CAPÍTULO 1 / TEMA 7 (REVISIÓN)

SENTIDO NUMÉRICO | REVISIÓN

UNIVERSO DE LOS NÚMEROS

Los números desde su invención han servido para contar cosas y por eso existen diferentes sistemas y tipos de números que permiten un mejor conocimiento de las cantidades. Para comprender el sentido numérico, dentro del universo de los números se utilizan diversas clasificaciones. Un tipo de números son los ordinales que sirven para establecer un orden. Por otro lado, existen los cardinales que indican cantidades numéricas de elementos que pertenecen a un grupo o conjunto. Actualmente, el sistema más usado es el sistema numérico decimal pero no es el único que existe. Otras culturas crearon sistemas de numeración distintos al decimal, como por ejemplo, los mayas y los romanos.

El sistema de numeración binario se utiliza principalmente en la informática. Está conformado solo por dos cifras: el 0 y el 1.

NÚMEROS PRIMOS Y COMPUESTOS

De acuerdo a la cantidad de divisores que poseen los número, los podemos clasificar en primos y compuestos. Los números primos son aquellos que solo son divisibles por el número uno y por sí mismos. En cambio, los números compuestos son aquellos que además de ser divisibles por el uno y por sí mismos, también son divisibles por otro u otros números, es decir, tienen más de dos divisores. Todos los números compuestos pueden expresarse como un producto de factores primos.

Para determinar los factores primos de un número compuesto se emplean los criterios de divisibilidad.

VALOR POSICIONAL

Una de las principales características de nuestro sistema de numeración decimal es que el valor de los dígitos varía de acuerdo a su ubicación dentro del número. Esta característica se denomina valor posicional y aplica tanto en los números enteros como en los fraccionarios. Una herramienta que nos permite observar directamente el valor de cada dígito de acuerdo al lugar que ocupa es la tabla posicional.

Según la posición de cada dígito, los números pueden descomponerse en forma de suma (descomposición aditiva) o de multiplicación (descomposición multiplicativa).

NÚMEROS DECIMALES

Hay números que se ubican entre dos números enteros consecutivos, estos números se denominan números decimales y se caracterizan porque presentan una parte entera y una decimal, que se encuentran separadas por una coma o punto de acuerdo a la convención del país. Los números decimales se clasifican en racionales y en irracionales. Los racionales se pueden representar en forma de fracción, y los irracionales son números infinitos cuya parte decimal no sigue ningún patrón, como sucede en el caso del número pi.

A menudo se pueden aplicar redondeos en las cifras decimales de un número para simplificar los cálculos.

POTENCIAS

La potenciación es una operación compuesta de tres partes fundamentales: el exponente, la base y la potencia. El exponente indica cuántas veces se debe multiplicar la base por si misma. La base es el número que se multiplica por sí mismo las veces que indique el exponente. La potencia es el resultado de la operación de potenciación. Como toda operación matemática, las potencias cumplen con algunas propiedades. Por ejemplo, todo número elevado a 0 es igual a 1. Para resolver potencias se aplican sus propiedades y se realizan multiplicaciones sucesivas de la base.

Cuando el exponente es 1, la potencia es siempre igual a la base.

RAÍZ DE UN NÚMERO

La radicación es la operación inversa a la potenciación y por ello se encuentran estrechamente relacionadas. Esta operación emplea el símbolo (√) denominado radical. Sus elementos principales son el radicando, el índice y la raíz. El radicando es el número al cual se le va a calcular la raíz y se encuentra en la parte inferior del radical. El índice es el número que índica la cantidad de veces en las que debe multiplicarse un número por sí mismo para que el resultado sea igual al radicando, y se ubica en la parte izquierda del radical. La raíz es el resultado de la operación. Para calcular una raíz se debe buscar un número que multiplicado por sí mismo las veces que indique el índice dé como resultado el mismo valor del radicando.

En las raíces cuadradas, el índice 2 no se coloca en el radical: simplemente se denotan como (√).

 

CAPÍTULO 1 / TEMA 6

RAÍZ DE UN NÚMERO

Estrechamente relacionada con la potenciación, existe otra operación matemática denominada “radicación”. Ambas operaciones matemáticas son inversas. La raíz cuadrada y la raíz cúbica son unas de las formas de radicación más conocidas. Este tipo de operaciones se emplea en varios ámbitos, especialmente en la geometría y en otras ciencias.

¿Qué es una raíz?

La raíz es el número que se obtiene como resultado de la operación matemática denominada “radicación”. La potenciación calcula el número o potencia que resulta de multiplicar la base por si misma las veces que indica el exponente. La radicación por su parte, calcula la base a partir del exponente y de la potencia. Por eso se dice que son operaciones inversas.

Elementos de las raíces

Para saber cómo encontrar la raíz de un número, primero debemos conocer todos los elementos de la radicación:

Radical: es el símbolo que se emplea en la radicación y se denota como (√).

Radicando: es el número al que se le va a hallar la raíz. Se ubica en la parte inferior del radical, por lo cual es denominado también cantidad subradical.

Índice: es el número que indica las veces que hay que multiplicar un número por sí mismo para obtener el radicando. Se ubica en la abertura izquierda del radical.

Raíz: es el número que al multiplicarse por si mismo las veces que indica el índice es igual al radicando.

¿Sabías qué?
Cuando el índice de una raíz es 2, se denomina raíz cuadrada. En este caso basta con escribir el símbolo de radical sin el índice.

Lectura de raíces

Para leer expresiones de este tipo se debe tener en cuenta que todo depende del número índice de la raíz.

Cuando el número índice es mayor a tres, se  utilizan números ordinales para leer el valor de la raíz seguido del radicando. Por ejemplo:

\sqrt[6]{64} = raíz sexta de sesenta y cuatro.

\sqrt[4]{625} = raíz cuarta de seiscientos veintiocho.

Si el índice es 2 se lee “raíz cuadrada” y luego se menciona el número del radicando:

\sqrt[]{5} = raíz cuadrada de cinco.

Cuando el índice es 3 se lee “raíz cúbica” y luego se menciona el número del radicando:

\sqrt[3]{27} = raíz cúbica de veintisiete.

¿Cómo se encuentra la raíz?

La raíz de un número se debe calcular al buscar un número que multiplicado por sí mismo la cantidad de veces que exprese el índice dé como resultado el radicando.

Por ejemplo: si el índice es 3 y el radicando es 8, se debe buscar un número que multiplicado 3 veces por si mismo dé como resultado 8. En este caso, sería 2 porque 2 × 2 × 2 = 8. Por lo tanto, la raíz cúbica de 8 es igual a 2.

\sqrt[3]{8}= 2

En el siguiente ejemplo, la raíz cúbica de 64, se obtuvo al buscar un número que multiplicado tres veces por sí mismo dé como resultado 64. En este caso, el resultado es 4 porque 4 × 4 × 4 = 64.

\sqrt[3]{64}= 4

Relación entre potenciación y radicación

Existe una estrecha relación entre la potenciación y la radicación, esto se debe a que ambas operaciones son inversas entre sí.

Si consideramos el ejemplo anterior se podría afirmar que como cuatro elevado al cubo es igual a sesenta y cuatro, a su vez, la raíz cúbica de sesenta y cuatro es cuatro. En el siguiente diagrama podemos observar de forma más clara a esta relación:

Al utilizar la relación que existen entre la potenciación y la radicación podemos definir a esta última como la búsqueda de la base de una potencia cuyo exponente es el índice de la raíz; o, en otras palabras, la búsqueda de un número que elevado al índice dé como resultado el radicando. Esto se aplica de forma habitual en cálculos y fórmulas avanzadas.

 

¿Sabías qué?
No todos los números tienen una raíz exacta. Por ejemplo, \sqrt{2}=1,41421356... 

Cálculo de raíces

Como vimos anteriormente, para encontrar una raíz debemos hacer multiplicaciones de un número por sí mismo según indique el índice. Sin embargo, en la radicación podemos encontrar uno o más cálculos dentro del radicando. Cuando esto sucede, debemos seguir los siguientes pasos.

  1. Resolver las operaciones que están dentro del radicando.
  2. Resolver la raíz

En los siguientes ejemplos veremos el cálculo cuando dentro del radicando existen sumas y restas:

  1. \sqrt{100 + 44}   →  \sqrt{144} = 12
  2. \sqrt{250 - 25}   → \sqrt{225}= 15

Cuando se encuentren otras operaciones además de la suma o resta, se resuelven aquellas primero y luego se resuelven las sumas y restas:

  1. \sqrt[3]{50\times 6 + 43 }  →  \sqrt[3]{300 + 43}  →  \sqrt[3]{343}= 7
  2. \sqrt{270 : 3 + 10}  →  \sqrt{90 + 10}  → \sqrt{100}= 10
Los elementos de la radicación son: el índice, el radicando y la raíz. Esta última se obtiene al buscar un número que multiplicado por sí mismo la cantidad de veces que exprese el índice dé como resultado el radicando. En la radicación podemos encontrar uno o más cálculos dentro del símbolo radical. Cuando esto sucede primero se realizan las operaciones y luego se busca la raíz.

¡A practicar!

1. ¿Cómo se leen las siguientes raíces?

a) \sqrt[3]{1.000} 

b) \sqrt{49}

c) \sqrt[3]{125}

d) \sqrt{144}

e) \sqrt[4]{256}

f) \sqrt[3]{343}

g) \sqrt{121}

RESPUESTAS

a) \sqrt[3]{1.000} = raíz cúbica de mil.

b) \sqrt{49} = raíz cuadrada de cuarenta y nueve.

c) \sqrt[3]{125} = raíz cúbica de ciento veinticinco.

d) \sqrt{144} = raíz cuadrada de ciento cuarenta y cuatro.

e) \sqrt[4]{256} = raíz cuarta de doscientos cincuenta y seis.

f) \sqrt[3]{343} = raíz cúbica de trescientos cuarenta y tres.

g) \sqrt{121} = raíz cuadrada de ciento veintiuno.

 

2. Calcula las siguientes raíces.

a) \sqrt[3]{27}

b) \sqrt{36}

c) \sqrt{16}

RESPUESTAS

a) \sqrt[3]{27}  = 3 → porque 3 x 3 x 3 (o 33) es 27.

b) \sqrt{36} = 6 → porque 6 x 6  (o 62) es 36.

c) \sqrt{16} = 4 → porque 4 x 4 (o 42) es 16.

d) \sqrt{81} = 9 → porque 9 x 9 (o 92) es 81.

e) \sqrt[3]{8} = 2 porque 2 x 2 x 2 (o 23) es 8.

f) \sqrt[3]{64} = 4 → porque 4 x 4 x 4 (o 43) es 64.

g) \sqrt{9} = 3 → porque 3 x 3 (o 32) es 9.

  • Resuelve los cálculos y luego encuentra las raíces:

a) \sqrt{9 - 7 + 2}

b) \sqrt{32\times 2}

c) \sqrt{100 : 5 + 5}

RESPUESTAS

a) \sqrt{9 - 7 + 2}= \sqrt{2 + 2}=\sqrt{4}=2

b) \sqrt{32 \times 2} = \sqrt{64} = 8

c) \sqrt{100 : 5 + 5}= \sqrt{20 + 5}=\sqrt{25}=5

RECURSOS PARA DOCENTES

Artículo destacado “La radicación”

El siguiente artículo explica qué es la radicación, cuáles son sus principales elementos y cómo resolver problemas de este tipo.

VER

Artículo destacado “Propiedades de raíces”

El siguiente artículo te ayudará a conocer en mayor profundidad cuáles son las propiedades de la radicación. Además, contiene algunos ejemplos en donde son aplicadas.

VER

CAPÍTULO 1 / TEMA 5

Potencias

La potencia es una expresión matemática en la que un número denominado base está elevado a un exponente, el cual indica las veces que la base debe multiplicarse por si misma. Este tipo de operación tiene múltiples aplicaciones en los cálculos combinados y en una forma especial de escribir números: la notación científica.

¿Qué es una potencia?

La potenciación es una operación matemática compuesta por dos partes principales: la base y el exponente.

Como podemos observar, el exponente se escribe en la parte superior derecha de la base y su tamaño es mucho menor.

El exponente de una potencia indica cuántas veces se debe multiplicar a la base por si misma. La potencia es el producto de esa multiplicación.

Por ejemplo:

Una potencia es una multiplicación sucesiva de la base por si misma. Por ejemplo si el exponente fuera 6 y la base 5, esta última se repetiría exactamente 6 veces dentro de la multiplicación, es decir:

 56 = × × × × × 5.

Resolver potencias

Al calcular una potencia debemos saber que el número correspondiente a la base se va a repetir sin alterarse en todas las multiplicaciones según indique el exponente. Por lo tanto, cuando el número del exponente sea grande, se deben resolver las multiplicaciones de forma separada. Esto quiere decir que se comienza a resolver el primer producto y luego el resultado se multiplica nuevamente por la base y así sucesivamente hasta obtener el resultado. Por ejemplo:

En este caso la base de esta potencia es 5 y se multiplica por si misma las veces que indica el exponente. Como el exponente es 3, se debe multiplicar el 5 tres veces por si mismo. Se recomienda resolver el primer producto 5 × 5 y luego volver a multiplicar por 5 al resultado.

Algunas propiedades de la potencia

Existen algunos casos en las potencias que cumplen con ciertas propiedades. Algunas de ellas son:

Exponente cero

Cuando el exponente es 0 (cero), la potencia siempre va a ser igual a 1 (uno). Esto sucede con cualquier número como base diferente de cero. Por ejemplo: 70 = 1.

Exponente igual a uno

Cuando el exponente es 1 (uno), la potencia siempre va a ser igual al número perteneciente a la base. Por ejemplo: 81 = 8.

Base igual a 10

Cuando la base de una potencia es 10 (diez), la potencia va a ser igual a la unidad  seguida de tantos ceros como indique el exponente. Por ejemplo: 10= 1.000.000. 

¿Sabías qué?
Cuando el exponente de una potencia es igual a uno, a menudo se escribe solo el valor de la base y se omite al exponente.

Elementos de la potencia

Los elementos de la potencia son los siguientes:

Base: es el número que se multiplica por si mismo las veces que indique el exponente.
Exponente: es el número que indica las veces en las se tiene que multiplicar la base por si misma. También se lo denomina índice.
Potencia: es el resultado.

¿Cómo leer una potencia?

La manera correcta es leer primero el número de la base, luego se dice la expresión “elevado a la” y por último se lee el valor del exponente en números ordinales (cuarta, quinta, sexta, etc.). De manera resumida se debe seguir la siguiente estructura:

Base + “elevado a la” + exponente

La expresión 34 se lee como “tres elevado a la cuarta“.

Otros ejemplos:

85 = ocho elevado a la quinta.

4= cuatro elevado a la novena.

17 = uno elevado a la séptima.

Exponentes particulares

Existen dos exponentes que particularmente se leen de forma distinta al restos. Estos son el dos y el tres.

  • Cuando el exponente es 2, se dice que el número de la base está elevado al cuadrado. Por ejemplo: 42 se lee “cuatro elevado al cuadrado”.
  • Cuando el exponente es 3, se dice que el número de la base está elevado al cubo. Por ejemplo: 33 se lee “tres elevado al cubo”.

¿Sabías qué?
Si la base es 1, sin importar el exponente,  la potencia siempre va a ser igual a 1.

Cálculo de potencias

Como vimos anteriormente, el cálculo de una potencia se realiza al multiplicar la base según indique el exponente. Sin embargo, hay ejercicios que contienen otras operaciones además de la potencia.

Suma o resta de un número y una potencia

En estos casos se resuelve primero la potencia y luego se resuelve la suma o resta.

Observemos el siguiente caso:

84

Lo primero que debemos resolver es la potencia; es decir, resolver  82:

82 = 8 × 8 = 64

Luego se sustituye el valor de la potencia en la expresión inicial y se resuelve:

64 4 = 60

De esta forma se obtiene que:

84 = 60

 

Paréntesis con suma o resta

Cuando la base de una potencia se encuentra entre paréntesis, lo primero que debemos resolver es la operación que se encuentra dentro del paréntesis, posteriormente se resuelve la potencia del resultado obtenido.

Observemos el siguiente caso:

(6 + 2)3 

Lo primero es resolver la operación dentro del paréntesis:

6 + 2 = 8

Luego se reemplaza el resultado obtenido en la operación ubicada dentro del paréntesis:

(8)3 

Al resolver dicha potencia obtenemos el resultado del problema:

(8)3 = 8 × 8 × 8 = 512

De esta forma tenemos que:

(6 + 2)3  512

Conocer las propiedades de las potencias permite resolver problemas de este tipo de forma rápida. Por ejemplo, si tenemos (100 + 93)0 podemos responder rápidamente que el resultado es 1 sin realizar ningún cálculo. Esto se debe a que una de las propiedades indica que la potencia de todo número diferente de cero que tenga exponente cero va a ser igual a uno.

¡A practicar!

1. Resuelve las siguientes potencias.

a. 5^{3}

b. 7^{4}

c. 2^{6}

d. 4^{5}

e. 5^{0}

f. 9^{2}

g. 2^{1}

RESPUESTAS

a. 5^{3}= 125

b. 7^{4}= 2.401

c. 2^{6} = 64

d. 4^{5}= 1.024

e. 5^{0}= 1

f. 9^{2}= 81

g.2^{1} = 2

2. Escribe cómo deberían leerse las siguientes potencias.

a. 8^{7}

b. 3^{4}

c. 4^{3}

d. 9^{5}

e. 6^{6}

f. 1^{2}

RESPUESTAS

a. 8^{7} = ocho elevado a la séptima.

b. 3^{4} = tres elevado a la cuarta.

c. 4^{3} = cuatro elevado al cubo.

d. 9^{5} = nueve elevado a la quinta.

e. 6^{6} = seis elevado a la sexta.

f. 1^{2} = uno elevado al cuadrado.

3. Resuelve los siguientes cálculos.

a. 5^{2}+9

b.\left ( 15-3 \right )^{1} 

c. \left ( 2\times 5 \right )^{3}

RESPUESTAS

a. 5^{2}+9= 25 + 9 = 34

b. \left ( 15-3 \right )^{1}= (12)^{1} = 12

c. \left ( 2\times 5 \right )^{3}= (10)^{3} = 1.000

RECURSOS PARA DOCENTES

Artículo destacado “Potenciación: operaciones de exponentes”

El siguiente artículo ayuda a conocer cómo leer y resolver las operaciones básicas de las potencias. De igual forma, explica sus propiedades.

VER

Artículo destacado “Ejercicios de potenciación”

Este artículo está enfocado en la forma de resolver problemas relacionados con las potencias a través del empleo de sus propiedades.

VER

CAPÍTULO 4 / TEMA 5

APLICACIÓN DE LA POTENCIA Y DE LA RADICACIÓN

La potenciación y la radicación son operaciones estrechamente relacionadas. Mientras que la primera es una multiplicación condensada de un número por sí mismo n cantidad de veces, la segunda busca ese número que multiplicado por sí mismo resulte en el radicando. Si bien sus propiedades ya se trataron en temas anteriores, aquí aprenderás otras aplicaciones de estos cálculos.

operaciones que simplifican

Tanto la potenciación como la radicación son operaciones útiles para mostrar números de manera más simple. Por ejemplo, dentro del conjunto de los números reales encontramos otros tipos de números que no son sencillos de representar, como los números irracionales, cuyas expresiones decimales son ilimitadas y no periódicas, por lo que es más fácil mostrarlo como una raíz:

\boldsymbol{\sqrt{2}=1,414213562...}

\boldsymbol{\sqrt{3}=1,732050807...}

\boldsymbol{\sqrt{5}=2,236067977...}

Por su parte, la potencia nos ayuda a expresar números muy grandes o muy pequeños de manera resumida, pues la potencia no es más que una multiplicación abreviada.

La descomposición en factores primos y la notación científica son solo dos de los procesos que pueden verse involucrados con la potenciación y la radicación. Ambas operaciones son empleadas en múltiples cálculos cotidianos y en diversas áreas como la astronomía, la ingeniería o la biología.

Las bacterias son microorganismos que crecen con un ritmo acelerado. Este crecimiento suele expresarse en forma de potencia con exponente positivo y se grafica en forma de línea curva ascendente. Saber que tan rápida puede ser la reproducción de una bacteria puede prevenir focos de infección en un paciente y evitar que este sea una víctima mortal.

descomposición en factores primos

También conocida como descomposición factorial o factorización, consiste en escribir un número como producto de sus números primos. Cada vez que un factor se repita en la descomposición, este se convertirá  en la base de una potencia y la cantidad de veces que se repita será el exponente.

– Ejemplo:

¿Qué es un número primo?

Un número primo es un número natural que tiene dos divisores positivos: al uno y a sí mismo. Esta tabla muestra los primero números primos en color azul.

¿Sabías qué?
Las factorización es un paso indispensable para calcular el mínimo común múltiplo y el máximo común divisor de un número.

Las raíces también se pueden obtener por medio de la descomposición del radicando en sus números primos.

– Ejemplo:

Halla la raíz cuadrada de 625 por descomposición de sus factores primos.

1. Descomponemos al número 625 en sus factores primos.

2. Expresamos la raíz cuadrada con producto de la descomposición.

\boldsymbol{\sqrt{625}=\sqrt{5^{4}}}

3. Aplicamos la propiedad “raíz de un potencia”.

\boldsymbol{\sqrt{5^{4}}=5^{\frac{4}{2}}=5^{2}=25}

4. Escribimos el resultado.

\boldsymbol{\sqrt{625}=25}


– Otro ejemplo:

Halla la raíz cuadrada de 196 por descomposición de sus factores primos.

1. Descomponemos al número 196 en sus factores primos.

2. Expresamos la raíz cuadrada con su radicando igual al producto de su descomposición.

\boldsymbol{\sqrt{196}=\sqrt{2^{2}\times 7^{2}}}

3. Aplicamos la propiedad “raíz de un producto”.

\boldsymbol{\sqrt{2^{2}\times 7^{2}}=\sqrt{2^{2}}\times \sqrt{7^{2}}}

4. Aplicamos la propiedad “raíz de una potencia”.

\boldsymbol{\sqrt{2^{2}}\times \sqrt{7^{2}}=2^{\frac{2}{2}}\times 7^{\frac{2}{2}}=2\times 7=14}

5. Escribimos el resultado.

\boldsymbol{\sqrt{196}=14}


– Otro ejemplo:

Halla la raíz cúbica de 1.728 por descomposición de sus factores primos.

  1. Descomponemos el número 1.728 en sus factores primos.

2. Expresamos la raíz cúbica con su radicando igual al producto de su descomposición.

\boldsymbol{\sqrt[3]{1.728}=\sqrt[3]{2^{6}\times 3^{3}}}

3. Aplicamos la propiedad “raíz de un producto”.

\boldsymbol{\sqrt[3]{2^{6}\times 3^{3}}=\sqrt[3]{2^{6}}\times \sqrt[3]{3^{3}}}

4. Aplicamos la propiedad “raíz de una potencia”.

\boldsymbol{\sqrt[3]{2^{6}}\times \sqrt[3]{3^{3}}=2^{\frac{6}{3}}\times 3^{\frac{3}{3}}=2^{2}\times 3=4\times 3=12}

5. Escribimos el resultado.

\boldsymbol{\sqrt[3]{1.728}=12}

Velocidad de un auto en un accidente

Cuando ocurre una accidente de tránsito, por lo general las llantas de los autos dejan una marca sobre el pavimento al frenar. Esta marca es de gran utilidad para los fiscales de tránsito, pues la raíz cuadrada del producto entre la aceleración y la longitud de la marca de frenado es igual a la velocidad del vehículo al momento del choque.

\boldsymbol{\sqrt{-2ax}}

Donde:

a = aceleración

x = longitud de las marcas de frenado

NOTACIÓN CIENTÍFICA

La notación científica es la expresión de números a partir de potencias de base 10. De forma general se representan así:

a × 10n

Donde:

a: es el número entero o decimal que multiplica a la potencia de base 10. Su módulo debe tener un valor igual o mayor que 1 pero menor que 10.

n: es un número entero distinto de cero que corresponde al exponente de la potencia de base 10. Es conocido también como “orden de magnitud”.

Se escriben de la siguientes manera:

  • 10−5 = 0,00001
  • 10−4 = 0,0001
  • 10−3 = 0,001
  • 10−2 = 0,01
  • 10−1 = 0,1
  • 100 = 1
  • 101 = 10
  • 102 = 100
  • 103 = 1.000
  • 104 = 10.000
  • 105 = 100.000

Signos del exponente

Cuando los números son muy pequeños o menores a 1 el exponente es negativo, mientras que si el número es muy grande o mayores a 1 el exponente es positivo.

  • Los exponentes positivos indican la cantidad de ceros que se encuentran a la derecha del número que multiplica la potencia. Por ejemplo, el número 2.000.000 representado en notación científica es 2 × 106 en donde el exponente 6 indica la cantidad de ceros que están después del dos.
  • Los exponentes negativos indican la cantidad de ceros a la izquierda del número que multiplica la potencia. Por ejemplo, el número 0,00000004 representado en notación científica es 4 × 10−8. En este caso el signo menos indica que hay 8 ceros delante del 4.
Nuestro planeta Tierra se encuentra en la galaxia espiral llamada Vía Láctea, la cual tiene unos 100.000 años luz de diámetro. Los científicos estiman que hay alrededor de 400.000.000.000 estrellas en esta galaxia. Estos número tan grandes podemos expresarlos por medio de notación científica como 1 × 105 años luz de diámetro y 4 × 1011 estrellas.

– Otros ejemplos:

  • 3,2 × 10−3 = 0,0032
  • 4 × 10−4 = 0,0004
  • 1,05 × 106 = 1.050.000
  • 6,78 × 10−1 = 0,678
  • 9,43 × 102 = 943

¿Sabías qué?
En el caso de números muy grandes, lo primero que se debe hacer es mover la coma decimal a un número que esté comprendido entre 1 y 10. El número de espacios recorridos hasta dicho número corresponderá al exponente de la potencia de base 10.
  • 8.956.000.000.000 = 8,956 × 1012
  • 243.000 = 2,43 × 105
  • 90.000 = 9 × 104
  • 0,00000045 = 4,5 × 10−7
  • 0,007 = 7 × 10−3

¡A practicar!

1. Expresa los siguientes números como producto de sus factores primos.

  • 520
Solución
520 = 23 × 5 × 13
  • 156
Solución
156 = 22 × 3 × 13
  • 200
Solución
200 = 23 × 52
  • 86
Solución
86 = 2 × 43
  • 22
Solución
22 = 2 × 11

2. Calcula las siguientes raíces por descomposición de sus factores primos.

  • \sqrt[3]{729}
Solución
\sqrt[3]{729}=9
  • \sqrt[3]{64}
Solución
\sqrt[3]{64}=4
  • \sqrt[3]{343}
Solución
\sqrt[3]{343}=7
  • \sqrt{324}
Solución
\sqrt{324}=18
  • \sqrt{400}
Solución
\sqrt{400}=20

3. Calcula:

  • 6 × 108
Solución
6 × 108 = 600.000.000
  • 3 × 10−5
Solución
3 × 10−5 = 0,00003
  • 1,26 × 10−6 
Solución
1,26 × 10−6 = 0,00000126
  • 1,78 × 105
Solución
1,78 × 105 = 178.000 
  • 2 × 104
Solución
2 × 104 = 20.000

RECURSOS PARA DOCENTES

Video “Notación científica”

Este recurso audiovisual le permitirá poner en práctica lo aprendido sobre la notación científica.

VER

Artículo “Factorización de números”

Este artículo detalla cómo descomponer números en sus factores primos y su relación con el cálculo del mínimo común múltiplo y máximo común divisor.

VER

CAPÍTULO 4 / TEMA 6 (REVISIÓN)

potenciación y radicación | ¿qué aprendimos?

potencia

La potencia es una operación matemática de multiplicación condensada formada por una base y un exponente. El resultado se obtiene al multiplicar por sí misma la base la cantidad de veces que lo señale el exponente, el cual es un número entero positivo o negativo. Cuando una potencia está elevada a la 2 o a la 3 se lee “elevado al cuadrado” y “elevado al cubo” respectivamente.

La potencia de base 10 es usada en la notación científica: método en el que expresamos números muy grandes, como la cantidad de estrellas de la galaxia; o cantidades muy pequeñas, como el tamaño de una bacteria.

radicales

La operación opuesta a la potenciación es la radicación, en esta se hallan las raíces de orden n de un determinado número. Cuando el radicando es un cuadrado perfecto decimos que la raíz es exacta, en cambio, si el radicando no es un cuadrado perfecto, la raíz es inexacta. Cuando el índice es 2 y 3 las raíces son llamadas “raíz cuadrada” y “raíz cúbica” respectivamente.

Los elementos de la radicación son el índice, el radicando y la raíz. Cuando el radicando es negativo, el índice debe ser impar para que el resultado (raíz) pertenezca a los números reales.

propiedades de la potencia

Las propiedades de la potencia pueden aplicarse siempre y cuando esta operación esté combinada con la multiplicación o la división, nunca con la suma o la resta. Cuando hay sumas y restas cada propiedad se aplica a cada término por separado. Algunas de estas propiedades son: producto de potencia de igual base, cociente de potencia de igual base, potencia de potencia, producto de potencias con bases diferentes y exponentes iguales, cociente de potencias con bases diferentes y exponentes iguales, y exponente negativo.

 

El exponente negativo en una potencia de base 10 nos indica que el número es muy pequeño y que debemos colocar tantos ceros a la izquierda del número como indique este exponente. Por ejemplo, una mitocondria tiene una longitud aproximada de 8 × 10−6 metros.

propiedades de las raíces

Las propiedades de la radicación tienen gran similitud con las de la potenciación. Algunas de ellas son producto y cociente de radicales de igual índice, potencia de un radical y raíz de raíces. Estas son parte fundamental de la representación de números irracionales. Los radicales se suman o restan siempre y cuando estos sean semejantes, es decir, que tengan el mismo índice y el mismo radicando.

Las propiedades de la radicación también pueden expresarse de forma combinada para la resolución de ejercicios matemáticos más complejos.

aplicación de la potencia y la radicación

La potenciación y la radicación nos ayudan a ver números irracionales o muy grandes de manera sencilla. Algunos procedimientos útiles para esta tarea son la descomposición en factores primos y la notación científica. Cuando factorizamos un número lo expresamos como producto de sus números primos; y cuando usamos la notación científica resumimos un número que puede ser muy grande o muy pequeño por medio de la potencia de base 10.

Los números primos son aquellos que solo tienen dos divisores: el 1 y él mismo. Al descomponer un número hacemos uso de ellos, por ejemplo, 12 = 22 × 3.

CAPÍTULO 1 / TEMA 6

POTENCIAS

La matemática está compuesta por numerosos tipos de operaciones que varían según su complejidad. Entre esas operaciones se encuentra la potenciación, que consiste en la multiplicación de factores iguales de acuerdo a un exponente. Al igual que otros cálculos, tiene sus propiedades y sus características particulares. ¡Las aprenderemos a continuación!

La potenciación también puede ser definida como la forma abreviada de escribir un producto de varios factores iguales. En muchas ocasiones, los ejercicios de potenciación pueden parecer algo complejos. Para resolverlos de manera correcta es indispensable conocer sus elementos y propiedades.

LA POTENCIA Y SUS ELEMENTOS

La potencia se define como el resultado (b) de la multiplicación de la base (a) tantas veces como lo indica el exponente (n). En esta operación, a y b son números reales y n es un número entero.

– Ejemplo:

\boldsymbol{4^{3}=4\times 4\times4 =64}

\boldsymbol{5^{4}=5\times 5\times 5\times 5=625}

\boldsymbol{8^{2}=8\times 8 = 64}

¿Cómo se lee una potencia?

Si quieres leer una potencia es necesario que hayas aprendido bien a identificar sus elementos para luego aplicar los siguientes pasos.

  1. Lee la base como cualquier número seguido de la expresión “elevado a la” o “elevado al” según sea el caso.
  2. Lee el exponente como un número ordinal. A excepción del 2 y 3 que se expresan como “al cuadrado” y “al cubo” respectivamente.

– Ejemplo:

\boldsymbol{5^{{\color{Red} 3}}} se lee “cinco al cubo”.

\boldsymbol{4^{{\color{Red} 2}}} se lee “cuatro al cuadrado”.

\boldsymbol{9^{{\color{Red} 5}}} se lee “nueve a la quinta”.

¿Sabías qué?
René Descartes (1596-1650) realizó contribuciones importantes a la matemática y popularizó la notación para la potenciación. 

VER INFOGRAFÍA

¡A practicar!

¿Cómo se leen estas potencias?

\boldsymbol{4^{3}}

Solución

Cuatro al cubo.

\boldsymbol{25^{6}}

Solución

Veinticinco a la sexta.

\boldsymbol{64^{9}}

Solución

Sesenta y cuatro a la novena.

PROPIEDADES DE LA POTENCIA

Potencia de un exponente 0

Todo número elevado a la potencia cero es igual a 1.

\boldsymbol{a^{0}=1}

– Ejemplo:

\boldsymbol{5^{0}=1}

\boldsymbol{\left ( -3 \right )^{0} = 1}

Potencia de un exponente 1

Todo número elevado a la potencia 1 es igual al mismo número.

\boldsymbol{a^{1}=a}

– Ejemplo:

\boldsymbol{5^{1}=5}

\boldsymbol{\left ( -3 \right )^{1} = -3}

Potencia de un exponente negativo

Todo número elevado a la potencia negativa es igual a la fracción de uno sobre la misma base con potencia positiva.

\boldsymbol{a^{-n}=\frac{1}{a^{n}}}

– Ejemplo:

\boldsymbol{5^{-1}=\frac{1}{5^{1}}=\frac{1}{5}}

\boldsymbol{(-3)^{-2}=\frac{1}{(-3)^{2}} = \frac{1}{9}}

Multiplicación de potencias de igual base

En la multiplicación de potencias de igual base se coloca la misma base y se suman los exponentes.

\boldsymbol{a^{n}\times a^{m}=a^{n + m}}

– Ejemplo:

\boldsymbol{3^{2}\times 3^{4}=3^{2 + 4}=3^{6}}

\boldsymbol{(-7)^{5}\times (-7)^{-3}=(-7)^{5+( - 3)}=(-7)^{2}}

División de potencias de igual base

En la división de potencias se coloca la misma base y se restan los exponentes.

\boldsymbol{\frac{a^{n}}{a^{m}}=a^{n-m}}

– Ejemplo:

\boldsymbol{\frac{4^{6}}{4^{2}}=4^{6-2}=4^{4}}

\boldsymbol{\frac{(-3)^{-2}}{(-3)^{4}}=(-3)^{-2-4}= (-3)^{-6}}

Potencia de una potencia

En toda potencia elevada a otra potencia se coloca la misma base y se multiplican los exponentes.

\boldsymbol{(a^{n})^{m}=a^{n \times m}}

– Ejemplo:

\boldsymbol{(9^{2})^{3}=9^{2 \times 3}=9^{6}}

\boldsymbol{((-8)^{2})^{3}=(-8)^{2\times 3}=(-8)^{6}}

Potencia de un exponente racional

En una potencia con exponente fraccionario se extrae el denominador del exponente en forma de raíz y el numerador queda como exponente de la potencia.

\boldsymbol{a^{\frac{n}{m}}= \sqrt[m]{a^{n}}}

– Ejemplo:

\boldsymbol{5^{\frac{7}{3}}= \sqrt[3]{5^{7}}}

\boldsymbol{(-2)^{\frac{4}{5}}= \sqrt[5]{(-2)^{4}}}

Multiplicación de potencias con el mismo exponente

En la multiplicación de potencias de igual exponente se multiplican las bases y se coloca el mismo exponente.

\boldsymbol{a^{n}\times b^{n}=(a\times b)^{n}}

– Ejemplo:

\boldsymbol{5^{3}\times 4^{3}=(5\times 4)^{3}=(20)^{3}}

\boldsymbol{(-3)^{3}\times (-6)^{3}=((-3)\times (-6))^{3}=(18)^{3}}

División de potencias con el mismo exponente

En la división de potencias de igual exponente se coloca el mismo exponente y se dividen las bases.

\boldsymbol{\frac{a^{n}}{b^{n}}=(\frac{a}{b})^{n}}

– Ejemplo:

\boldsymbol{\frac{8^{2}}{4^{2}}=(\frac{8}{4})^{2}=2^{2}}

\boldsymbol{\frac{(-6)^{3}}{(-3)^{3}}=(\frac{(-6)}{(-3)})^{3}=2^{2}}

¿Resultado par o impar?

Toda potencia de base negativa con exponente par da como resultado un número positivo. Por ejemplo:

\boldsymbol{\left ( -3 \right )^{4} = (-3)\times (-3)\times (-3)\times (-3)=81}

Toda potencia de base negativa con exponente impar da como resultado un número negativo. Por ejemplo:

\boldsymbol{\left ( -2 \right )^{5} = (-2)\times (-2)\times (-2)\times (-2)\times (-2)=-32}

Potencias de base 10

Las potencias de base 10 son fáciles de calcular porque el valor es igual a la base seguida de tantos ceros como indica el exponente. Estas son muy útiles para escribir de forma polinómica un número, es decir, permiten escribir números muy grandes de forma reducida.

\boldsymbol{10^{2} = 10 \times 10 = 100}

\boldsymbol{10^{3} = 10 \times 10\times 10 = 1.000}

\boldsymbol{10^{4} = 10 \times 10\times 10\times 10 = 10.000}

\boldsymbol{10^{5} = 10 \times 10 \times 10\times 10\times 10 = 100.000}

\boldsymbol{10^{6} = 10 \times 10\times 10\times 10\times 10\times 10 = 1.000.000}

APLICACIONES DE LAS POTENCIAS

Debido a las diversas propiedades que estas poseen pueden utilizarse para:

  • Aplicar el teorema de Pitágoras
Uno de los teoremas más famosos de la geometría es el teorema de Pitágoras. Este emplea potencias para expresar su fórmula, la cual dice que la hipotenusa al cuadrado de un triángulo rectángulo es igual a la suma de sus catetos al cuadrado, es decir, C= A+ B2.
  • Emplear la notación científica

La notación científica utiliza potencias de base 10 para expresar números muy grandes o muy pequeños en forma reducida. Observa cómo algunos números pueden ser expresados de forma simplificada:

\boldsymbol{0,00000465 = 465\times 10^{-8}}

\boldsymbol{0,00000465 = 46,5\times 10^{-7}}

\boldsymbol{0,00000465 = 4,65\times 10^{-6}}

  • Expresar sucesiones matemáticas y progresiones geométricas

Existen series matemáticas que requieren el uso de las potencias para expresar su forma general o enésima.

Uno de los campos o áreas que usan la potenciación es la biología, específicamente en el estudio de la reproducción de virus y bacterias. Allí, para poder expresar su rápido crecimiento, es necesario emplear este tipo de operación matemática.

¡A practicar!

1. Resuelve las siguientes potencias y aplica las propiedades necesarias:

\boldsymbol{4^{3}+5^{2}=}

Solución

\boldsymbol{4^{3}+5^{2}= 4\times 4\times 4+5\times 5=64+25 = 89}

\boldsymbol{3^{3}\times 9^{3}=}

Solución

\boldsymbol{3^{3}\times 9^{3}= (3\times 9)^{3}= (27)^{3}=27\times 27\times 27=19.683}

\boldsymbol{\frac{8^{5}}{8^{3}}=}

Solución

\boldsymbol{\frac{8^{5}}{8^{3}}= 8^{5-3}=8^{2}= 8\times 8=64}

\boldsymbol{(\frac{4^{3}}{4^{2}})^{2}+\frac{5^{6}\times4^{3}}{5^{5}\times4^{2}}-\frac{2^{0}\times1^{9}}{5^{0}}}

Solución

\boldsymbol{(\frac{4^{3}}{4^{2}})^{2}+\frac{5^{6}\times4^{3}}{5^{5}\times4^{2}}-\frac{2^{0}\times1^{9}}{5^{0}}= 4^{6-4}+5^{6-5}\times4^{3-2}-\frac{1\times1}{1}}

\boldsymbol{4^{2}+5^{1}\times4^{1}-\frac{1\times1}{1}=4\times4+20-1=16+19=35}

2. Expresa los siguientes números en notación científica.

  • \boldsymbol{1.320.000}
Solución

\boldsymbol{1.320.000=1,32\times 10^{6}=13,2\times 10^{5}=132\times 10^{4}}

  • \boldsymbol{0,000968}
Solución

\boldsymbol{0,000968 = 968\times 10^{-6}}

RECURSOS PARA DOCENTES

Artículo “Propiedades de potencias”

En el siguiente artículo hay más estrategias para ampliar los conocimientos acerca de las propiedades de las potencias.

VER

Artículo “Ejercicios de propiedades de la potencia”

El siguiente recurso le brindará apoyo con ejercicios de potencias, con sus resultados y explicaciones.

VER

CAPÍTULO 4 / TEMA 3

Propiedades de la potencia

Cada vez que necesitamos hacer una multiplicación del mismo número repetidas veces, recurrimos a la potenciación. Esta operación, así como muchas otras, cumple con ciertas propiedades. ¿Cuál es la manera correcta de aplicarlas?, ¿cuáles son los beneficios? A continuación, aprenderás cuáles son y sus aplicaciones prácticas.

La potencia o potenciación es una operación matemática que consiste en multiplicar varias veces un mismo número. Consta de una base, que es el número que se multiplica, y de un exponente, que es el número que señala la cantidad de veces que se multiplica la base por sí misma. Es decir, la potenciación no es más que una multiplicación abreviada.

principales propiedades de la potencia

Las propiedades de potenciación tienen una gran cantidad de aplicaciones, pero también tienen ciertas restricciones y es importante conocerlas para no cometer errores en su resolución. Entonces, siempre que apliquemos las propiedades será a las operaciones de multiplicación y división, nunca será a las operaciones de suma y resta.

En verde están las operaciones a las que aplicaremos las propiedades de potenciación, y en rojo, las operaciones a las que no podremos aplicarlas nunca.

En la siguiente tabla podrás observar las propiedades de la potenciación:

Propiedades de la potenciación
Producto de potencia de igual base a· a= a(m + n)
Cociente de potencia de igual base a/ a= a(m − n)
Potencia de potencia (am)= an · m
Producto de potencias con bases diferentes y exponentes iguales a· bn = (a · b)n
Cociente de potencias con bases diferentes y exponentes iguales a/ b= (a / b)n
Exponente negativo a−n = 1 / an

¿Sabías qué?
Cuando el exponente es negativo, mientras mayor sea su valor más pequeño será el resultado.

Notación científica

La notación científica es una forma de expresar cantidades muy grandes o muy pequeñas que le ha permitido a los científicos simplificar sus cálculos. Es conocida también como notación o patrón exponencial porque emplea potencias de base 10 dentro de su expresión. Las potencias de base 10 son iguales a la unidad seguida de tantos ceros como indique el exponente. Un ejemplo de notación científica lo vemos en las masas de los objetos astronómicos, por ejemplo, la masa de la Luna es de aproximadamente 735 × 1020 kg.

Ejemplos prácticos

Aplicación a la suma y resta

La aplicación de las propiedades corresponde a varias operaciones matemáticas pero no a la suma y la resta. Sin embargo, eso no significa que no pueda aplicarse a ejercicios donde existan muchos términos que se suman o se restan. Cuando esto sucede, se aplican las propiedades solo a los términos por separado.

Producto de una potencia de igual base

Cuando existe una multiplicación entre dos potencias con igual base, el resultado final será la misma base elevada a la suma de los exponente de potencias que se multiplicaron. Por ejemplo:

  • 5· 52 = 5(3 + 2) = 55
  • 4· 40 = 4(2 + 0) = 42
  • 68 · 62 · 63 = 6(8 + 2 + 3) = 613

Cociente de una potencia de igual base

Cuando dividimos dos potencias con igual base el procedimiento es similar al de la multiplicación, con la diferencia de que aquí restamos los exponentes de las potencias. Por ejemplo:

  • 53 / 52 = 5(3 − 2) = 51
  • 42 / 40 = 4(2 − 0) = 42

Potencia de una potencia

Cuando tenemos una base elevada a un exponente n, y esta a su vez está elevada a otro exponente m, el resultado final lo obtenemos al multiplicar ambos exponentes (n · m). Por ejemplo:

  • (42)4 = 42 · 4 = 48
  • (33)3 = 33 · 3 = 39

Producto de potencias con bases diferentes y exponentes iguales

Si multiplicamos dos potencias con igual exponente y bases distintas, el resultado será igual a mantener el exponente y solo multiplicar las bases. Por ejemplo:

  • 53 · 43 = (5 · 4)3
  • 32 · 22 = (3 · 2)2

Cociente de potencias con bases diferentes y exponentes iguales

De igual manera que en el caso anterior, el resultado será el cociente de las bases elevadas al exponente. Por ejemplo:

  • 53 43 = (5/4)3
  • 32 / 22 = (3/2)2

Exponente negativo

Cuando el exponente es negativo, la potencia será igual a la inversa de su base y el mismo exponente con signo positivo. Por ejemplo:

  • (2)2 = (1/2)2 = 1/22 = 1/4
  • (1/2)−1 = 2
Los átomos son las unidades básicas de toda la materia. En conjunto crean las moléculas y son microscópicos. Para poder medir las distancias entre ellos se usa una unidad de longitud llamada angstrom (Å = 1 x 10−10 metros). El exponente igual a −10 nos indica que el valor en metros es equivalente a 0,0000000001 m.

Potencia de decimales y fracciones

Cuando las bases son decimales o fracciones, las propiedades se mantienen sin distinción. Por ejemplo:

  • (0,1)2 = (0,1) · (0,1) = 0,01

Observa que 0,1 = 1 · 10−1 , y aquí se puede aplicar la propiedad de potencia de potencia. 

  • (0,1)2 = (1 · 10(−1))2 = 10(−1) · 2 = 102 = 0,01

De la misma manera, si sabemos que 0,1 = 1/10:

  • (0,1)2 = (1/10)2 = 1/102 = 1/100 = 0,01

Cualquiera sea la expresión que se elija para resolver la operación se debe llegar al mismo resultado.

¡A practicar!

Aplica la propiedad correspondiente en cada caso:

  • 34 · 3· 33

Solución
34 · 31 · 33 = 3(4 + 1 + 3) = 38 = 6.561
  • 62 / 62

Solución
62 / 62 = 6(2 − 2) = 60 = 1
  • (7−1)−3

Solución
(7−1)−3 = 7(−1) · (−3) = 73 = 343
  • 63 · 83

Solución
63 · 83 = (6 · 8)3 = 483 = 110.592
  • (−1/2)−2

Solución
(−1/2)−2 = (−2)2 = (−2) · (−2) = 4 
  • 83 / 43

Solución
83 / 43 = (8/4)3 = 23 = 8
RECURSOS PARA DOCENTES

Artículo “Ejercicios de propiedades de la potencia”

En el artículo podrá reforzar las propiedades de potenciación vistas a partir de ejemplos y ejercicios. También se explica la importancia de la correcta aplicación de las propiedades en cada término al sumar o restar.

VER

CAPÍTULO 4 / TEMA 1

Potencia

La potencia, también llamada potenciación, es una operación matemática que implica multiplicar varias veces un mismo número. Como todo cálculo matemático, tiene sus partes y propiedades. A continuación, aprenderás cuáles son sus características y cómo resolver problemas de este tipo.

¿Qué es la potencia?

La potencia es una multiplicación abreviada. Esta operación consiste en multiplicar un número llamado base la cantidad de veces que indique otro número llamado exponente. Los exponentes los colocamos como superíndice de un número.

Donde:

a: base

n: exponente

¿Sabías qué?

La radicación es la operación inversa a la potenciación.

Elementos de la potencia

Toda potencia está formada por dos elementos:

  • La base: es el factor que será multiplicado n cantidad de veces.
  • El exponente: es el número de veces que se multiplica la base por sí misma.

Cálculo de la potencia de un número

Para calcular la potencia de un número debemos tener conocimientos sobre la multiplicación, ya que el proceso consiste en aplicar esta operación de forma repetitiva.

– Ejemplo:

53 = 5 · 5 · 5 = 125

Como el exponente es 3, multiplicamos la base tres veces por sí misma.

– Otros ejemplos:

  • 23 = 2 · 2 · 2 = 8
  • 32 = 3 · 3 = 9
  • 64 = 6 · 6 · 6 · 6 = 1.296

Casos especiales

Cuando el exponente es 1, el resultado será igual a la base.

  • 81 = 8
  • 121 = 12

Cuando el exponente es 0, el resultado siempre será 1.

  • 30 = 1
  • 250 = 1

Cuando la base es 0, el resultado siempre sera 0.

  • 05 = 0
  • 08 = 0
Cuando el exponente es igual a dos (2), decimos que un número está elevado al cuadrado. Esto lo vemos en ecuaciones matemáticas como la del teorema de Pitágoras. Este teorema explica la relación entre los catetos y la hipotenusa de un triángulo rectángulo. Así, si la hipotenusa mide “c”, y la medida de los catetos es “a” y “b”, se verifica que c2 = a2 + b2.

 

Potencia base 10

Cuando la base es igual a 10 solo se deben añadir tantos ceros como indique el exponente. Por ejemplo:

  • 104 = 10.000
  • 102 = 100
  • 101 = 10

Lectura de potencias

Existen dos formas válidas de leer potencias:

1. Nombrar el número de la base seguido de la expresión “elevado a“. Luego nombrar el número del exponente.

  • 65 se lee “seis elevado a cinco”.
  • 28 se lee “dos elevado a ocho”.

2. Nombrar el número de la base seguido de de la expresión “a la“. Luego nombrar el número de exponente como un número ordinal femenino.

  • 65 se lee “seis a la quinta”.
  • 28 se lee “dos a la octava”.

Cuadrados y cubos

Las potencias tienen una estrecha relación con el cálculo del área y el volumen de figuras geométricas. Gracias a esto, cuando el exponente es 2, la potencia se llama cuadrado; y cuando el exponente es 3, la potencia se llama cubo.

Por ejemplo, si un cuadrado está formado por tres cuadros más pequeños por cada lado, basta con hacer este cálculo de 32 que se lee “tres al cuadrado”:

32 = 3 · 3 = 9

En cambio, si tenemos un cubo compuesto por tres cubos más pequeños en sus tres dimensiones: alto, ancho y profundidad, calcularemos 33 que se lee “tres al cubo”:

33 = 3 · 3 · 3 = 27

Entonces, un cubo de Rubik está formado por 27 cubos más pequeños.

Bases negativas

Cuando la base es negativa, el resultado puede variar de estas formas:

  • Si el exponente es un número impar, el resultado será negativo.
  • Si el exponente es un número par, el resultado será positivo.

– Ejemplo:

  • (−2)3 =(−2) · (−2) · (−2) = −8
  • (−2)2 = (−2) · (−2) = 4

¡A practicar!

¿Qué signo tendrá el resultado de las siguientes operaciones?

  • (−15)13
    Solución
    Negativo porque 13 es impar.
  • (14)20
    Solución
    Positivo porque 20 es par.
  • (−5)4
    Solución
    Positivo porque 4 es par.

Usos de la potencia

Las aplicaciones de la potenciación son de amplio rango en diversas profesiones. Los astrónomos emplean la potencia de base 10 para representar medidas muy grandes, como la distancia de la Tierra al Sol. También las usan los oceanógrafos y geólogos para escribir el valor de grandes extensiones de tierra o agua, por ejemplo, el volumen del océano Atlántico es 3,54 · 108 km3.

Además de expresar cantidades muy grandes, las potencias funcionan para representar números muy pequeños. La diferencia en esto casos es que la potencia tiene un exponente negativo, por ejemplo, un virus puede llegar a medir 2 · 10−8 cm, y la masa de un electrón es de 9,1 · 10−31 kg.

Uno de los tipos de potencias más usadas son las potencias de base 10 porque sirven para expresar cantidades muy grandes de manera sencilla. Estas potencias son iguales a la unidad seguida de tantos ceros como indique el exponente. Por ejemplo, la masa del planeta Tierra es de aproximadamente 6 x 1024 kg, es decir, 6 seguido de 24 ceros.

¡A practicar!

1. Expresa en forma de potencia los siguientes productos:

  • 8 · 8 · 8 · 8 =
    Solución
    8 · 8 · 8 · 8 = 84
  • 3 · 3 =
    Solución
    3 · 3 = 32
  • 10 · 10 · 10 · 10 · 10 · 10 =
    Solución
    10 · 10 · 10 · 10 · 10 · 10 = 106
  • 5 · 5 · 5 · 5 =
    Solución
    5 · 5 · 5 · 5 = 54
  • 7 · 7 · 7 =
    Solución
    7 · 7 · 7 = 73
  • 15 · 15 · 15 · 15 · 15 · 15 =
    Solución
    15 · 15 · 15 · 15 · 15 · 15 = 156

 

2. ¿Cuál es el resultado de las siguientes operaciones?

  • 92
    Solución
    92 = 9 · 9 = 81
  • (−5)3
    Solución
    (−5)3 = (−5) · (−5) · (−5) = −125 
  • 105
    Solución
    105 = 10 · 10 · 10 · 10 · 10 = 100.000
  • (−18)4
    Solución
    (−18)4 = (−18) · (−18) · (−18) · (−18) = 104.976
  • (−6)8
    Solución
    (−6)8 = (−6) · (−6) · (−6) · (−6) · (−6) · (−6) · (−6) · (−6) = 1.679.616 
  • 109
    Solución
    109 = 10 · 10 · 10 · 10 · 10 · 10 · 10 · 10 · 10 · 10 = 1.000.000.000 

RECURSOS PARA DOCENTES

Artículo “Potenciación y radicación”

Este artículo te permitirá tener más contenido sobre las potencias y la radicación, operación inversa a la potenciación.

VER

Artículo “Ejercicios de potenciación

Con este recurso podrás profundizar sobre qué es la potenciación y encontrarás una lista de ejercicios para reforzar lo aprendido.

VER