CAPÍTULO 1 / TEMA 7 (REVISIÓN)

SENTIDO NUMÉRICO | REVISIÓN

UNIVERSO DE LOS NÚMEROS

Los números desde su invención han servido para contar cosas y por eso existen diferentes sistemas y tipos de números que permiten un mejor conocimiento de las cantidades. Para comprender el sentido numérico, dentro del universo de los números se utilizan diversas clasificaciones. Un tipo de números son los ordinales que sirven para establecer un orden. Por otro lado, existen los cardinales que indican cantidades numéricas de elementos que pertenecen a un grupo o conjunto. Actualmente, el sistema más usado es el sistema numérico decimal pero no es el único que existe. Otras culturas crearon sistemas de numeración distintos al decimal, como por ejemplo, los mayas y los romanos.

El sistema de numeración binario se utiliza principalmente en la informática. Está conformado solo por dos cifras: el 0 y el 1.

NÚMEROS PRIMOS Y COMPUESTOS

De acuerdo a la cantidad de divisores que poseen los número, los podemos clasificar en primos y compuestos. Los números primos son aquellos que solo son divisibles por el número uno y por sí mismos. En cambio, los números compuestos son aquellos que además de ser divisibles por el uno y por sí mismos, también son divisibles por otro u otros números, es decir, tienen más de dos divisores. Todos los números compuestos pueden expresarse como un producto de factores primos.

Para determinar los factores primos de un número compuesto se emplean los criterios de divisibilidad.

VALOR POSICIONAL

Una de las principales características de nuestro sistema de numeración decimal es que el valor de los dígitos varía de acuerdo a su ubicación dentro del número. Esta característica se denomina valor posicional y aplica tanto en los números enteros como en los fraccionarios. Una herramienta que nos permite observar directamente el valor de cada dígito de acuerdo al lugar que ocupa es la tabla posicional.

Según la posición de cada dígito, los números pueden descomponerse en forma de suma (descomposición aditiva) o de multiplicación (descomposición multiplicativa).

NÚMEROS DECIMALES

Hay números que se ubican entre dos números enteros consecutivos, estos números se denominan números decimales y se caracterizan porque presentan una parte entera y una decimal, que se encuentran separadas por una coma o punto de acuerdo a la convención del país. Los números decimales se clasifican en racionales y en irracionales. Los racionales se pueden representar en forma de fracción, y los irracionales son números infinitos cuya parte decimal no sigue ningún patrón, como sucede en el caso del número pi.

A menudo se pueden aplicar redondeos en las cifras decimales de un número para simplificar los cálculos.

POTENCIAS

La potenciación es una operación compuesta de tres partes fundamentales: el exponente, la base y la potencia. El exponente indica cuántas veces se debe multiplicar la base por si misma. La base es el número que se multiplica por sí mismo las veces que indique el exponente. La potencia es el resultado de la operación de potenciación. Como toda operación matemática, las potencias cumplen con algunas propiedades. Por ejemplo, todo número elevado a 0 es igual a 1. Para resolver potencias se aplican sus propiedades y se realizan multiplicaciones sucesivas de la base.

Cuando el exponente es 1, la potencia es siempre igual a la base.

RAÍZ DE UN NÚMERO

La radicación es la operación inversa a la potenciación y por ello se encuentran estrechamente relacionadas. Esta operación emplea el símbolo (√) denominado radical. Sus elementos principales son el radicando, el índice y la raíz. El radicando es el número al cual se le va a calcular la raíz y se encuentra en la parte inferior del radical. El índice es el número que índica la cantidad de veces en las que debe multiplicarse un número por sí mismo para que el resultado sea igual al radicando, y se ubica en la parte izquierda del radical. La raíz es el resultado de la operación. Para calcular una raíz se debe buscar un número que multiplicado por sí mismo las veces que indique el índice dé como resultado el mismo valor del radicando.

En las raíces cuadradas, el índice 2 no se coloca en el radical: simplemente se denotan como (√).

 

CAPÍTULO 1 / TEMA 5

Potencias

La potencia es una expresión matemática en la que un número denominado base está elevado a un exponente, el cual indica las veces que la base debe multiplicarse por si misma. Este tipo de operación tiene múltiples aplicaciones en los cálculos combinados y en una forma especial de escribir números: la notación científica.

¿Qué es una potencia?

La potenciación es una operación matemática compuesta por dos partes principales: la base y el exponente.

Como podemos observar, el exponente se escribe en la parte superior derecha de la base y su tamaño es mucho menor.

El exponente de una potencia indica cuántas veces se debe multiplicar a la base por si misma. La potencia es el producto de esa multiplicación.

Por ejemplo:

Una potencia es una multiplicación sucesiva de la base por si misma. Por ejemplo si el exponente fuera 6 y la base 5, esta última se repetiría exactamente 6 veces dentro de la multiplicación, es decir:

 56 = × × × × × 5.

Resolver potencias

Al calcular una potencia debemos saber que el número correspondiente a la base se va a repetir sin alterarse en todas las multiplicaciones según indique el exponente. Por lo tanto, cuando el número del exponente sea grande, se deben resolver las multiplicaciones de forma separada. Esto quiere decir que se comienza a resolver el primer producto y luego el resultado se multiplica nuevamente por la base y así sucesivamente hasta obtener el resultado. Por ejemplo:

En este caso la base de esta potencia es 5 y se multiplica por si misma las veces que indica el exponente. Como el exponente es 3, se debe multiplicar el 5 tres veces por si mismo. Se recomienda resolver el primer producto 5 × 5 y luego volver a multiplicar por 5 al resultado.

Algunas propiedades de la potencia

Existen algunos casos en las potencias que cumplen con ciertas propiedades. Algunas de ellas son:

Exponente cero

Cuando el exponente es 0 (cero), la potencia siempre va a ser igual a 1 (uno). Esto sucede con cualquier número como base diferente de cero. Por ejemplo: 70 = 1.

Exponente igual a uno

Cuando el exponente es 1 (uno), la potencia siempre va a ser igual al número perteneciente a la base. Por ejemplo: 81 = 8.

Base igual a 10

Cuando la base de una potencia es 10 (diez), la potencia va a ser igual a la unidad  seguida de tantos ceros como indique el exponente. Por ejemplo: 10= 1.000.000. 

¿Sabías qué?
Cuando el exponente de una potencia es igual a uno, a menudo se escribe solo el valor de la base y se omite al exponente.

Elementos de la potencia

Los elementos de la potencia son los siguientes:

Base: es el número que se multiplica por si mismo las veces que indique el exponente.
Exponente: es el número que indica las veces en las se tiene que multiplicar la base por si misma. También se lo denomina índice.
Potencia: es el resultado.

¿Cómo leer una potencia?

La manera correcta es leer primero el número de la base, luego se dice la expresión “elevado a la” y por último se lee el valor del exponente en números ordinales (cuarta, quinta, sexta, etc.). De manera resumida se debe seguir la siguiente estructura:

Base + “elevado a la” + exponente

La expresión 34 se lee como “tres elevado a la cuarta“.

Otros ejemplos:

85 = ocho elevado a la quinta.

4= cuatro elevado a la novena.

17 = uno elevado a la séptima.

Exponentes particulares

Existen dos exponentes que particularmente se leen de forma distinta al restos. Estos son el dos y el tres.

  • Cuando el exponente es 2, se dice que el número de la base está elevado al cuadrado. Por ejemplo: 42 se lee “cuatro elevado al cuadrado”.
  • Cuando el exponente es 3, se dice que el número de la base está elevado al cubo. Por ejemplo: 33 se lee “tres elevado al cubo”.

¿Sabías qué?
Si la base es 1, sin importar el exponente,  la potencia siempre va a ser igual a 1.

Cálculo de potencias

Como vimos anteriormente, el cálculo de una potencia se realiza al multiplicar la base según indique el exponente. Sin embargo, hay ejercicios que contienen otras operaciones además de la potencia.

Suma o resta de un número y una potencia

En estos casos se resuelve primero la potencia y luego se resuelve la suma o resta.

Observemos el siguiente caso:

84

Lo primero que debemos resolver es la potencia; es decir, resolver  82:

82 = 8 × 8 = 64

Luego se sustituye el valor de la potencia en la expresión inicial y se resuelve:

64 4 = 60

De esta forma se obtiene que:

84 = 60

 

Paréntesis con suma o resta

Cuando la base de una potencia se encuentra entre paréntesis, lo primero que debemos resolver es la operación que se encuentra dentro del paréntesis, posteriormente se resuelve la potencia del resultado obtenido.

Observemos el siguiente caso:

(6 + 2)3 

Lo primero es resolver la operación dentro del paréntesis:

6 + 2 = 8

Luego se reemplaza el resultado obtenido en la operación ubicada dentro del paréntesis:

(8)3 

Al resolver dicha potencia obtenemos el resultado del problema:

(8)3 = 8 × 8 × 8 = 512

De esta forma tenemos que:

(6 + 2)3  512

Conocer las propiedades de las potencias permite resolver problemas de este tipo de forma rápida. Por ejemplo, si tenemos (100 + 93)0 podemos responder rápidamente que el resultado es 1 sin realizar ningún cálculo. Esto se debe a que una de las propiedades indica que la potencia de todo número diferente de cero que tenga exponente cero va a ser igual a uno.

¡A practicar!

1. Resuelve las siguientes potencias.

a. 5^{3}

b. 7^{4}

c. 2^{6}

d. 4^{5}

e. 5^{0}

f. 9^{2}

g. 2^{1}

RESPUESTAS

a. 5^{3}= 125

b. 7^{4}= 2.401

c. 2^{6} = 64

d. 4^{5}= 1.024

e. 5^{0}= 1

f. 9^{2}= 81

g.2^{1} = 2

2. Escribe cómo deberían leerse las siguientes potencias.

a. 8^{7}

b. 3^{4}

c. 4^{3}

d. 9^{5}

e. 6^{6}

f. 1^{2}

RESPUESTAS

a. 8^{7} = ocho elevado a la séptima.

b. 3^{4} = tres elevado a la cuarta.

c. 4^{3} = cuatro elevado al cubo.

d. 9^{5} = nueve elevado a la quinta.

e. 6^{6} = seis elevado a la sexta.

f. 1^{2} = uno elevado al cuadrado.

3. Resuelve los siguientes cálculos.

a. 5^{2}+9

b.\left ( 15-3 \right )^{1} 

c. \left ( 2\times 5 \right )^{3}

RESPUESTAS

a. 5^{2}+9= 25 + 9 = 34

b. \left ( 15-3 \right )^{1}= (12)^{1} = 12

c. \left ( 2\times 5 \right )^{3}= (10)^{3} = 1.000

RECURSOS PARA DOCENTES

Artículo destacado “Potenciación: operaciones de exponentes”

El siguiente artículo ayuda a conocer cómo leer y resolver las operaciones básicas de las potencias. De igual forma, explica sus propiedades.

VER

Artículo destacado “Ejercicios de potenciación”

Este artículo está enfocado en la forma de resolver problemas relacionados con las potencias a través del empleo de sus propiedades.

VER

CAPÍTULO 4 / TEMA 5

APLICACIÓN DE LA POTENCIA Y DE LA RADICACIÓN

La potenciación y la radicación son operaciones estrechamente relacionadas. Mientras que la primera es una multiplicación condensada de un número por sí mismo n cantidad de veces, la segunda busca ese número que multiplicado por sí mismo resulte en el radicando. Si bien sus propiedades ya se trataron en temas anteriores, aquí aprenderás otras aplicaciones de estos cálculos.

operaciones que simplifican

Tanto la potenciación como la radicación son operaciones útiles para mostrar números de manera más simple. Por ejemplo, dentro del conjunto de los números reales encontramos otros tipos de números que no son sencillos de representar, como los números irracionales, cuyas expresiones decimales son ilimitadas y no periódicas, por lo que es más fácil mostrarlo como una raíz:

\boldsymbol{\sqrt{2}=1,414213562...}

\boldsymbol{\sqrt{3}=1,732050807...}

\boldsymbol{\sqrt{5}=2,236067977...}

Por su parte, la potencia nos ayuda a expresar números muy grandes o muy pequeños de manera resumida, pues la potencia no es más que una multiplicación abreviada.

La descomposición en factores primos y la notación científica son solo dos de los procesos que pueden verse involucrados con la potenciación y la radicación. Ambas operaciones son empleadas en múltiples cálculos cotidianos y en diversas áreas como la astronomía, la ingeniería o la biología.

Las bacterias son microorganismos que crecen con un ritmo acelerado. Este crecimiento suele expresarse en forma de potencia con exponente positivo y se grafica en forma de línea curva ascendente. Saber que tan rápida puede ser la reproducción de una bacteria puede prevenir focos de infección en un paciente y evitar que este sea una víctima mortal.

descomposición en factores primos

También conocida como descomposición factorial o factorización, consiste en escribir un número como producto de sus números primos. Cada vez que un factor se repita en la descomposición, este se convertirá  en la base de una potencia y la cantidad de veces que se repita será el exponente.

– Ejemplo:

¿Qué es un número primo?

Un número primo es un número natural que tiene dos divisores positivos: al uno y a sí mismo. Esta tabla muestra los primero números primos en color azul.

¿Sabías qué?
Las factorización es un paso indispensable para calcular el mínimo común múltiplo y el máximo común divisor de un número.

Las raíces también se pueden obtener por medio de la descomposición del radicando en sus números primos.

– Ejemplo:

Halla la raíz cuadrada de 625 por descomposición de sus factores primos.

1. Descomponemos al número 625 en sus factores primos.

2. Expresamos la raíz cuadrada con producto de la descomposición.

\boldsymbol{\sqrt{625}=\sqrt{5^{4}}}

3. Aplicamos la propiedad “raíz de un potencia”.

\boldsymbol{\sqrt{5^{4}}=5^{\frac{4}{2}}=5^{2}=25}

4. Escribimos el resultado.

\boldsymbol{\sqrt{625}=25}


– Otro ejemplo:

Halla la raíz cuadrada de 196 por descomposición de sus factores primos.

1. Descomponemos al número 196 en sus factores primos.

2. Expresamos la raíz cuadrada con su radicando igual al producto de su descomposición.

\boldsymbol{\sqrt{196}=\sqrt{2^{2}\times 7^{2}}}

3. Aplicamos la propiedad “raíz de un producto”.

\boldsymbol{\sqrt{2^{2}\times 7^{2}}=\sqrt{2^{2}}\times \sqrt{7^{2}}}

4. Aplicamos la propiedad “raíz de una potencia”.

\boldsymbol{\sqrt{2^{2}}\times \sqrt{7^{2}}=2^{\frac{2}{2}}\times 7^{\frac{2}{2}}=2\times 7=14}

5. Escribimos el resultado.

\boldsymbol{\sqrt{196}=14}


– Otro ejemplo:

Halla la raíz cúbica de 1.728 por descomposición de sus factores primos.

  1. Descomponemos el número 1.728 en sus factores primos.

2. Expresamos la raíz cúbica con su radicando igual al producto de su descomposición.

\boldsymbol{\sqrt[3]{1.728}=\sqrt[3]{2^{6}\times 3^{3}}}

3. Aplicamos la propiedad “raíz de un producto”.

\boldsymbol{\sqrt[3]{2^{6}\times 3^{3}}=\sqrt[3]{2^{6}}\times \sqrt[3]{3^{3}}}

4. Aplicamos la propiedad “raíz de una potencia”.

\boldsymbol{\sqrt[3]{2^{6}}\times \sqrt[3]{3^{3}}=2^{\frac{6}{3}}\times 3^{\frac{3}{3}}=2^{2}\times 3=4\times 3=12}

5. Escribimos el resultado.

\boldsymbol{\sqrt[3]{1.728}=12}

Velocidad de un auto en un accidente

Cuando ocurre una accidente de tránsito, por lo general las llantas de los autos dejan una marca sobre el pavimento al frenar. Esta marca es de gran utilidad para los fiscales de tránsito, pues la raíz cuadrada del producto entre la aceleración y la longitud de la marca de frenado es igual a la velocidad del vehículo al momento del choque.

\boldsymbol{\sqrt{-2ax}}

Donde:

a = aceleración

x = longitud de las marcas de frenado

NOTACIÓN CIENTÍFICA

La notación científica es la expresión de números a partir de potencias de base 10. De forma general se representan así:

a × 10n

Donde:

a: es el número entero o decimal que multiplica a la potencia de base 10. Su módulo debe tener un valor igual o mayor que 1 pero menor que 10.

n: es un número entero distinto de cero que corresponde al exponente de la potencia de base 10. Es conocido también como “orden de magnitud”.

Se escriben de la siguientes manera:

  • 10−5 = 0,00001
  • 10−4 = 0,0001
  • 10−3 = 0,001
  • 10−2 = 0,01
  • 10−1 = 0,1
  • 100 = 1
  • 101 = 10
  • 102 = 100
  • 103 = 1.000
  • 104 = 10.000
  • 105 = 100.000

Signos del exponente

Cuando los números son muy pequeños o menores a 1 el exponente es negativo, mientras que si el número es muy grande o mayores a 1 el exponente es positivo.

  • Los exponentes positivos indican la cantidad de ceros que se encuentran a la derecha del número que multiplica la potencia. Por ejemplo, el número 2.000.000 representado en notación científica es 2 × 106 en donde el exponente 6 indica la cantidad de ceros que están después del dos.
  • Los exponentes negativos indican la cantidad de ceros a la izquierda del número que multiplica la potencia. Por ejemplo, el número 0,00000004 representado en notación científica es 4 × 10−8. En este caso el signo menos indica que hay 8 ceros delante del 4.
Nuestro planeta Tierra se encuentra en la galaxia espiral llamada Vía Láctea, la cual tiene unos 100.000 años luz de diámetro. Los científicos estiman que hay alrededor de 400.000.000.000 estrellas en esta galaxia. Estos número tan grandes podemos expresarlos por medio de notación científica como 1 × 105 años luz de diámetro y 4 × 1011 estrellas.

– Otros ejemplos:

  • 3,2 × 10−3 = 0,0032
  • 4 × 10−4 = 0,0004
  • 1,05 × 106 = 1.050.000
  • 6,78 × 10−1 = 0,678
  • 9,43 × 102 = 943

¿Sabías qué?
En el caso de números muy grandes, lo primero que se debe hacer es mover la coma decimal a un número que esté comprendido entre 1 y 10. El número de espacios recorridos hasta dicho número corresponderá al exponente de la potencia de base 10.
  • 8.956.000.000.000 = 8,956 × 1012
  • 243.000 = 2,43 × 105
  • 90.000 = 9 × 104
  • 0,00000045 = 4,5 × 10−7
  • 0,007 = 7 × 10−3

¡A practicar!

1. Expresa los siguientes números como producto de sus factores primos.

  • 520
Solución
520 = 23 × 5 × 13
  • 156
Solución
156 = 22 × 3 × 13
  • 200
Solución
200 = 23 × 52
  • 86
Solución
86 = 2 × 43
  • 22
Solución
22 = 2 × 11

2. Calcula las siguientes raíces por descomposición de sus factores primos.

  • \sqrt[3]{729}
Solución
\sqrt[3]{729}=9
  • \sqrt[3]{64}
Solución
\sqrt[3]{64}=4
  • \sqrt[3]{343}
Solución
\sqrt[3]{343}=7
  • \sqrt{324}
Solución
\sqrt{324}=18
  • \sqrt{400}
Solución
\sqrt{400}=20

3. Calcula:

  • 6 × 108
Solución
6 × 108 = 600.000.000
  • 3 × 10−5
Solución
3 × 10−5 = 0,00003
  • 1,26 × 10−6 
Solución
1,26 × 10−6 = 0,00000126
  • 1,78 × 105
Solución
1,78 × 105 = 178.000 
  • 2 × 104
Solución
2 × 104 = 20.000

RECURSOS PARA DOCENTES

Video “Notación científica”

Este recurso audiovisual le permitirá poner en práctica lo aprendido sobre la notación científica.

VER

Artículo “Factorización de números”

Este artículo detalla cómo descomponer números en sus factores primos y su relación con el cálculo del mínimo común múltiplo y máximo común divisor.

VER

CAPÍTULO 4 / TEMA 6 (REVISIÓN)

potenciación y radicación | ¿qué aprendimos?

potencia

La potencia es una operación matemática de multiplicación condensada formada por una base y un exponente. El resultado se obtiene al multiplicar por sí misma la base la cantidad de veces que lo señale el exponente, el cual es un número entero positivo o negativo. Cuando una potencia está elevada a la 2 o a la 3 se lee “elevado al cuadrado” y “elevado al cubo” respectivamente.

La potencia de base 10 es usada en la notación científica: método en el que expresamos números muy grandes, como la cantidad de estrellas de la galaxia; o cantidades muy pequeñas, como el tamaño de una bacteria.

radicales

La operación opuesta a la potenciación es la radicación, en esta se hallan las raíces de orden n de un determinado número. Cuando el radicando es un cuadrado perfecto decimos que la raíz es exacta, en cambio, si el radicando no es un cuadrado perfecto, la raíz es inexacta. Cuando el índice es 2 y 3 las raíces son llamadas “raíz cuadrada” y “raíz cúbica” respectivamente.

Los elementos de la radicación son el índice, el radicando y la raíz. Cuando el radicando es negativo, el índice debe ser impar para que el resultado (raíz) pertenezca a los números reales.

propiedades de la potencia

Las propiedades de la potencia pueden aplicarse siempre y cuando esta operación esté combinada con la multiplicación o la división, nunca con la suma o la resta. Cuando hay sumas y restas cada propiedad se aplica a cada término por separado. Algunas de estas propiedades son: producto de potencia de igual base, cociente de potencia de igual base, potencia de potencia, producto de potencias con bases diferentes y exponentes iguales, cociente de potencias con bases diferentes y exponentes iguales, y exponente negativo.

 

El exponente negativo en una potencia de base 10 nos indica que el número es muy pequeño y que debemos colocar tantos ceros a la izquierda del número como indique este exponente. Por ejemplo, una mitocondria tiene una longitud aproximada de 8 × 10−6 metros.

propiedades de las raíces

Las propiedades de la radicación tienen gran similitud con las de la potenciación. Algunas de ellas son producto y cociente de radicales de igual índice, potencia de un radical y raíz de raíces. Estas son parte fundamental de la representación de números irracionales. Los radicales se suman o restan siempre y cuando estos sean semejantes, es decir, que tengan el mismo índice y el mismo radicando.

Las propiedades de la radicación también pueden expresarse de forma combinada para la resolución de ejercicios matemáticos más complejos.

aplicación de la potencia y la radicación

La potenciación y la radicación nos ayudan a ver números irracionales o muy grandes de manera sencilla. Algunos procedimientos útiles para esta tarea son la descomposición en factores primos y la notación científica. Cuando factorizamos un número lo expresamos como producto de sus números primos; y cuando usamos la notación científica resumimos un número que puede ser muy grande o muy pequeño por medio de la potencia de base 10.

Los números primos son aquellos que solo tienen dos divisores: el 1 y él mismo. Al descomponer un número hacemos uso de ellos, por ejemplo, 12 = 22 × 3.

CAPÍTULO 4 / TEMA 4

Propiedades de las Raíces

La radicación consiste en la obtención de un número que se ha multiplicado por sí mismo n cantidad de veces bajo el operador de la raíz, por eso también se conoce como “raíz enésima de un número”. De este modo, también podemos decir que la radicación es la operación inversa a la potenciación y, al igual que esta última, presenta propiedades importantes que aprenderás a continuación.

El origen del símbolo radical es incierto. Algunos autores coinciden en que provino de los árabes, mientras que otros afirman que fue introducido en siglo XVI por Christoph Rudolff, cuyo uso es evidenciado en su libro Coss. Muchos otros asocian el origen del signo de la raíz con la letra r, de la palabra latina radix que significa “raíz”.

¿Qué es la radicación?

Es una operación que consiste en hallar números que multiplicados por sí mismos tantas veces como indica el índice de la raíz den como resultado al radicando. Puede verse como la operación inversa a la potenciación.

\boldsymbol{\sqrt[n]{a} = b\; \; \Leftrightarrow \; \; b^{n}=a}

– Ejemplo:

\boldsymbol{\sqrt{81}=9}\: \: \: porque\: \: \: \boldsymbol{9^{2}=9\times 9=81}

\boldsymbol{\sqrt[3]{27} = 3}\; \; porque\; \; \boldsymbol{ 3^{3} = 3\times 3\times 3 =27}

Elementos de una raíz

Toda raíz cuenta con tres elementos:

\huge \boldsymbol{\sqrt[n]{a}=b}

  • Índice (n): orden de la raíz que se aplica al radicando. Indica cuántas veces multiplicamos un número por sí mismo para obtener el radicando.
  • Radicando (a): número sometido a la raíz del orden determinado por el índice.
  • Raíz (b): resultado de la radicación, el cual elevado al orden de la raíz da como resultado el radicando.

principales propiedades de la radicación

Las propiedades de la radicación tienen una gran cantidad de aplicaciones y, del mismo modo que en la potenciación, no se deben aplicar las propiedades a las operaciones de suma y resta, sino solo a las de multiplicación y división.

Propiedades de la radicación
Raíz de cero \boldsymbol{\sqrt[n]{0}=0\; \: \: \: \: \: n\neq 0}
Raíz de la unidad \boldsymbol{\sqrt[n]{1}=1}
Raíz de un producto \boldsymbol{\sqrt[n]{a\times b}=\sqrt[n]{a}\times \sqrt[n]{b}}
Raíz de un cociente \boldsymbol{\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}}
Potencia de una raíz \boldsymbol{\left ( \sqrt[n]{a} \right )^{x}=\sqrt[n]{a^{x}}}
Raíz de una raíz \boldsymbol{\sqrt[n]{\sqrt[m]{a}}=\sqrt[n\times m]{a}}

¿Sabías qué?
La mayoría de los números irracionales pueden ser expresados a partir de una raíz, por ejemplo, \sqrt{2} o \sqrt{3}.

raíz cuadrada de números negativos

La raíz cuadrada de números negativos no tiene solución dentro de los números reales (\boldsymbol{\mathbb{R}}) porque no existe un número (positivo o negativo) que al ser multiplicado por sí mismo resulte en otro negativo. Por ejemplo, la raíz cuadrada de 4 es igual a 2 porque 22 es igual a 4.

\boldsymbol{\sqrt{4}=2}\: \: \: porque \: \: \: \boldsymbol{2^{2}=2\times 2=4}

Pero esta raíz también tiene otra solución negativa:

\boldsymbol{\sqrt{4}=-2} \: \: \: porque\: \: \: \boldsymbol{\left ( -2 \right )^{2}=\left ( -2 \right )\times \left ( -2 \right )=4}

Recuerda que la regla de los signos indica que al multiplicar símbolos iguales el resultado es positivo.

Ahora, ¿cuál será la raíz cuadrada de −4?

\boldsymbol{\sqrt{-4}=} no \: \: existe

La raíz cuadrada de −4 no existe en los números reales porque no hay un número que al multiplicarse por sí mismo resulte en −4.

Sin embargo, esto no significa que no tenga solución posible, sino que pertenece a otro grupo numérico: los números complejos. Los números complejos incluyen una parte imaginaria que sirve para obtener resultados que no pertenecen a los reales.

Soluciones de una raíz

Siempre que el radicando sea negativo, la raíz tendrá solución real solo si el índice es impar, en cambio, si el índice es par, el resultado pertenecerá a los números imaginarios. Esto se debe a la regla de los signos, pues si multiplicamos por sí mismo un número negativo una cantidad de veces par (2, 4, 6, 8,…) el resultado será igualmente positivo.

aplicación de las propiedades de la radicación

Raíz de cero

Toda raíz cuyo radicando sea cero es igual a cero, siempre y cuando su índice sea diferente de dicho número.

\boldsymbol{\sqrt[n]{0}=0\; \: \: \: \: \: n\neq 0}

– Ejemplo:

\sqrt[3]{0}=0

\sqrt[5]{0}=0

Raíz de la unidad

La raíz de la unidad es igual a uno.

\boldsymbol{\sqrt[n]{1}=1}

– Ejemplo:

\sqrt[3]{1}=1

\sqrt{1}=1

Raíz de un producto

La raíz de un producto es igual al producto de las raíces de los factores.

\boldsymbol{\sqrt[n]{a\times b}=\sqrt[n]{a}\times \sqrt[n]{b}}

– Ejemplo:

\sqrt[3]{64\times 8}=\sqrt[3]{64}\times \sqrt[3]{8}=4\times 2=8

\sqrt{9\times 25}=\sqrt{9}\times \sqrt{25}=3\times 5=15

Raíz de un cociente

La raíz de un cociente es igual al cociente de las raíces del dividendo y del divisor.

\boldsymbol{\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}}

– Ejemplo:

\sqrt{\frac{576}{4}}=\frac{\sqrt{576}}{\sqrt{4}}=\frac{24}{2}=12

\sqrt[3]{\frac{64}{8}}=\frac{\sqrt[3]{64}}{\sqrt[3]{8}}=\frac{4}{2}=2

Potencia de una raíz

La potencia de una raíz es igual a la misma raíz con el radicando elevado a dicha potencia.

\boldsymbol{\left ( \sqrt[n]{a} \right )^{x}=\sqrt[n]{a^{x}}}

– Ejemplo:

\left ( \sqrt{4} \right )^{4}=\sqrt{4^{4}}=\sqrt{256}=16

\left ( \sqrt[3]{3} \right )^{9}=\sqrt[3]{3^{9}}=\sqrt[3]{19.683}=27

¡Existe otro método!

La potencia de una raíz es igual al radicando elevado al cociente de las potencias.

\left ( \sqrt{4} \right )^{4}=4^{\frac{4}{2}}=4^{2}=16

\left ( \sqrt[3]{3} \right )^{9}=3^{\frac{9}{3}}=3^{3}=27

Raíz de una raíz

La raíz de una raíz es igual otra raíz con el mismo radicando y cuyo índice es igual al producto de los índices.

\boldsymbol{\sqrt[n]{\sqrt[m]{a}}=\sqrt[n\times m]{a}}

– Ejemplo:

\sqrt{\sqrt[3]{64}}=\sqrt[2\times 3]{64}=\sqrt[6]{64}=2

\sqrt{\sqrt{81}}=\sqrt[2\times 2]{81}=\sqrt[4]{81}=3

Números irracionales

Existen números que no se pueden expresar como el cociente de dos enteros. Estos reciben el nombre de número irracionales y las raíces son un ejemplo de ellos. Uno de los números irracionales más famosos es el número pi (π). A lo largo de la historia el valor de pi ha tenido distintas aproximaciones y se lo usa, entre otras cosas, para el cálculo de superficies y volúmenes de circunferencias y esferas.

Suma y resta de radicales

Podemos sumar y restar radicales siempre y cuando estos sean semejantes, es decir, que tengan el mismo índice y el mismo radicando. Cuando esto sucede, solo sumamos o restamos los coeficientes y mantenemos el radical igual.

\boldsymbol{{\color{Red} b}\sqrt[n]{a}+{\color{Red} c}\sqrt[n]{a}=({\color{Red} b+c})\sqrt[n]{a}}

– Ejemplo:

5\sqrt{8}+\sqrt{8}+2\sqrt{8}=(5+1+2)\sqrt{8}=8\sqrt{8}

3\sqrt{25}+\sqrt{25}+\sqrt[3]{25}=4\sqrt{25}+\sqrt[3]{25}

¡A practicar!

Resuelve estas raíces y aplica las propiedades.

  • \sqrt{4}\times \sqrt{9}
Solución

\sqrt{4}\times \sqrt{9}=\sqrt{4\times 9}=\sqrt{36}=6

  • \frac{\sqrt[4]{64}}{\sqrt[4]{4}}
Solución

\frac{\sqrt[4]{64}}{\sqrt[4]{4}}=\sqrt[4]{\frac{64}{4}}=\sqrt[4]{16}=2

  • \sqrt{\sqrt[4]{256}}

Solución

\sqrt{\sqrt[4]{256}}=\sqrt[2\times 4]{256}=\sqrt[8]{256}=2

  • \sqrt[4]{3}\times \sqrt[4]{27}
Solución

\sqrt[4]{3}\times \sqrt[4]{27}=\sqrt[4]{3\times 27}=\sqrt[4]{81}=3

  • \frac{\sqrt[3]{16}}{\sqrt[3]{2}}
Solución

\frac{\sqrt[3]{16}}{\sqrt[3]{2}}=\sqrt[3]{\frac{16}{2}}=\sqrt[3]{8}=2

  • \sqrt{3}\times \sqrt{12}
Solución

\sqrt{3}\times \sqrt{12}=\sqrt{3\times 12}=\sqrt{36}=6

  • \sqrt{\frac{16}{9}}
Solución

\sqrt{\frac{16}{9}}=\frac{\sqrt{16}}{\sqrt{9}}=\frac{4}{3}

  • \frac{\sqrt{98}}{\sqrt{2}}
Solución

\frac{\sqrt{98}}{\sqrt{2}}=\sqrt{\frac{98}{2}}=\sqrt{49}=7

  • \sqrt{8}\times \sqrt{2}
Solución

\sqrt{8}\times \sqrt{2}=\sqrt{8\times 2}=\sqrt{16}=4

RECURSOS PARA DOCENTES

Artículo “Los números irracionales”

En el artículo podrá encontrar los números irracionales más conocidos y su representación en la recta numérica. Es un buen complemento para afianzar la importancia de la radicación y experimentar sus aplicaciones.

VER

Artículo “Propiedades de las raíces”

Este recurso contiene ejemplos prácticos muy útiles para profundizar sobre las propiedades de la radicación.

VER

CAPÍTULO 1 / TEMA 8 (REVISIÓN)

SISTEMA DE NUMERACIÓN | ¿qUÉ APRENDIMOS?

LECTURA DE NÚMEROS

Los números naturales (\boldsymbol{\mathbb{N}}) son los que utilizamos para contar. Cada número tiene un valor relativo según la posición que ocupe dentro de una cifra y esto permite una correcta lectura de los mismos. Además de los números naturales, existen los números decimales que están formados por una parte entera y otra decimal. También hay sistemas de numeración no posicionales como los números romanos, los cuales constan de siete letras del abecedario latino.

Para leer un número de manera correcta es necesario conocer el valor que ocupa cada una de sus cifras. Para esto podemos usar una tabla posicional.

descomposición de números

Existen distintas formas de descomponer números grandes: la aditiva con combinaciones básicas, la aditiva por medio de valor posicional, la polinómica o la multiplicativa. En la aditiva con combinaciones básicas usamos una o más sumas que expresen el mismo resultado; en la aditiva con valor posicional empleamos los valores posicionales de cada cifra; en la polinómica utilizamos las potencias de base 10; y en la multiplicativa descomponemos la cantidad en sus factores primos.

Estas diferentes maneras de expresar los números permiten resolver situaciones de forma más rápida y sencilla.

números enteros

Los números enteros (\boldsymbol{\mathbb{Z}}) están compuestos por todos los números naturales (\boldsymbol{\mathbb{N}}), sus opuestos negativos y el cero. Los enteros negativos requieren el uso obligatorio del signo (−) a diferencia de los positivos que pueden o no estar acompañados con el signo (+). Estos pueden ser representados en una recta numérica, la cual contiene todos los números reales (\boldsymbol{\mathbb{R}}). Los números enteros se aplican en diversas situaciones de la vida, como para indicar altitudes sobre el nivel del mar, registrar entradas y salidas de dinero de un banco, dibujar el eje de coordenadas, o para indicar temperaturas.

Otra de las tantas aplicaciones que se les da a los números enteros es para señalar los niveles de un edificios, en donde planta baja representa el 0, los niveles superiores los positivos y los niveles inferiores los negativos.

NÚMEROS decimales

Los números decimales están formados por una parte entera y una parte decimal, ambas divididas por una coma. Estos se clasifican en tres tipos según su parte decimal: exactos, periódicos y no periódicos. Los exactos tienen un número limitado de cifras; los periódicos poseen cifras decimales infinitas y, a su vez, estos se dividen en dos tipos: los puros y los mixtos; y los decimales no periódicos no tienen un patrón que se repita infinitamente. Estos números se pueden redondear para reducir la cantidad de cifras decimales y así obtener un valor muy parecido.

Los números decimales pueden ser utilizados en diversas situaciones de la vida, como para indicar la estatura de las personas o los precios de los productos.

sucesiones

Las sucesiones son un grupo de elementos que se ordenan uno detrás de otro. Estos elementos son llamados términos, siguen una regla dentro del conjunto y pueden ser números, letras, figuras o imágenes. En una sucesión, los términos son representados como subíndices (a1, a2, a3, …). Usamos sucesiones cada vez que contamos los días de la semana o las horas del día. También las usamos para ordenar de mayor a menor o de menor a mayor, o para aprender a leer el abecedario. Podemos encontrar sucesiones con operaciones matemáticas como la suma, la resta, la multiplicación, la división o la potencia.

Cuando se ordenan los ganadores de una carrera de automóviles, estos siguen un patrón de acuerdo al tiempo de llegada. Este es un ejemplo de sucesión.

potencias

La potenciación consiste en expresar de manera reducida una multiplicación de factores iguales. Tiene tres elementos: una base, un exponente y la potencia. La base es el número que se multiplicará tantas veces como indica el exponente y la potencia es el resultado de la multiplicación de los factores. Algunas de las propiedades de las potencias son: potencia de exponente 0, potencia de exponente 1, potencia de exponente negativo, multiplicación y división de potencias con igual base y la potencia de una potencia.

Las potencias sirven para aplicar teoremas, expresar notación científica, realizar sucesiones matemáticas y para demostrar problemas de crecimiento exponencial como la multiplicación de virus y bacterias.

raíz de un número

La raíz de un número es la operación inversa a la potencia de un número. Consiste en buscar el número que se ha multiplicado tantas como indica n bajo un operador radical. Los elementos de una raíz son el radicando, el índice, el radical y la raíz. El radicando es el resultado de la multiplicación de la raíz de un número tantas veces como indica el índice de la raíz. El índice indica el grado de una raíz, lo que se traduce en cuántas veces se multiplicó por sí mismo el resultado de la radicación. El radical representa el símbolo de la operación de radicación y la raíz es resultado de la operación matemática.

Todas las operaciones matemáticas poseen una operación inversa que revierte los cálculos realizados.

CAPÍTULO 1 / TEMA 6

POTENCIAS

La matemática está compuesta por numerosos tipos de operaciones que varían según su complejidad. Entre esas operaciones se encuentra la potenciación, que consiste en la multiplicación de factores iguales de acuerdo a un exponente. Al igual que otros cálculos, tiene sus propiedades y sus características particulares. ¡Las aprenderemos a continuación!

La potenciación también puede ser definida como la forma abreviada de escribir un producto de varios factores iguales. En muchas ocasiones, los ejercicios de potenciación pueden parecer algo complejos. Para resolverlos de manera correcta es indispensable conocer sus elementos y propiedades.

LA POTENCIA Y SUS ELEMENTOS

La potencia se define como el resultado (b) de la multiplicación de la base (a) tantas veces como lo indica el exponente (n). En esta operación, a y b son números reales y n es un número entero.

– Ejemplo:

\boldsymbol{4^{3}=4\times 4\times4 =64}

\boldsymbol{5^{4}=5\times 5\times 5\times 5=625}

\boldsymbol{8^{2}=8\times 8 = 64}

¿Cómo se lee una potencia?

Si quieres leer una potencia es necesario que hayas aprendido bien a identificar sus elementos para luego aplicar los siguientes pasos.

  1. Lee la base como cualquier número seguido de la expresión “elevado a la” o “elevado al” según sea el caso.
  2. Lee el exponente como un número ordinal. A excepción del 2 y 3 que se expresan como “al cuadrado” y “al cubo” respectivamente.

– Ejemplo:

\boldsymbol{5^{{\color{Red} 3}}} se lee “cinco al cubo”.

\boldsymbol{4^{{\color{Red} 2}}} se lee “cuatro al cuadrado”.

\boldsymbol{9^{{\color{Red} 5}}} se lee “nueve a la quinta”.

¿Sabías qué?
René Descartes (1596-1650) realizó contribuciones importantes a la matemática y popularizó la notación para la potenciación. 

VER INFOGRAFÍA

¡A practicar!

¿Cómo se leen estas potencias?

\boldsymbol{4^{3}}

Solución

Cuatro al cubo.

\boldsymbol{25^{6}}

Solución

Veinticinco a la sexta.

\boldsymbol{64^{9}}

Solución

Sesenta y cuatro a la novena.

PROPIEDADES DE LA POTENCIA

Potencia de un exponente 0

Todo número elevado a la potencia cero es igual a 1.

\boldsymbol{a^{0}=1}

– Ejemplo:

\boldsymbol{5^{0}=1}

\boldsymbol{\left ( -3 \right )^{0} = 1}

Potencia de un exponente 1

Todo número elevado a la potencia 1 es igual al mismo número.

\boldsymbol{a^{1}=a}

– Ejemplo:

\boldsymbol{5^{1}=5}

\boldsymbol{\left ( -3 \right )^{1} = -3}

Potencia de un exponente negativo

Todo número elevado a la potencia negativa es igual a la fracción de uno sobre la misma base con potencia positiva.

\boldsymbol{a^{-n}=\frac{1}{a^{n}}}

– Ejemplo:

\boldsymbol{5^{-1}=\frac{1}{5^{1}}=\frac{1}{5}}

\boldsymbol{(-3)^{-2}=\frac{1}{(-3)^{2}} = \frac{1}{9}}

Multiplicación de potencias de igual base

En la multiplicación de potencias de igual base se coloca la misma base y se suman los exponentes.

\boldsymbol{a^{n}\times a^{m}=a^{n + m}}

– Ejemplo:

\boldsymbol{3^{2}\times 3^{4}=3^{2 + 4}=3^{6}}

\boldsymbol{(-7)^{5}\times (-7)^{-3}=(-7)^{5+( - 3)}=(-7)^{2}}

División de potencias de igual base

En la división de potencias se coloca la misma base y se restan los exponentes.

\boldsymbol{\frac{a^{n}}{a^{m}}=a^{n-m}}

– Ejemplo:

\boldsymbol{\frac{4^{6}}{4^{2}}=4^{6-2}=4^{4}}

\boldsymbol{\frac{(-3)^{-2}}{(-3)^{4}}=(-3)^{-2-4}= (-3)^{-6}}

Potencia de una potencia

En toda potencia elevada a otra potencia se coloca la misma base y se multiplican los exponentes.

\boldsymbol{(a^{n})^{m}=a^{n \times m}}

– Ejemplo:

\boldsymbol{(9^{2})^{3}=9^{2 \times 3}=9^{6}}

\boldsymbol{((-8)^{2})^{3}=(-8)^{2\times 3}=(-8)^{6}}

Potencia de un exponente racional

En una potencia con exponente fraccionario se extrae el denominador del exponente en forma de raíz y el numerador queda como exponente de la potencia.

\boldsymbol{a^{\frac{n}{m}}= \sqrt[m]{a^{n}}}

– Ejemplo:

\boldsymbol{5^{\frac{7}{3}}= \sqrt[3]{5^{7}}}

\boldsymbol{(-2)^{\frac{4}{5}}= \sqrt[5]{(-2)^{4}}}

Multiplicación de potencias con el mismo exponente

En la multiplicación de potencias de igual exponente se multiplican las bases y se coloca el mismo exponente.

\boldsymbol{a^{n}\times b^{n}=(a\times b)^{n}}

– Ejemplo:

\boldsymbol{5^{3}\times 4^{3}=(5\times 4)^{3}=(20)^{3}}

\boldsymbol{(-3)^{3}\times (-6)^{3}=((-3)\times (-6))^{3}=(18)^{3}}

División de potencias con el mismo exponente

En la división de potencias de igual exponente se coloca el mismo exponente y se dividen las bases.

\boldsymbol{\frac{a^{n}}{b^{n}}=(\frac{a}{b})^{n}}

– Ejemplo:

\boldsymbol{\frac{8^{2}}{4^{2}}=(\frac{8}{4})^{2}=2^{2}}

\boldsymbol{\frac{(-6)^{3}}{(-3)^{3}}=(\frac{(-6)}{(-3)})^{3}=2^{2}}

¿Resultado par o impar?

Toda potencia de base negativa con exponente par da como resultado un número positivo. Por ejemplo:

\boldsymbol{\left ( -3 \right )^{4} = (-3)\times (-3)\times (-3)\times (-3)=81}

Toda potencia de base negativa con exponente impar da como resultado un número negativo. Por ejemplo:

\boldsymbol{\left ( -2 \right )^{5} = (-2)\times (-2)\times (-2)\times (-2)\times (-2)=-32}

Potencias de base 10

Las potencias de base 10 son fáciles de calcular porque el valor es igual a la base seguida de tantos ceros como indica el exponente. Estas son muy útiles para escribir de forma polinómica un número, es decir, permiten escribir números muy grandes de forma reducida.

\boldsymbol{10^{2} = 10 \times 10 = 100}

\boldsymbol{10^{3} = 10 \times 10\times 10 = 1.000}

\boldsymbol{10^{4} = 10 \times 10\times 10\times 10 = 10.000}

\boldsymbol{10^{5} = 10 \times 10 \times 10\times 10\times 10 = 100.000}

\boldsymbol{10^{6} = 10 \times 10\times 10\times 10\times 10\times 10 = 1.000.000}

APLICACIONES DE LAS POTENCIAS

Debido a las diversas propiedades que estas poseen pueden utilizarse para:

  • Aplicar el teorema de Pitágoras
Uno de los teoremas más famosos de la geometría es el teorema de Pitágoras. Este emplea potencias para expresar su fórmula, la cual dice que la hipotenusa al cuadrado de un triángulo rectángulo es igual a la suma de sus catetos al cuadrado, es decir, C= A+ B2.
  • Emplear la notación científica

La notación científica utiliza potencias de base 10 para expresar números muy grandes o muy pequeños en forma reducida. Observa cómo algunos números pueden ser expresados de forma simplificada:

\boldsymbol{0,00000465 = 465\times 10^{-8}}

\boldsymbol{0,00000465 = 46,5\times 10^{-7}}

\boldsymbol{0,00000465 = 4,65\times 10^{-6}}

  • Expresar sucesiones matemáticas y progresiones geométricas

Existen series matemáticas que requieren el uso de las potencias para expresar su forma general o enésima.

Uno de los campos o áreas que usan la potenciación es la biología, específicamente en el estudio de la reproducción de virus y bacterias. Allí, para poder expresar su rápido crecimiento, es necesario emplear este tipo de operación matemática.

¡A practicar!

1. Resuelve las siguientes potencias y aplica las propiedades necesarias:

\boldsymbol{4^{3}+5^{2}=}

Solución

\boldsymbol{4^{3}+5^{2}= 4\times 4\times 4+5\times 5=64+25 = 89}

\boldsymbol{3^{3}\times 9^{3}=}

Solución

\boldsymbol{3^{3}\times 9^{3}= (3\times 9)^{3}= (27)^{3}=27\times 27\times 27=19.683}

\boldsymbol{\frac{8^{5}}{8^{3}}=}

Solución

\boldsymbol{\frac{8^{5}}{8^{3}}= 8^{5-3}=8^{2}= 8\times 8=64}

\boldsymbol{(\frac{4^{3}}{4^{2}})^{2}+\frac{5^{6}\times4^{3}}{5^{5}\times4^{2}}-\frac{2^{0}\times1^{9}}{5^{0}}}

Solución

\boldsymbol{(\frac{4^{3}}{4^{2}})^{2}+\frac{5^{6}\times4^{3}}{5^{5}\times4^{2}}-\frac{2^{0}\times1^{9}}{5^{0}}= 4^{6-4}+5^{6-5}\times4^{3-2}-\frac{1\times1}{1}}

\boldsymbol{4^{2}+5^{1}\times4^{1}-\frac{1\times1}{1}=4\times4+20-1=16+19=35}

2. Expresa los siguientes números en notación científica.

  • \boldsymbol{1.320.000}
Solución

\boldsymbol{1.320.000=1,32\times 10^{6}=13,2\times 10^{5}=132\times 10^{4}}

  • \boldsymbol{0,000968}
Solución

\boldsymbol{0,000968 = 968\times 10^{-6}}

RECURSOS PARA DOCENTES

Artículo “Propiedades de potencias”

En el siguiente artículo hay más estrategias para ampliar los conocimientos acerca de las propiedades de las potencias.

VER

Artículo “Ejercicios de propiedades de la potencia”

El siguiente recurso le brindará apoyo con ejercicios de potencias, con sus resultados y explicaciones.

VER

CAPÍTULO 4 / TEMA 3

Propiedades de la potencia

Cada vez que necesitamos hacer una multiplicación del mismo número repetidas veces, recurrimos a la potenciación. Esta operación, así como muchas otras, cumple con ciertas propiedades. ¿Cuál es la manera correcta de aplicarlas?, ¿cuáles son los beneficios? A continuación, aprenderás cuáles son y sus aplicaciones prácticas.

La potencia o potenciación es una operación matemática que consiste en multiplicar varias veces un mismo número. Consta de una base, que es el número que se multiplica, y de un exponente, que es el número que señala la cantidad de veces que se multiplica la base por sí misma. Es decir, la potenciación no es más que una multiplicación abreviada.

principales propiedades de la potencia

Las propiedades de potenciación tienen una gran cantidad de aplicaciones, pero también tienen ciertas restricciones y es importante conocerlas para no cometer errores en su resolución. Entonces, siempre que apliquemos las propiedades será a las operaciones de multiplicación y división, nunca será a las operaciones de suma y resta.

En verde están las operaciones a las que aplicaremos las propiedades de potenciación, y en rojo, las operaciones a las que no podremos aplicarlas nunca.

En la siguiente tabla podrás observar las propiedades de la potenciación:

Propiedades de la potenciación
Producto de potencia de igual base a· a= a(m + n)
Cociente de potencia de igual base a/ a= a(m − n)
Potencia de potencia (am)= an · m
Producto de potencias con bases diferentes y exponentes iguales a· bn = (a · b)n
Cociente de potencias con bases diferentes y exponentes iguales a/ b= (a / b)n
Exponente negativo a−n = 1 / an

¿Sabías qué?
Cuando el exponente es negativo, mientras mayor sea su valor más pequeño será el resultado.

Notación científica

La notación científica es una forma de expresar cantidades muy grandes o muy pequeñas que le ha permitido a los científicos simplificar sus cálculos. Es conocida también como notación o patrón exponencial porque emplea potencias de base 10 dentro de su expresión. Las potencias de base 10 son iguales a la unidad seguida de tantos ceros como indique el exponente. Un ejemplo de notación científica lo vemos en las masas de los objetos astronómicos, por ejemplo, la masa de la Luna es de aproximadamente 735 × 1020 kg.

Ejemplos prácticos

Aplicación a la suma y resta

La aplicación de las propiedades corresponde a varias operaciones matemáticas pero no a la suma y la resta. Sin embargo, eso no significa que no pueda aplicarse a ejercicios donde existan muchos términos que se suman o se restan. Cuando esto sucede, se aplican las propiedades solo a los términos por separado.

Producto de una potencia de igual base

Cuando existe una multiplicación entre dos potencias con igual base, el resultado final será la misma base elevada a la suma de los exponente de potencias que se multiplicaron. Por ejemplo:

  • 5· 52 = 5(3 + 2) = 55
  • 4· 40 = 4(2 + 0) = 42
  • 68 · 62 · 63 = 6(8 + 2 + 3) = 613

Cociente de una potencia de igual base

Cuando dividimos dos potencias con igual base el procedimiento es similar al de la multiplicación, con la diferencia de que aquí restamos los exponentes de las potencias. Por ejemplo:

  • 53 / 52 = 5(3 − 2) = 51
  • 42 / 40 = 4(2 − 0) = 42

Potencia de una potencia

Cuando tenemos una base elevada a un exponente n, y esta a su vez está elevada a otro exponente m, el resultado final lo obtenemos al multiplicar ambos exponentes (n · m). Por ejemplo:

  • (42)4 = 42 · 4 = 48
  • (33)3 = 33 · 3 = 39

Producto de potencias con bases diferentes y exponentes iguales

Si multiplicamos dos potencias con igual exponente y bases distintas, el resultado será igual a mantener el exponente y solo multiplicar las bases. Por ejemplo:

  • 53 · 43 = (5 · 4)3
  • 32 · 22 = (3 · 2)2

Cociente de potencias con bases diferentes y exponentes iguales

De igual manera que en el caso anterior, el resultado será el cociente de las bases elevadas al exponente. Por ejemplo:

  • 53 43 = (5/4)3
  • 32 / 22 = (3/2)2

Exponente negativo

Cuando el exponente es negativo, la potencia será igual a la inversa de su base y el mismo exponente con signo positivo. Por ejemplo:

  • (2)2 = (1/2)2 = 1/22 = 1/4
  • (1/2)−1 = 2
Los átomos son las unidades básicas de toda la materia. En conjunto crean las moléculas y son microscópicos. Para poder medir las distancias entre ellos se usa una unidad de longitud llamada angstrom (Å = 1 x 10−10 metros). El exponente igual a −10 nos indica que el valor en metros es equivalente a 0,0000000001 m.

Potencia de decimales y fracciones

Cuando las bases son decimales o fracciones, las propiedades se mantienen sin distinción. Por ejemplo:

  • (0,1)2 = (0,1) · (0,1) = 0,01

Observa que 0,1 = 1 · 10−1 , y aquí se puede aplicar la propiedad de potencia de potencia. 

  • (0,1)2 = (1 · 10(−1))2 = 10(−1) · 2 = 102 = 0,01

De la misma manera, si sabemos que 0,1 = 1/10:

  • (0,1)2 = (1/10)2 = 1/102 = 1/100 = 0,01

Cualquiera sea la expresión que se elija para resolver la operación se debe llegar al mismo resultado.

¡A practicar!

Aplica la propiedad correspondiente en cada caso:

  • 34 · 3· 33

Solución
34 · 31 · 33 = 3(4 + 1 + 3) = 38 = 6.561
  • 62 / 62

Solución
62 / 62 = 6(2 − 2) = 60 = 1
  • (7−1)−3

Solución
(7−1)−3 = 7(−1) · (−3) = 73 = 343
  • 63 · 83

Solución
63 · 83 = (6 · 8)3 = 483 = 110.592
  • (−1/2)−2

Solución
(−1/2)−2 = (−2)2 = (−2) · (−2) = 4 
  • 83 / 43

Solución
83 / 43 = (8/4)3 = 23 = 8
RECURSOS PARA DOCENTES

Artículo “Ejercicios de propiedades de la potencia”

En el artículo podrá reforzar las propiedades de potenciación vistas a partir de ejemplos y ejercicios. También se explica la importancia de la correcta aplicación de las propiedades en cada término al sumar o restar.

VER

CAPÍTULO 4 / TEMA 2

rADICALES

Seguramente ya conoces qué es la potenciación, pero ¿sabías que hay otro tipo de operación muy relacionada con ella? Esta es la radicación y consiste en encontrar un número que al multiplicarse por sí mismo tenga como producto otro número determinado. La radicación es la operación inversa a la potenciación. Hoy aprenderás qué es y cómo calcularla.

¿Qué es la radicación?

Es una operación en la que hallamos raíces de orden n de un determinado número. La raíz n-ésima de un número a es igual a un número b que elevado a la n resulta en a.

\boldsymbol{\sqrt[n]{a} = b\; \; \Leftrightarrow \; \; b^{n}=a}

Ejemplo:

\boldsymbol{\sqrt[3]{8} = 2}\; \; porque\; \; \boldsymbol{ 2^{3}= 2\times 2\times 2 = 8}

\boldsymbol{\sqrt[3]{27} = 3}\; \; porque\; \; \boldsymbol{ 3^{3} = 3\times 3\times 3 =27}

Como ves, la radicación y la potenciación tienen mucho en común, incluso en sus elementos. De modo que también podemos expresar a un radical como una potencia de exponente fraccionario.

\boldsymbol{\sqrt[n]{a^{x}} = a^{\frac{x}{n}}}

Ejemplo:

\boldsymbol{\sqrt[3]{8} = 8^{\frac{1}{3}}}

\boldsymbol{\sqrt[3]{27} = 27^{\frac{1}{3}}}

Relación entre potenciación y radicación

Existe una gran relación complementaria entre la potenciación y la radicación, y la podemos observar con la semejanza que existe entre los elementos que la componen.

  • Al exponente de la potencia se lo llama índice de radical.
  • Al resultado denominado potencia se lo llama raíz.
  • A la base de la potencia se la llama radicando.

Elementos de los radicales

Al igual que en la potenciación, aquí existen 3 elementos a definir que son los que componen la radicación:

  • Índice (n): orden de la raíz que se aplica al radicando. Indica cuántas veces multiplicamos un número por sí mismo para obtener el radicando.
  • Radicando (a): número sometido a la raíz del orden determinado por el índice.
  • Raíz (b): resultado de la radicación, el cual elevado al orden de la raíz da como resultado el radicando.

¿Sabías qué?
Si el radicando es un número negativo, y el índice es par, no podrá aplicarse la operación de radicación porque el resultado no pertenecerá a los reales.

Raíces cuadradas y cúbicas

De la misma manera que en la potenciación, cuando el índice de la raíz es n = 2 y n = 3 merece una distinción. Por lo tanto, a estos los vamos a denominar como raíz cuadrada y cúbica, respectivamente.

La raíz cuadrada es aquella cuyo índice es 2. No es necesario escribir el índice de la raíces cuadradas. Por ejemplo:

\boldsymbol{\sqrt[2]{9}=\sqrt{9}}     Se lee “raíz cuadrada de nueve”.

La raíz cúbica es aquella cuyo índice es 3. Por ejemplo:

\boldsymbol{\sqrt[3]{8}}     Se lee “raíz cúbica de 8”.

Para encontrar la solución de un radical se debe pensar: ¿qué número habrá que elevar al índice n para que el resultado sea el valor del radicando? Ese número será el resultado denominado como raíz. Por ejemplo, para resolver √9 se debe pensar: ¿qué número debo elevar al cuadrado (n = 2) para que el resultado sea 9?. La respuesta es 3.

Solución de raíces

La solución de una raíz depende principalmente del radicando y del índice de la raíz. En algunas ocasiones puede tener una o dos soluciones y, en otros casos, puede que no tenga solución.

  • Radicando mayor que cero con n par.

Hay dos soluciones: una positiva y una negativa.

\boldsymbol{\sqrt{4}=\pm 2}\; \; porque \; \; \boldsymbol{(-2)^{2}=4\; \; y\; \; 2^{2}=4}

  • Radicando mayor que cero con n impar.

Hay una solución positiva.

\boldsymbol{\sqrt[3]{125}=5}\; \; porque \; \; \boldsymbol{5^{3}=5\times 5\times 5=125}

  • Radicando menor que cero con n par.

No tiene solución dentro de los números reales.

\boldsymbol{\sqrt{-9}=}no \; existe \; en\; \mathbb{R}

  • Radicando menor que cero con n impar.

Hay una sola negativa.

\boldsymbol{\sqrt[3]{-64} = -4} \; \; porque\; \; \boldsymbol{(-4)^{3}= -4\times -4\times -4 = -64}

[/su_note]

– Ejemplos de raíces:

\boldsymbol{\sqrt{4} = 2}

\boldsymbol{\sqrt{9} = 3}

\boldsymbol{\sqrt[3]{1}=1}

\boldsymbol{\sqrt[3]{27}=3}

\boldsymbol{\sqrt[4]{16}=2}

¿Sabías qué?
Cuando el índice de potencia es una fracción se puede expresar como un radical. Por ejemplo: 91/3 3√9

¡A practicar!

¿Cuál es el resultado de los siguientes ejercicios?

  • \boldsymbol{\sqrt{25}}

Solución

\boldsymbol{\sqrt{25}=5}\; \; porque \; \; \boldsymbol{5^{2}= 5\times 5 = 25}

  • \boldsymbol{\sqrt[3]{64}}

Solución

\boldsymbol{\sqrt[3]{64}= 4}\; \; porque \; \; \boldsymbol{4^{3}=4\times 4\times 4=64}

  • \boldsymbol{\sqrt[5]{-32}}

Solución

\boldsymbol{\sqrt[5]{-32}=-2} \; \; porque\; \; \boldsymbol{(-2)^{5}=-2\times -2\times -2\times -2\times -2=-32}

La radicación es la operación opuesta a la potenciación y consiste en hallar raíces de orden n de un determinado número. Consta de tres elementos llamados índice, radicando y raíz. El símbolo usado para mostrar esta operación se lo conoce como raíz o radical y el primero en utilizarlo fue el matemático Christoph Rudolff en 1525.

Raíces exactas e inexactas

La raíz cuadrada exacta es aquella que tiene como radicando un cuadrado perfecto, mientras que la raíz cuadrada inexacta es la que no tiene como radicando un cuadrado perfecto.

Cuadrados perfectos

Un cuadrado perfecto resulta de multiplicar un número por sí mismo dos veces. Estos números los podemos ordenar en un cuadrado, por ejemplo, 9 es un cuadrado perfecto porque lo podemos escribir como 3 x 3 y lo ordenamos como:

En esta tabla verás la relación de los diez primeros cuadrados perfectos con sus raíces:

Cuadrado perfecto Raíz cuadrada exacta
1^{2}=1 \sqrt{1}=1
2^{2}=4 \sqrt{4}=2
3^{2}=9 \sqrt{9}=3
4^{2}=16 \sqrt{16}=4
5^{2}=25 \sqrt{25}=5
6^{2}=36 \sqrt{36}=6
7^{2}=49 \sqrt{49}=7
8^{2}=64 \sqrt{64}=8
9^{2}=81 \sqrt{81}=9
10^{2}=100 \sqrt{100}=10

Pero no todos los números tienen raíces cuadradas exactas. En esos casos, calculamos la raíz cuadrada entera y luego contamos el resto. Por ejemplo, 55 no tiene raíz cuadrada exacta porque 72 = 49 y 82 = 64.

Por aproximación o tanteo, decimos que la raíz cuadrada entera de 55 es 7 y el resto lo obtenemos por la resta 55 − 49 = 6.

Entonces, \sqrt{55} = 5\; \; y\; resto \; 6.

¡A practicar!

1. ¿Qué tipo de raíz dará como resultado cada uno de los siguientes ejercicios?

  • \sqrt{121}

Solución
Raíz exacta.
  • \sqrt{13}

Solución
Raíz inexacta.
  • \sqrt{125}

Solución
Raíz inexacta.
  • \sqrt{70}

Solución
Raíz inexacta

2. Completa.

  • 5^{2}=\underline{\: \: \: \: \: \: }\Leftrightarrow \sqrt{25}=\underline{\: \: \: \: \: \: }
Solución

5^{2}=\boldsymbol{25}\Leftrightarrow \sqrt{25}=\boldsymbol{5}

  • 10^{2}=\underline{\: \: \: \: \: \: }\Leftrightarrow \sqrt{100}=\underline{\: \: \: \: \: \: }
Solución

10^{2}=\boldsymbol{100}\Leftrightarrow \sqrt{100}=\boldsymbol{10}

  • 12^{2}=\underline{\: \: \: \: \: \: }\Leftrightarrow \sqrt{144}=\underline{\: \: \: \: \: \: }
Solución

12^{2}=\boldsymbol{144}\Leftrightarrow \sqrt{144}=\boldsymbol{12}

  • 13^{2}=\underline{\: \: \: \: \: \: }\Leftrightarrow \sqrt{169}=\underline{\: \: \: \: \: \: }
Solución

13^{2}=\boldsymbol{169}\Leftrightarrow \sqrt{169}=\boldsymbol{13}

3. Resuelve las siguientes raíces cuadradas.

  • \sqrt{400}
Solución

\sqrt{400}=\boldsymbol{20}

  • \sqrt{70}
Solución

\sqrt{70}= \boldsymbol{8} \; y \; resto\; \boldsymbol{6}

  • \sqrt{625}
Solución

\sqrt{625}=\boldsymbol{25}

  • \sqrt{17}
Solución

\sqrt{17}= \boldsymbol{4}\; y\; resto \; \boldsymbol{1}

  • \sqrt{81}
Solución

\sqrt{81}=\boldsymbol{9}

RECURSOS PARA DOCENTES

Artículo “La radicación”

En es artículo encontrará los aspectos inherentes a la radicación y encontrará una introducción a las propiedades de radicación y potenciación.

VER

Artículo “Cálculo de una raíz cuadrada”

Este recurso le permitirá profundizar sobre las raíces cuadradas y cómo calcularla paso a paso sin calculadora.

VER

CAPÍTULO 4 / TEMA 1

Potencia

La potencia, también llamada potenciación, es una operación matemática que implica multiplicar varias veces un mismo número. Como todo cálculo matemático, tiene sus partes y propiedades. A continuación, aprenderás cuáles son sus características y cómo resolver problemas de este tipo.

¿Qué es la potencia?

La potencia es una multiplicación abreviada. Esta operación consiste en multiplicar un número llamado base la cantidad de veces que indique otro número llamado exponente. Los exponentes los colocamos como superíndice de un número.

Donde:

a: base

n: exponente

¿Sabías qué?

La radicación es la operación inversa a la potenciación.

Elementos de la potencia

Toda potencia está formada por dos elementos:

  • La base: es el factor que será multiplicado n cantidad de veces.
  • El exponente: es el número de veces que se multiplica la base por sí misma.

Cálculo de la potencia de un número

Para calcular la potencia de un número debemos tener conocimientos sobre la multiplicación, ya que el proceso consiste en aplicar esta operación de forma repetitiva.

– Ejemplo:

53 = 5 · 5 · 5 = 125

Como el exponente es 3, multiplicamos la base tres veces por sí misma.

– Otros ejemplos:

  • 23 = 2 · 2 · 2 = 8
  • 32 = 3 · 3 = 9
  • 64 = 6 · 6 · 6 · 6 = 1.296

Casos especiales

Cuando el exponente es 1, el resultado será igual a la base.

  • 81 = 8
  • 121 = 12

Cuando el exponente es 0, el resultado siempre será 1.

  • 30 = 1
  • 250 = 1

Cuando la base es 0, el resultado siempre sera 0.

  • 05 = 0
  • 08 = 0
Cuando el exponente es igual a dos (2), decimos que un número está elevado al cuadrado. Esto lo vemos en ecuaciones matemáticas como la del teorema de Pitágoras. Este teorema explica la relación entre los catetos y la hipotenusa de un triángulo rectángulo. Así, si la hipotenusa mide “c”, y la medida de los catetos es “a” y “b”, se verifica que c2 = a2 + b2.

 

Potencia base 10

Cuando la base es igual a 10 solo se deben añadir tantos ceros como indique el exponente. Por ejemplo:

  • 104 = 10.000
  • 102 = 100
  • 101 = 10

Lectura de potencias

Existen dos formas válidas de leer potencias:

1. Nombrar el número de la base seguido de la expresión “elevado a“. Luego nombrar el número del exponente.

  • 65 se lee “seis elevado a cinco”.
  • 28 se lee “dos elevado a ocho”.

2. Nombrar el número de la base seguido de de la expresión “a la“. Luego nombrar el número de exponente como un número ordinal femenino.

  • 65 se lee “seis a la quinta”.
  • 28 se lee “dos a la octava”.

Cuadrados y cubos

Las potencias tienen una estrecha relación con el cálculo del área y el volumen de figuras geométricas. Gracias a esto, cuando el exponente es 2, la potencia se llama cuadrado; y cuando el exponente es 3, la potencia se llama cubo.

Por ejemplo, si un cuadrado está formado por tres cuadros más pequeños por cada lado, basta con hacer este cálculo de 32 que se lee “tres al cuadrado”:

32 = 3 · 3 = 9

En cambio, si tenemos un cubo compuesto por tres cubos más pequeños en sus tres dimensiones: alto, ancho y profundidad, calcularemos 33 que se lee “tres al cubo”:

33 = 3 · 3 · 3 = 27

Entonces, un cubo de Rubik está formado por 27 cubos más pequeños.

Bases negativas

Cuando la base es negativa, el resultado puede variar de estas formas:

  • Si el exponente es un número impar, el resultado será negativo.
  • Si el exponente es un número par, el resultado será positivo.

– Ejemplo:

  • (−2)3 =(−2) · (−2) · (−2) = −8
  • (−2)2 = (−2) · (−2) = 4

¡A practicar!

¿Qué signo tendrá el resultado de las siguientes operaciones?

  • (−15)13
    Solución
    Negativo porque 13 es impar.
  • (14)20
    Solución
    Positivo porque 20 es par.
  • (−5)4
    Solución
    Positivo porque 4 es par.

Usos de la potencia

Las aplicaciones de la potenciación son de amplio rango en diversas profesiones. Los astrónomos emplean la potencia de base 10 para representar medidas muy grandes, como la distancia de la Tierra al Sol. También las usan los oceanógrafos y geólogos para escribir el valor de grandes extensiones de tierra o agua, por ejemplo, el volumen del océano Atlántico es 3,54 · 108 km3.

Además de expresar cantidades muy grandes, las potencias funcionan para representar números muy pequeños. La diferencia en esto casos es que la potencia tiene un exponente negativo, por ejemplo, un virus puede llegar a medir 2 · 10−8 cm, y la masa de un electrón es de 9,1 · 10−31 kg.

Uno de los tipos de potencias más usadas son las potencias de base 10 porque sirven para expresar cantidades muy grandes de manera sencilla. Estas potencias son iguales a la unidad seguida de tantos ceros como indique el exponente. Por ejemplo, la masa del planeta Tierra es de aproximadamente 6 x 1024 kg, es decir, 6 seguido de 24 ceros.

¡A practicar!

1. Expresa en forma de potencia los siguientes productos:

  • 8 · 8 · 8 · 8 =
    Solución
    8 · 8 · 8 · 8 = 84
  • 3 · 3 =
    Solución
    3 · 3 = 32
  • 10 · 10 · 10 · 10 · 10 · 10 =
    Solución
    10 · 10 · 10 · 10 · 10 · 10 = 106
  • 5 · 5 · 5 · 5 =
    Solución
    5 · 5 · 5 · 5 = 54
  • 7 · 7 · 7 =
    Solución
    7 · 7 · 7 = 73
  • 15 · 15 · 15 · 15 · 15 · 15 =
    Solución
    15 · 15 · 15 · 15 · 15 · 15 = 156

 

2. ¿Cuál es el resultado de las siguientes operaciones?

  • 92
    Solución
    92 = 9 · 9 = 81
  • (−5)3
    Solución
    (−5)3 = (−5) · (−5) · (−5) = −125 
  • 105
    Solución
    105 = 10 · 10 · 10 · 10 · 10 = 100.000
  • (−18)4
    Solución
    (−18)4 = (−18) · (−18) · (−18) · (−18) = 104.976
  • (−6)8
    Solución
    (−6)8 = (−6) · (−6) · (−6) · (−6) · (−6) · (−6) · (−6) · (−6) = 1.679.616 
  • 109
    Solución
    109 = 10 · 10 · 10 · 10 · 10 · 10 · 10 · 10 · 10 · 10 = 1.000.000.000 

RECURSOS PARA DOCENTES

Artículo “Potenciación y radicación”

Este artículo te permitirá tener más contenido sobre las potencias y la radicación, operación inversa a la potenciación.

VER

Artículo “Ejercicios de potenciación

Con este recurso podrás profundizar sobre qué es la potenciación y encontrarás una lista de ejercicios para reforzar lo aprendido.

VER