CAPÍTULO 2 / TEMA 7 (REVISIÓN)

OPERACIONES | ¿Qué aprendimos?

operaciones básicas

Todos los días utilizamos operaciones básicas como la adición, la sustracción, la multiplicación y la división. Las adiciones con reagrupación de dos o más números se caracterizan por tener “llevadas” cuando sumamos sus unidades, decenas, centenas, etc. Las sustracciones con reagrupación son restas en las que existen cifras del minuendo que son menores a las del sustraendo. Por esta razón, hay que “pedirle” una unidad al dígito de al lado para así poder resolver el ejercicio. En el caso de la multiplicación, al igual que en la adición y en la sustracción, se observan dos tipos de operaciones: sin reagrupación y con reagrupación. Las multiplicaciones sin reagrupación son aquellas que no contienen llevadas cuando multiplicamos un dígito con otro. En cambio, las multiplicaciones con reagrupación sí poseen llevadas. En el caso de las divisiones, encontramos las exactas cuando el resto es igual a cero y las no exactas cuando el resto es diferente de cero.

Leibniz impuso el uso del punto como símbolo de la multiplicación e introdujo los dos puntos como símbolo de la división.

múltiplos y divisores

El múltiplo de un número es el resultado de multiplicar ese número por otro. Por otra parte, el divisor de un número es aquel que lo divide de manera exacta. Hay números cuyos únicos divisores son ellos mismos y el uno, a estos números se los conoce como números primos. Por otro lado, los números que poseen más de dos divisores se denominan números compuestos y pueden descomponerse en factores primos.

El número 1 no es ni primo ni compuesto porque solo tiene un divisor que es él mismo.

MÍNIMO COMÚN MÚLTIPLO Y MÁXIMO COMÚN DIVISOR

Todo número natural se puede descomponer como una multiplicación de sus factores primos. Este tipo de expresión permite calcular el mínimo común múltiplo (mcm) y el máximo común divisor (mcd) entre dos o más números. El mínimo común múltiplo (también llamado múltiplo común menor) de dos o más números es el menor múltiplo común de dos o más números distintos de cero. Para calcularlo, hay que descomponer los números en sus factores primos y luego elegir los números que tienen y no tienen en común a mayor potencia. El número que resulta del producto es el menor múltiplo en común. El máximo común divisor (también conocido como divisor común mayor) es el mayor divisor entre dos o más números distintos de cero. Para calcularlo también se descomponen los números en sus factores primos y luego se eligen solo los números que tienen en común a menor potencia. El producto de estos es el mayor divisor en común.

Si calculamos el mcd entre dos números de la secuencia de Fibonacci obtenemos otro número de Fibonacci. Por ejemplo, el mcd de (2, 8) = 2.

problemas con los números enteros

Una de las características de los números enteros es que permiten representar cantidades positivas y negativas, por esta razón se emplea la regla de los signos para saber qué signo tendrá un número al realizar una operación con enteros. En una adición, cuando todos los números son negativos, se suman y el resultado que se obtiene es un número negativo. Si se suman números positivos y negativos, los números de igual signo se suman y al final los dos números obtenidos se restan y se coloca el signo del número mayor. Para sustraer números enteros, hay que tener en cuenta que el símbolo de la resta cambia el signo al número que sigue según la regla. Para multiplicar y dividir números enteros primero se operan los signos mediante la regla de los signos y luego se multiplican o dividen los números según corresponda.

En Oriente se operaba con números positivos y negativos a través de ábacos, tablillas o bolas de colores. A los números negativos se los conocía como “números deudos” o “números absurdos”.

problemas con números decimales

Cuando vamos al supermercado la mayoría de los precios de los productos están marcados con números decimales. Con estos números también se pueden desarrollar las operaciones básicas de la aritmética. Para sumar números decimales tienen que coincidir la parte entera, la coma y la parte decimal de los números de acuerdo a sus valores posicionales. También podemos sumar números decimales con enteros siempre y cuando coincidan sus valores posicionales. Para sustraer también deben coincidir los valores posicionales y se pueden restar dos decimales o un decimal y un número entero. Para multiplicar dos números decimales se multiplican los números como si fuesen números naturales y el producto final será un número decimal que tendrá la cantidad de decimales igual a la suma de todos los decimales de ambos números. Si se multiplica un decimal con un natural el producto final tendrá tantos decimales como tenga el número decimal que se multiplicó inicialmente. Para dividir a estos números, ya sea por otro decimal o por un entero, hay que convertir a los números decimales en enteros. Para esto, se debe multiplicar al dividendo y al divisor por la unidad seguida de tantos ceros como decimales tenga el número con la parte decimal de más cifras. Luego se realiza la división de manera habitual.

A comienzos del siglo XV, un matemático árabe desarrolló el conjunto de los números decimales y sus usos.

operaciones combinadas

Las operaciones combinadas son aquellas que involucran dos o más operaciones aritméticas agrupadas por diferentes símbolos. Los símbolos de agrupamiento son: los paréntesis (), los corchetes [] y las llaves {}. En una operación con estos símbolos primero se eliminan los paréntesis, luego los corchetes y, por último, las llaves. En los ejercicios combinados se pueden encontrar agrupados números enteros, fracciones, números decimales, potencias y raíces. A la hora de resolverlos, se tiene que tener en cuenta el orden de eliminación de los símbolos de agrupamiento como también el de las operaciones: primero se resuelven las potencias y las raíces, luego las multiplicaciones y las divisiones, y por último, las sumas y las restas.

El símbolo de igual “=” fue creado por el matemático inglés Robert Recorde en 1557 para evitar la expresión textual “es igual a”.

CAPÍTULO 2 / TEMA 2

MÚLTIPLOS Y DIVISORES

Un múltiplo de un número es el resultado de multiplicar ese número por otro. Debido a esto, los múltiplos de un número son infinitos. Por otra parte, los divisores son los valores que dividen a un números en partes iguales y permiten saber si se trata de un número primo o compuesto.

nÚMEROS PRIMOS

Los números primos son aquellos números naturales que son divisibles por uno y por sí mismos, es decir, sus únicos divisores son ellos mismos y la unidad. Por ejemplo: 2, 3, 5, 7 y 11 son números primos.

Número Divisores
2 2 y 1
3 3 y 1
5 5 y 1
7 7 y 1
11 11 y 1

¿Sabías qué?
El matemático griego Euclides demostró que los números primos son infinitos.

La maravilla de los números primos

Los números primos son como los arquitectos de otros números, ya que la multiplicación de varios números primos da lugar a un número compuesto. Los números primos son equivalentes en las matemáticas a lo que los átomos son en la materia. Esta naturaleza los hace tan peculiares que muchos matemáticos los han estudiado a través de los años.

¿Sabías qué?
El número 2 es el único número primo que es par.

nÚMEROS COMPUESTOS

Los números compuestos son aquellos números naturales que tienen más de dos divisores, además del uno y de sí mismo. Estos números pueden ser expresados como un producto de números primos que es único para cada número.

Esta cuadrícula es conocida como “la criba de Eratóstenes” y muestra en celeste los números primos y en naranja los números compuestos. Recuerda que los números son infinitos. Aquí mostramos los números primos y compuestos mayores que 1 hasta el 100, pero los números siguen hasta el infinito. El número 1, está en verde porque no es primo ni compuesto, ya que tiene un solo divisor que es él mismo.

Algunos números compuestos

Número Divisores
4 4, 2 y 1
6 6, 3, 2 y 1
8 8, 4, 2 y 1
9 9, 3 y 1
10 10, 5, 2 y 1

DIVISORES

Un divisor es el número que divide a otro en una cantidad entera. Un número es divisible por otro si su división es exacta, es decir, el resto de la división es cero. Si un número “a” se divide por otro “b” y el resto de la división es cero quiere decir que “b” es divisor de “a” o que “a es divisible por b”. Por ejemplo, 4 es divisor de 8 porque 8 : 4 = 2 y el resto es cero. Por lo tanto, 8 es divisible por 4.

Para encontrar los divisores de un número se pueden usar las tablas de multiplicar o los criterios de divisibilidad. Por ejemplo, para buscar los divisores de 16 sabemos que se trata de un número par. Por lo tanto, va a ser divisible por 2. Por otra parte, el 16 se encuentra dentro de las tablas de multiplicar del 4 y del 8. Entonces, esos números forman parte de sus divisores. También sabemos que todos los números (primos o compuestos) son divisibles entre ellos mismos y entre 1, por lo tanto, los divisores de 16 son: 1, 2, 4, 8 y 16.

Números perfectos

El matemático griego Euclides estudiaba los números naturales y denominaba números perfectos a un tipo de números compuestos. Él describía a un número perfecto como aquel número natural que es igual a la suma de sus divisores excepto él mismo. Un ejemplo de número perfecto es el 6 ya que sus divisores son: 1, 2, 3 y 6. Si los sumamos a todos, menos al seis tenemos, el resultado es igual al mismo número: 1 + 2 + 3 = 6. El siguiente número con estas características es el 28. Sus divisores son 1, 2, 4, 7, 14 y 28. La cuenta sería: 1 + 2 + 4 + 7 + 14 = 28.

DESCOMPOSICIÓN DE NÚMEROS EN SUS FACTORES PRIMOS

Todos los números compuestos pueden descomponerse en un producto de sus factores primos. Para descomponer un número en sus factores primos, se divide por el menor de sus divisores primos. El cociente de esa división se vuelve a dividir por el menor divisor primo de este y así sucesivamente hasta conseguir como cociente el 1. La manera de representar la descomposición es a través de una raya vertical que separa la división del número y sus factores primos.

Por ejemplo, procedimiento para descomponer el número 84 en sus factores primos es el siguiente:

El menor divisor primo de 84 es 2, por lo tanto, se divide 84 : 2 = 42. El cociente se escribe en la parte inferior y se vuelve a repetir el procedimiento. El menor divisor primo de 42 es 2, se escribe el divisor y el resultado que es 21 se escribe debajo de 42. Luego, el menor divisor primo de 21 es 3, se escribe dicho divisor y el resultado, que es 7, se escribe en la parte inferior. Como 7 es un número primo, el mínimo divisor primo es sí mismo, por lo tanto, se escribe el divisor 7 y el resultado de la división es 1. Como el número 1 no es un número primo se da por concluida la descomposición.

De esta manera, el 84 se puede escribir como la multiplicación de todos sus factores primos:

84 = 2 · 2 · 3 · 7

En estos casos, las descomposiciones de factores primos suelen representarte en forma de potencia en aquellos factores que se repiten. Para este ejemplo, observamos que el número 2 se repite dos veces por lo tanto se puede expresar como 22. De esta forma, la descomposición quedaría expresada de la siguiente forma:

84 = 22 · 3 · 7

Códigos secretos

Los números se pueden descomponer en sus factores primos, pero cuando hablamos de números realmente grandes resulta casi imposible a menos que utilicemos herramientas informáticas o programas de computadora. Es por esto que los números primos son perfectos para crear códigos secretos indescifrables. Por ejemplo, cuando se hacen compras por internet, los datos de las personas que compran quedan ocultos por un código creado por números enormes que funcionan como una cerradura cuya llave son los factores primos de este número.

¡A ejercitar!

  1. Encierra en color azul los números primos y en rojo los números compuestos.

RESPUESTAS

2. Encuentra los divisores de los siguientes números.

a) 24 

RESPUESTAS
Divisores de 24: 1, 2, 3, 4, 6, 8, 12 y 24.

b) 60 

RESPUESTAS
Divisores de 60: 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30 y 60.

c) 73 

RESPUESTAS
Divisores de 73: 1 y 73

d) 48 

RESPUESTAS
Divisores de 48: 1, 2, 3, 4, 6, 8, 12, 16, 24 y 48.

3. Señala cuál de los siguientes números es un número compuesto.

a) 53

b) 63

c) 73

d) 83

RESPUESTAS
b) 63 

4. Descompone en factores primos los siguientes números:

a) 54 

RESPUESTAS

b) 150 

RESPUESTAS

c) 72 

RESPUESTAS

d) 100 

RESPUESTAS

e) 63 

RESPUESTAS

f) 132 

RESPUESTAS

RECURSOS PARA DOCENTES

Artículo “Criterios de divisibilidad”

El artículo propone una serie de reglas que permiten identificar los divisores de un número.

VER

CAPÍTULO 4 / TEMA 6 (REVISIÓN)

potenciación y radicación | ¿qué aprendimos?

potencia

La potencia es una operación matemática de multiplicación condensada formada por una base y un exponente. El resultado se obtiene al multiplicar por sí misma la base la cantidad de veces que lo señale el exponente, el cual es un número entero positivo o negativo. Cuando una potencia está elevada a la 2 o a la 3 se lee “elevado al cuadrado” y “elevado al cubo” respectivamente.

La potencia de base 10 es usada en la notación científica: método en el que expresamos números muy grandes, como la cantidad de estrellas de la galaxia; o cantidades muy pequeñas, como el tamaño de una bacteria.

radicales

La operación opuesta a la potenciación es la radicación, en esta se hallan las raíces de orden n de un determinado número. Cuando el radicando es un cuadrado perfecto decimos que la raíz es exacta, en cambio, si el radicando no es un cuadrado perfecto, la raíz es inexacta. Cuando el índice es 2 y 3 las raíces son llamadas “raíz cuadrada” y “raíz cúbica” respectivamente.

Los elementos de la radicación son el índice, el radicando y la raíz. Cuando el radicando es negativo, el índice debe ser impar para que el resultado (raíz) pertenezca a los números reales.

propiedades de la potencia

Las propiedades de la potencia pueden aplicarse siempre y cuando esta operación esté combinada con la multiplicación o la división, nunca con la suma o la resta. Cuando hay sumas y restas cada propiedad se aplica a cada término por separado. Algunas de estas propiedades son: producto de potencia de igual base, cociente de potencia de igual base, potencia de potencia, producto de potencias con bases diferentes y exponentes iguales, cociente de potencias con bases diferentes y exponentes iguales, y exponente negativo.

 

El exponente negativo en una potencia de base 10 nos indica que el número es muy pequeño y que debemos colocar tantos ceros a la izquierda del número como indique este exponente. Por ejemplo, una mitocondria tiene una longitud aproximada de 8 × 10−6 metros.

propiedades de las raíces

Las propiedades de la radicación tienen gran similitud con las de la potenciación. Algunas de ellas son producto y cociente de radicales de igual índice, potencia de un radical y raíz de raíces. Estas son parte fundamental de la representación de números irracionales. Los radicales se suman o restan siempre y cuando estos sean semejantes, es decir, que tengan el mismo índice y el mismo radicando.

Las propiedades de la radicación también pueden expresarse de forma combinada para la resolución de ejercicios matemáticos más complejos.

aplicación de la potencia y la radicación

La potenciación y la radicación nos ayudan a ver números irracionales o muy grandes de manera sencilla. Algunos procedimientos útiles para esta tarea son la descomposición en factores primos y la notación científica. Cuando factorizamos un número lo expresamos como producto de sus números primos; y cuando usamos la notación científica resumimos un número que puede ser muy grande o muy pequeño por medio de la potencia de base 10.

Los números primos son aquellos que solo tienen dos divisores: el 1 y él mismo. Al descomponer un número hacemos uso de ellos, por ejemplo, 12 = 22 × 3.