

\boldsymbol{\sqrt[3]{-64} = -4} \; \; porque\; \; \boldsymbol{(-4)^{3}= -4\times -4\times -4 = -64}

[/su_note]

– Ejemplos de raíces:

\boldsymbol{\sqrt{4} = 2}

\boldsymbol{\sqrt{9} = 3}

\boldsymbol{\sqrt[3]{1}=1}

\boldsymbol{\sqrt[3]{27}=3}

\boldsymbol{\sqrt[4]{16}=2}

¿Sabías qué?
Cuando el índice de potencia es una fracción se puede expresar como un radical. Por ejemplo: 91/3 3√9

¡A practicar!

¿Cuál es el resultado de los siguientes ejercicios?

  • \boldsymbol{\sqrt{25}}

Solución

\boldsymbol{\sqrt{25}=5}\; \; porque \; \; \boldsymbol{5^{2}= 5\times 5 = 25}

  • \boldsymbol{\sqrt[3]{64}}

Solución

\boldsymbol{\sqrt[3]{64}= 4}\; \; porque \; \; \boldsymbol{4^{3}=4\times 4\times 4=64}

  • \boldsymbol{\sqrt[5]{-32}}

Solución

\boldsymbol{\sqrt[5]{-32}=-2} \; \; porque\; \; \boldsymbol{(-2)^{5}=-2\times -2\times -2\times -2\times -2=-32}

La radicación es la operación opuesta a la potenciación y consiste en hallar raíces de orden n de un determinado número. Consta de tres elementos llamados índice, radicando y raíz. El símbolo usado para mostrar esta operación se lo conoce como raíz o radical y el primero en utilizarlo fue el matemático Christoph Rudolff en 1525.

Raíces exactas e inexactas

La raíz cuadrada exacta es aquella que tiene como radicando un cuadrado perfecto, mientras que la raíz cuadrada inexacta es la que no tiene como radicando un cuadrado perfecto.

Cuadrados perfectos

Un cuadrado perfecto resulta de multiplicar un número por sí mismo dos veces. Estos números los podemos ordenar en un cuadrado, por ejemplo, 9 es un cuadrado perfecto porque lo podemos escribir como 3 x 3 y lo ordenamos como:

En esta tabla verás la relación de los diez primeros cuadrados perfectos con sus raíces:

Cuadrado perfecto Raíz cuadrada exacta
1^{2}=1 \sqrt{1}=1
2^{2}=4 \sqrt{4}=2
3^{2}=9 \sqrt{9}=3
4^{2}=16 \sqrt{16}=4
5^{2}=25 \sqrt{25}=5
6^{2}=36 \sqrt{36}=6
7^{2}=49 \sqrt{49}=7
8^{2}=64 \sqrt{64}=8
9^{2}=81 \sqrt{81}=9
10^{2}=100 \sqrt{100}=10

Pero no todos los números tienen raíces cuadradas exactas. En esos casos, calculamos la raíz cuadrada entera y luego contamos el resto. Por ejemplo, 55 no tiene raíz cuadrada exacta porque 72 = 49 y 82 = 64.

Por aproximación o tanteo, decimos que la raíz cuadrada entera de 55 es 7 y el resto lo obtenemos por la resta 55 − 49 = 6.

Entonces, \sqrt{55} = 5\; \; y\; resto \; 6.

¡A practicar!

1. ¿Qué tipo de raíz dará como resultado cada uno de los siguientes ejercicios?

  • \sqrt{121}

Solución
Raíz exacta.
  • \sqrt{13}

Solución
Raíz inexacta.
  • \sqrt{125}

Solución
Raíz inexacta.
  • \sqrt{70}

Solución
Raíz inexacta

2. Completa.

  • 5^{2}=\underline{\: \: \: \: \: \: }\Leftrightarrow \sqrt{25}=\underline{\: \: \: \: \: \: }
Solución

5^{2}=\boldsymbol{25}\Leftrightarrow \sqrt{25}=\boldsymbol{5}

  • 10^{2}=\underline{\: \: \: \: \: \: }\Leftrightarrow \sqrt{100}=\underline{\: \: \: \: \: \: }
Solución

10^{2}=\boldsymbol{100}\Leftrightarrow \sqrt{100}=\boldsymbol{10}

  • 12^{2}=\underline{\: \: \: \: \: \: }\Leftrightarrow \sqrt{144}=\underline{\: \: \: \: \: \: }
Solución

12^{2}=\boldsymbol{144}\Leftrightarrow \sqrt{144}=\boldsymbol{12}

  • 13^{2}=\underline{\: \: \: \: \: \: }\Leftrightarrow \sqrt{169}=\underline{\: \: \: \: \: \: }
Solución

13^{2}=\boldsymbol{169}\Leftrightarrow \sqrt{169}=\boldsymbol{13}

3. Resuelve las siguientes raíces cuadradas.

  • \sqrt{400}
Solución

\sqrt{400}=\boldsymbol{20}

  • \sqrt{70}
Solución

\sqrt{70}= \boldsymbol{8} \; y \; resto\; \boldsymbol{6}

  • \sqrt{625}
Solución

\sqrt{625}=\boldsymbol{25}

  • \sqrt{17}
Solución

\sqrt{17}= \boldsymbol{4}\; y\; resto \; \boldsymbol{1}

  • \sqrt{81}
Solución

\sqrt{81}=\boldsymbol{9}

RECURSOS PARA DOCENTES

Artículo “La radicación”

En es artículo encontrará los aspectos inherentes a la radicación y encontrará una introducción a las propiedades de radicación y potenciación.

VER

Artículo “Cálculo de una raíz cuadrada”

Este recurso le permitirá profundizar sobre las raíces cuadradas y cómo calcularla paso a paso sin calculadora.

VER

CAPÍTULO 5 / TEMA 1

Perímetro

El contorno de una figura geométrica se denomina perímetro. De acuerdo al tipo de figura, el contorno puede ser calculado por medio de la suma de sus lados o a través de diferentes fórmulas. Estas operaciones tienen muchas aplicaciones en la vida cotidiana: por ejemplo, sirven para determinar la longitud de la cerca de una casa.

Cálculo de perímetro en figuras planas

El perímetro es la longitud del contorno de una figura. Para calcular el perímetro de una figura, simplemente tenemos que sumar cada uno de sus lados.

Es importante tener presente que existen figuras con lados regulares como el cuadrado, y figuras con lados irregulares como en el caso de un rectángulo. Las figuras regulares son conocidas como polígonos regulares y los más comunes son:

POLÍGONO NÚMERO DE LADOS
Triángulo equilátero 3
Cuadrado 4
Pentágono 5
Hexágono 6
Heptágono 7
Octágono 8
Eneágono 9
Decágono 10

¿Sabías qué?
De acuerdo a sus lados, los triángulos son clasificados en: equiláteros (tres lados iguales), isósceles (dos lados iguales) y escalenos (ningún lado igual).

VER INFOGRAFÍA

La ventaja de los polígonos regulares es que al tener todos sus lados iguales su perímetro es igual a la longitud de uno de sus lados multiplicada por la cantidad de lados que este tiene. La fórmula sería:

 P=n\times L

Donde:
P = perímetro.
n = número de lados de la figura.
L = longitud de un lado de la figura.

Un ejemplo de cálculo de perímetro

– Calcula el perímetro de un cuadrado cuyos lados miden 5 cm:

El cuadrado es un polígono regular de cuatro lados iguales, por lo tanto, calculamos su perímetro de la siguiente forma:

P = 4 × 5 cm

Resolvemos la multiplicación y el resultado obtenido es:

P = 20 cm

Observa que al final añadimos la unidad de longitud inicial, que son centímetros (cm), pero puede ser cualquier otra unidad de medida, los pasos en estos casos siempre son los mismos.

Otro camino

Aunque las fórmulas permiten realizar cálculos más sencillos, el perímetro también puede determinarse a través de la suma de cada uno de los lados. En el caso del ejemplo anterior sabemos que cada lado mide 5 cm, de manera que tenemos que sumar los cuatro lados para obtener el perímetro:

P = 5 cm + 5 cm + 5 cm + 5 cm = 20 cm

Esta forma de calcular el perímetro suele aplicarse a figuras que tienen al menos un lado diferente, pues al no tener sus lados iguales, no es posible aplicar la fórmula de polígonos regulares. Un ejemplo sería:

– Calcula el perímetro del siguiente triángulo:

Al sumar cada uno de sus lados obtenemos que:

P = 6 cm + 7 cm + 5 cm = 18 cm

Este triángulo escaleno tiene un perímetro de 18 cm.

 

El perímetro de un círculo

El perímetro de un círculo se denomina circunferencia, y para calcularlo empleamos un número matemático muy particular: el número pi, llamado así porque se escribe con la letra π del alfabeto griego, que lleva ese mismo nombre. Este número es irracional, por lo tanto es infinito. Se obtiene al dividir la longitud de la circunferencia entre su diámetro. Los primeros 10 números decimales del número pi son 3,1415926535…

La fórmula para determinar el perímetro de un círculo es:

P = π × d

Donde:

π = número pi (en los cálculos generalmente se redondea hasta los dos decimales).

d = la longitud del diámetro de la circunferencia.

Perímetro de figuras compuestas

Primero que todo, es importante saber que una figura compuesta está formada por dos o más figuras geométricas, por lo que tienen un arreglo irregular de lados y ángulos. En el caso de estas figuras, realizamos el cálculo del perímetro de la misma forma que en el ejemplo anterior del triángulo.

Observemos esta figura:

Es una figura compuesta porque está formada por un cuadrado y un triángulo:

Determinamos el perímetro de esta figura al sumar solo los lados exteriores de la figura:

P = 5 cm + 5 cm + 1 cm + 7 cm + 9 cm = 27 cm

El perímetro de la figura es 27 cm.

Las figuras compuestas pueden estar formadas por triángulos, cuadrados, rectángulos, trapecios, círculos, etc. Conocer sus diferentes elementos es importante al momento de resolver problemas de perímetros y de áreas, ya que no se puede aplicar una fórmula en común: es necesario identificar las figuras geométricas que integran la figura compuesta.

Aplicaciones del perímetro

Debido a que el perímetro y el área representan las magnitudes fundamentales al momento de trabajar con figuras geométricas y polígonos, sus usos en la vida cotidiana son frecuentes.

En el caso del perímetro, disciplinas como la arquitectura lo emplean para determinar la frontera de un objeto como en el caso de la cerca de una edificación o la valla de un campo. Sus usos también se extiende al ámbito militar, donde permite delimitar las áreas de interés ofensivo o de defensa.

La geometría

Es una rama de la matemática encargada del estudio de las figuras, sus propiedades y medidas en el plano y en el espacio. Su origen no es reciente, de hecho, antiguas civilizaciones como las del Antiguo Egipto, Sumeria y Babilonia ya la empleaban en mediciones de terrenos y en la construcción de edificaciones. Mucho tiempo después, los antiguos griegos la empezaron a perfeccionar y hoy en día es una disciplina fundamental.

 

¡A practicar!

1. Calcular el perímetro de las siguientes figuras:

a)

Solución
P = 15 cm
b) 
Solución
P = 12 cm
c) 
Solución
P = 48 cm
d) 
Solución
P = 18 cm
e) 
Solución
P = 34 cm

2. ¿Cuál de las siguientes figuras es un polígono regular?

a) 

b) 

c) 

d) 

e) 

Solución
c) Es un polígono regular porque tiene 6 lados iguales y se denomina hexágono.

RECURSOS PARA DOCENTES

Artículo “Áreas y perímetro”

En este cuadro comparativo se muestra una tabla con las fórmulas de área y perímetro para las principales figuras geométricas.

VER

Artículo “Perímetro de polígonos”

En este artículo se explica cómo realizar el cálculo de perímetro en el caso específico de los diferentes tipos de polígonos.

VER

CAPÍTULO 5 / TEMA 3

Área

El área mide la extensión de una superficie, por eso permite saber información importante de las cosas, como el tamaño de un país o la cantidad de baldosas que se necesitan en el piso de una casa. De acuerdo al tipo de figura, el área puede calcularse a través de fórmulas o mediante la descomposición de las figuras en otras más sencillas.

Cálculo de áreas en figuras planas

El área es la superficie o extensión comprendida en una figura. En el caso de las figuras planas, para calcular su área es necesario reconocer cada figura, porque su cálculo es diferente en cada caso.

Triángulos

En los triángulos se cumple que su área es igual a la base por la altura y el resultado se divide entre dos:

A=\frac{b\times h}{2}

– Calcula el área del siguiente triángulo:

A=\frac{3 \, cm \times 4\, cm}{2} = \frac{12 \, cm^{2}}{2}=\mathbf{6\, cm^{2}}

Es importante tener en cuenta que al multiplicar dos unidades de longitud (en este caso centímetros) escribimos el producto al cuadrado; es decir, colocamos el exponente “2” arriba de la unidad de medida, por eso se escribe cm2, y se lee “centímetros cuadrados”.

El área y las unidades al cuadrado

En el Sistema Internacional de Unidades el área siempre se expresa en unidades de longitud elevadas al cuadrado, esto se debe a que el área es la medida de una superficie. Un área de 15 cm2 quiere decir que esa superficie está cubierta por 15 cuadrados que miden 1 cm en cada uno de sus lados. Otras unidades de área comunes son: mm2 (milímetros cuadrados), m2 (metro cuadrado) y km2 (kilómetro cuadrado).

VER INFOGRAFÍA

Cuadrados

El área de un cuadrado es igual a la multiplicación de dos de sus lados. Como los lados de un cuadrado son todos iguales, la fórmula también se puede expresar como la medida de un lado al cuadrado.

A = l\times l =l^{2}

– Calcula el área del siguiente cuadrado

A= 3\, m\times 3\,m = \mathbf{9\, m^{2}}

Es un cuadrado de nueve metros cuadrados de área.

Rectángulos y romboides

El área de los rectángulos y romboides es igual al producto de su base por su altura.

A=b\times h

 

 

– Calcula el área del siguiente rectángulo:

A=10\, mm\times 5\, mm =\mathbf{50\, mm^{2}}

Rombos

El área de un rombo es igual al producto de su diagonal mayor (D) y su diagonal menor (d) dividido entre 2.

A=\frac{D\times d}{2}

– Calcula el área del siguiente rombo:

A = \frac{9\, cm\times 5\, cm}{2}=\frac{45\, cm^{2}}{2}=\mathbf{22,5\, cm^{2}}

El área del rombo es de 22,5 centímetros cuadrados.

Trapecios

En el caso de los trapecios el área es igual a la suma de su base mayor y su base menor, el resultado se divide entre 2 y luego se multiplica por la altura.

A = \frac{B+ b}{2}\times h

– Calcula el área del siguiente trapecio:

\small A= \frac{9\, mm+ 15\, mm}{2}\times 4\, mm=\frac{24\, mm}{2}\times 4\, mm=12\, mm\times 4\, mm = \mathbf{48\, mm^{2}}

El trapecio tiene un área de 48 milímetros cuadrados.

Polígonos regulares

Los polígonos regulares son figuras geométricas donde todos sus lados miden lo mismo. En todos los polígonos regulares se cumple que:

A= \frac{N\times L\times ap}{2}

Donde:

N = número de lados del polígono regular.

L = longitud de uno de los lados.

ap = longitud de la apotema.

¿Sabías qué?
La apotema es la menor distancia que existe entre el centro de un polígono y cualquiera de sus lados.

– Calcula el área del siguiente polígono regular:

A=\frac{6\times 4\, cm\times 3,4\, cm}{2}=\frac{24\, cm\times 3,4\, cm}{2}= \frac{81,6\, cm^{2}}{2}=\mathbf{40,8\, \mathbf{cm^{2}}}

Observa que en este caso como el polígono regular tiene seis lados (hexágono) se coloca el número 6. El área de este hexágono es de 40,8 centímetros cuadrados.

¿Cómo calcular el área de un círculo?

Para determinar el área de un círculo se debe multiplicar el número pi (que aunque es un número infinito se redondea a 3,14) por el radio de la circunferencia elevado al cuadrado, es decir;  \bg_white A = \pi \times r^{2}. El área para un círculo con un radio igual a 2 cm, por ejemplo; se calcularía como A = 3,14\times (2\, cm)^{2}=3,14\times4\, cm^{2} =\mathbf{12,56\, cm^{2}}.

 

Cálculo de áreas en figuras compuestas

Las figuras compuestas se llaman así porque están formadas por dos o más figuras geométricas. Para calcular el área en estas figuras debemos “separar” las figuras geométricas presentes y calcular por separado el área de cada una. El área total de la figura compuesta será igual a la sumatoria de las áreas de las figuras geométricas que la conformen.

– Calcula el área de la siguiente figura compuesta:

Lo primero para resolver es identificar las figuras geométricas presentes, en este caso es un triángulo (figura 1) y un rectángulo (figura 2).

Calculamos las áreas de las figuras por separado.

– Área del triángulo:

La altura es un dato del problema y es 2 cm, la base del triángulo tiene la misma longitud que la base mayor del rectángulo, por lo tanto tiene el mismo valor que es 5 cm. Calculamos el área según la fórmula de área para el triángulo:

A_{1} = \frac{b\times h}{2}=\frac{5\, cm\times 2\, cm}{2}=\frac{10\, cm^{2}}{2} = \mathbf{5\, cm^{2}}

– Área del rectángulo:

Calculamos con la fórmula de área para rectángulos.

A_{2} = b\times h=5\, cm\times 4\, cm = \mathbf{20\, }\mathbf{cm^{2}}

 

El área total es igual a la sumatoria de las áreas de las figuras geométricas calculadas:

A = A_{1}+A_{2}= 5\, cm^{2}+20\, cm^{2} =\mathbf{25\, cm^{2}}

Quiere decir que el área de la figura compuesta es de 25 centímetros cuadrados.

¿Por qué es útil conocer el área?

Conocer la superficie del área tiene múltiples usos desde los cotidianos hasta lo científico. Por ejemplo, gracias al área podemos saber cuánta tela necesita un vestido, o cuántas baldosas son necesarias en la construcción de un piso. También se usa para realizar comparaciones, por ejemplo, con el área podemos comparar países de acuerdo a su tamaño. O, también, podemos estimar la superficie de un planeta de acuerdo a su forma.

Además, el área es un parámetro usado en otras fórmulas más avanzadas como los cálculos de presiones. Por otra parte, las diferentes medidas permiten cuantificar desde áreas de tamaños microscópicos hasta áreas del tamaño de una estrella.

Aunque el Sistema Internacional de Unidades es el más extendido en el mundo, no todos los países emplean el metro cuadrado y sus múltiplos o submúltiplos para hablar de área. Hay países, como Estados Unidos, que emplea la yarda cuadrada (equivalente a 0,863 metros cuadrados), otras unidades usadas son la pulgada cuadrada, el pie cuadrado, la hectárea y el acre.
¡A practicar!

1. Calcular el área de las siguientes figuras:

a)

Solución
A = 6 cm2
b) 
Solución
A = 20 m2
c) 
Solución
A = 18 cm2
d) 
Solución
A = 61,5 mm2
e) 
Solución
A = 79 cm2

2. ¿A cuál de estas figuras corresponde la fórmula de área A = b\times h?

a) 

b) 

c) 

d) 

e) 

Solución
d) Es un romboide.

RECURSOS PARA DOCENTES

Video “Resolución del área”

En este video se explica cómo resolver cálculos de áreas en figuras compuestas y se muestran dos de las fórmulas de área más usadas.

VER

Artículo “Perímetro y área”

Este artículo explica ejercicios de perímetro y áreas. Toma como referencia diferentes unidades de medida y conversiones.

VER

Artículo “Cuerpos redondos. Áreas y volúmenes”

En el presente artículo se explica como realizar cálculos de área en cuerpos redondos, sí como las características de este tipo de figuras.

VER