CAPÍTULO 2 / TEMA 7 (REVISIÓN)

OPERACIONES | ¿Qué aprendimos?

operaciones básicas

Todos los días utilizamos operaciones básicas como la adición, la sustracción, la multiplicación y la división. Las adiciones con reagrupación de dos o más números se caracterizan por tener “llevadas” cuando sumamos sus unidades, decenas, centenas, etc. Las sustracciones con reagrupación son restas en las que existen cifras del minuendo que son menores a las del sustraendo. Por esta razón, hay que “pedirle” una unidad al dígito de al lado para así poder resolver el ejercicio. En el caso de la multiplicación, al igual que en la adición y en la sustracción, se observan dos tipos de operaciones: sin reagrupación y con reagrupación. Las multiplicaciones sin reagrupación son aquellas que no contienen llevadas cuando multiplicamos un dígito con otro. En cambio, las multiplicaciones con reagrupación sí poseen llevadas. En el caso de las divisiones, encontramos las exactas cuando el resto es igual a cero y las no exactas cuando el resto es diferente de cero.

Leibniz impuso el uso del punto como símbolo de la multiplicación e introdujo los dos puntos como símbolo de la división.

múltiplos y divisores

El múltiplo de un número es el resultado de multiplicar ese número por otro. Por otra parte, el divisor de un número es aquel que lo divide de manera exacta. Hay números cuyos únicos divisores son ellos mismos y el uno, a estos números se los conoce como números primos. Por otro lado, los números que poseen más de dos divisores se denominan números compuestos y pueden descomponerse en factores primos.

El número 1 no es ni primo ni compuesto porque solo tiene un divisor que es él mismo.

MÍNIMO COMÚN MÚLTIPLO Y MÁXIMO COMÚN DIVISOR

Todo número natural se puede descomponer como una multiplicación de sus factores primos. Este tipo de expresión permite calcular el mínimo común múltiplo (mcm) y el máximo común divisor (mcd) entre dos o más números. El mínimo común múltiplo (también llamado múltiplo común menor) de dos o más números es el menor múltiplo común de dos o más números distintos de cero. Para calcularlo, hay que descomponer los números en sus factores primos y luego elegir los números que tienen y no tienen en común a mayor potencia. El número que resulta del producto es el menor múltiplo en común. El máximo común divisor (también conocido como divisor común mayor) es el mayor divisor entre dos o más números distintos de cero. Para calcularlo también se descomponen los números en sus factores primos y luego se eligen solo los números que tienen en común a menor potencia. El producto de estos es el mayor divisor en común.

Si calculamos el mcd entre dos números de la secuencia de Fibonacci obtenemos otro número de Fibonacci. Por ejemplo, el mcd de (2, 8) = 2.

problemas con los números enteros

Una de las características de los números enteros es que permiten representar cantidades positivas y negativas, por esta razón se emplea la regla de los signos para saber qué signo tendrá un número al realizar una operación con enteros. En una adición, cuando todos los números son negativos, se suman y el resultado que se obtiene es un número negativo. Si se suman números positivos y negativos, los números de igual signo se suman y al final los dos números obtenidos se restan y se coloca el signo del número mayor. Para sustraer números enteros, hay que tener en cuenta que el símbolo de la resta cambia el signo al número que sigue según la regla. Para multiplicar y dividir números enteros primero se operan los signos mediante la regla de los signos y luego se multiplican o dividen los números según corresponda.

En Oriente se operaba con números positivos y negativos a través de ábacos, tablillas o bolas de colores. A los números negativos se los conocía como “números deudos” o “números absurdos”.

problemas con números decimales

Cuando vamos al supermercado la mayoría de los precios de los productos están marcados con números decimales. Con estos números también se pueden desarrollar las operaciones básicas de la aritmética. Para sumar números decimales tienen que coincidir la parte entera, la coma y la parte decimal de los números de acuerdo a sus valores posicionales. También podemos sumar números decimales con enteros siempre y cuando coincidan sus valores posicionales. Para sustraer también deben coincidir los valores posicionales y se pueden restar dos decimales o un decimal y un número entero. Para multiplicar dos números decimales se multiplican los números como si fuesen números naturales y el producto final será un número decimal que tendrá la cantidad de decimales igual a la suma de todos los decimales de ambos números. Si se multiplica un decimal con un natural el producto final tendrá tantos decimales como tenga el número decimal que se multiplicó inicialmente. Para dividir a estos números, ya sea por otro decimal o por un entero, hay que convertir a los números decimales en enteros. Para esto, se debe multiplicar al dividendo y al divisor por la unidad seguida de tantos ceros como decimales tenga el número con la parte decimal de más cifras. Luego se realiza la división de manera habitual.

A comienzos del siglo XV, un matemático árabe desarrolló el conjunto de los números decimales y sus usos.

operaciones combinadas

Las operaciones combinadas son aquellas que involucran dos o más operaciones aritméticas agrupadas por diferentes símbolos. Los símbolos de agrupamiento son: los paréntesis (), los corchetes [] y las llaves {}. En una operación con estos símbolos primero se eliminan los paréntesis, luego los corchetes y, por último, las llaves. En los ejercicios combinados se pueden encontrar agrupados números enteros, fracciones, números decimales, potencias y raíces. A la hora de resolverlos, se tiene que tener en cuenta el orden de eliminación de los símbolos de agrupamiento como también el de las operaciones: primero se resuelven las potencias y las raíces, luego las multiplicaciones y las divisiones, y por último, las sumas y las restas.

El símbolo de igual “=” fue creado por el matemático inglés Robert Recorde en 1557 para evitar la expresión textual “es igual a”.

CAPÍTULO 2 / TEMA 5

problemas con números decimales

La presencia de los decimales en nuestras vidas ha permitido en ciertas ocasiones representar cantidades con mayor exactitud, por ejemplo, valores que se encuentran entre dos números enteros. Con este tipo de números podemos realizar operaciones básicas de la matemáticas a través de algoritmos similares a los usados en los números enteros.

Adición y sustracción de decimales

Los decimales se usan a diario. Un claro ejemplo son las cajas registradoras de los supermercados que suman y restan decimales todos los días, suman los productos que compramos y restan cuando obtenemos un descuento por alguna oferta. Como verás, los decimales son muy importantes para realizar operaciones en la vida cotidiana.

Adición

En el caso de la adición de números decimales, lo primero que se debe hacer es hacer coincidir los valores posicionales de los números, tanto de su parte entera (unidades, decenas, centenas, etc.) como de su parte decimal (décimos, centésimos, milésimos, etc.).

Una manera simple de ordenar los decimales es colocar uno debajo del otro de manera que la coma quede en una misma columna al igual que los valores de la izquierda. Si uno de los números tiene menos decimales que el otro, se completa con cero su parte decimal hasta que la cantidad de cifras decimales en ambos números sea la misma.

Finalmente, luego de ordenar los números, se suman con el mismo algoritmo de la suma usado en los números enteros. La única diferencia es que se debe colocar la coma del resultado en su columna correspondiente.

Por ejemplo:

-Resolver 10,357 + 7,23.

Al ordenar los números de acuerdo a sus valores posicionales y después de aplicar el algoritmo de la suma se obtuvo el siguiente resultado:

Observa que como 7,23 tiene dos decimales y 10,357 tiene tres, se agregó un cero en los decimales de 7,23 para poder sumarlos.

De esta manera, 10,357 + 7,23 es igual a 17,587.

Sumar números decimales y números enteros

Para sumar decimales y números enteros lo único que hay que hacer es transformar los enteros a decimales. Para ello, se deben agregar tantos ceros a estos como cifras decimales tenga el número decimal. Luego se ordenan los números de la manera explicada anteriormente.

Por ejemplo:

-Resolver 169 + 34,93.

En este caso, el número 34,93 tiene dos decimales, por lo tanto, al transformar el 169 a decimal quedaría expresado como 169,00. Luego se ordenan ambos números de acuerdo a sus valores posicionales. Observa que, en este caso, se trata de una suma “con llevada” y se realiza de la misma forma que una suma de este tipo con números enteros:

De esta manera, 169 + 34,93 es igual a 203,93.

A menudo se suelen convertir números decimales a fracciones para simplificar las operaciones. Los decimales que se pueden convertir de manera más fácil a fracción son los que tienen un cero antes de la coma. En estos casos, el denominador sería la unidad seguida de la cantidad de ceros consecutivos que tenga el decimal a la izquierda, y los números restantes serán iguales al denominador. De esta manera 0,037 es igual a 37/100.

Sustracción

La sustracción con decimales se realiza de manera similar a la sustracción de números enteros. En este caso, se deben hacer coincidir los valores posicionales del minuendo y del sustraendo. En caso de que alguno de los dos números tenga menor cantidad de decimales se completa con ceros.

Por ejemplo:

-Resolver 27,45 − 10,3

En este caso, completamos los decimales del 10,3 para que sean iguales, por lo tanto, se agrega un cero a la derecha. Luego posicionamos los números uno debajo del otro de manera que cada valor posicional se encuentre en una misma columna. Luego se resuelve la resta como lo hacemos con los números enteros. Al final, se debe anotar la coma en su columna correspondiente.

De esta forma, 27,45 − 10,3 es igual a 17,15.

Restar decimales y números enteros

La sustracción también se puede realizar entre números enteros y decimales. Para realizar los cálculos, el número entero se debe convertir a decimal y luego se resuelve la operación de la forma explicada anteriormente.

Por ejemplo:

-Resolver 973 − 632,38

En este caso, como el número decimal tiene dos decimales, debemos agregar dos ceros al número entero. De esta forma, el número 973 queda expresado como 973,00. Luego se posicionan ambos números uno debajo del otro, de manera que sus valores posicionales estén en una misma columna, y se resuelve la resta con decimal. De esta forma, el procedimiento es el siguiente:

El resultado de 973 − 632,38 es 340,62.

multiplicación y división de decimales

Otras de las operaciones básicas que podemos realizar con números decimales son la multiplicación y la división. La multiplicación permite realizar sumas reiteradas de manera rápida y la división permite repartir cantidades en partes iguales.

Multiplicación

Para multiplicar dos números decimales se pueden seguir los siguientes pasos:

  1. Multiplicar los números decimales de la misma manera que se multiplican los números enteros.
  2. El producto final será un número decimal que tendrá la cantidad de decimales igual a la suma de los decimales que tengan el multiplicando y el multiplicador. Por ejemplo, si el multiplicando tiene dos decimales y el multiplicador tiene un decimal, el resultado será un número con tres decimales porque 2 + 1 = 3.

Por ejemplo:

-Resolver 46,5 × 8,6.

Se resuelve la multiplicación de la misma forma en la que se resuelven multiplicaciones con números enteros. El resultado que se obtiene al sumar los dos productos parciales es 39990, como 46,5 tiene un decimal y 8,6 tiene un decimal también, el resultado debe tener dos decimales, es decir; dos números después de la coma, de esta forma el resultado será: 399,90. Observa el procedimiento:

Multiplicar decimales y números enteros

La multiplicación de decimales y números enteros se realiza de la misma forma que con los números enteros. Al final, el resultado tendrá la misma cantidad de decimales que el número decimal que se multiplica.

Por ejemplo:

-Resolver 7,809 × 4.

Al resolver la multiplicación se obtiene 31236, como 7,809 tiene tres decimales, el resultado de esta multiplicación tiene la misma cantidad de decimales, es decir, el resultado es 31,236. El procedimiento aplicado fue el siguiente:

Los decimales son tan usados que podemos encontrarlos en desde una factura de compra hasta una escala de medición. De acuerdo al país, se puede usar la coma o el punto para representarlos. Por ejemplo, en México y en varios países del Caribe se emplea al punto como símbolo para separar decimales, mientras que en España y en gran parte de los países del Cono Sur se usa la coma.

División

Dividir un número entero entre un número decimal

Para dividir un número entero entre un decimal se pueden seguir los siguientes pasos:

  1. Convertir el número decimal en un número entero. Para esto, se va a multiplicar el divisor por la unidad seguida de tantos ceros como decimales tenga el número. Por ejemplo, imagina que tenemos la división 278 : 3,6. En este caso, al convertir el decimal a entero se obtiene: 3,6 x 10 = 36.
  2. Multiplicar al dividendo por el mismo número que se haya multiplicado al divisor. En el ejemplo anterior sería: 278 x 10 = 2.780
  3. Dividir los números obtenidos. En este caso serían 2.780 : 36.

El resultado de la división sería el siguiente:

Cuando se restó 260 − 252 se obtuvo 8. Agregamos una coma en el cociente que era 77 y luego colocamos un 0 al lado del 8 para luego continuar con la división. En este caso, observa que el resto seguirá siempre con el mismo valor, esto se debe a que el resultado de esta división particular es un número infinito periódico (77,22222222222…), es decir, es un número en el que se repite de manera infinita un patrón en su parte decimal.

¿Sabías qué?
Los números decimales pueden ser finitos o infinitos. Dentro de estos últimos están los periódicos y los irracionales.

Dividir un número decimal entre un número entero

Para dividir un número decimal por un número entero se divide de la misma manera, como si fuesen enteros. Al bajar el primer número decimal, se agrega una coma en el cociente y se continúa la división.

El ejemplo a continuación indica el procedimiento para resolver la división 77,5 : 25. Observa que después de resolver la parte entera (77) se agrega la coma en el cociente y se continúa con la operación.

Dividir dos números decimales

Para dividir un decimal con otro decimal se pueden seguir los siguientes pasos (278,1 : 2,52):

  1. Convertir el dividendo y el divisor en números enteros. Para esto, se multiplican ambos números por la unidad seguida de tantos ceros como sea la mayor cantidad de decimales que tengan los números. Por ejemplo, imagina que tenemos 278,1 : 2,52. El número con mayor cantidad de decimales es 2,52 que tiene dos decimales, por lo tanto tenemos que multiplicar ambos números por 100:
    278,1 × 100 = 27.810
    2,52 × 100 = 252
  2. Luego se dividen los dos números obtenidos. En este caso es 27.810 : 252 y el resultado es 110,3. El procedimiento se observa a continuación:

¿Sabías qué?
Los números decimales se pueden escribir como fracciones y viceversa.

Los números decimales en la historia

A comienzos del siglo XV, un matemático árabe organizó el conjunto de los números decimales y sus usos. Un siglo más tarde, Stevin desarrolló números decimales que expresaban las décimas, centésimas, milésimas, etc., pero utilizaba una forma complicada de escritura. Por ejemplo, al número 456,765 lo escribía como 456 (0) 7 (1) 6 (2) 5 (3).

En el siglo XVII, los números decimales se empezaron a escribir con punto o coma para separar la parte entera de la parte decimal del número. En 1792, los decimales se empezaron a utilizar en todos los países al extenderse el Sistema Métrico Decimal.

¡A resolver!

  1. Resuelve las siguientes operaciones:

a) 32,98 + 16,2 = 

RESPUESTAS
49,18

b) 1.589 + 6,98 = 

RESPUESTAS
1.595,98

c) 2.549,8 – 1.563,89 = 

RESPUESTAS
985,91

d) 450,64 – 315,5 =

RESPUESTAS
135,14

e) 1.330,6 + 906,8 = 

RESPUESTAS
2.237,4

f) 23,369 – 3,963 = 

RESPUESTAS
19,406

g) 190,3 x 15 = 

RESPUESTAS
2.854,5

h) 987 x 3,118 = 

RESPUESTAS
3.077,466

i) 73,24 x 5,1 = 

RESPUESTAS
373,524

j) 14,57 x 8,29 = 

RESPUESTAS
120,7853

k) 73,8 : 6 = 

RESPUESTAS
12,3

l) 885,6 : 12 = 

RESPUESTAS
73,8

m) 5.462,5 : 23 = 

RESPUESTAS
237,5

n) 29,095 : 5,29 = 

RESPUESTAS
5,5

o) 799,46 : 1,29 = 

RESPUESTAS
619,73

RECURSOS PARA DOCENTES

Artículo “Números decimales”

El siguiente artículo destacado explica que es un número decimal y describe sus diferentes tipos.

VER

Artículo “Operaciones con números decimales”

Este recurso le permite entender cómo están formados los números decimales y cómo resolver las principales operaciones que los involucran.

VER

CAPÍTULO 2 / TEMA 4

problemas con números enteros

A menudo usamos los números naturales para contar, pero hay ocasiones en las que presentan limitaciones y no nos permiten representar ciertos valores como las cantidades negativas. Los números naturales, sus opuestos y el cero conforman un conjunto de números que siguen sus propias reglas aritméticas: los enteros.

regla de los signos

La regla de los signos es una herramienta útil para determinar el signo del resultado de una operación. Es muy importante que tengas presente que para cada tipo de operación existen reglas particulares. Las veremos a continuación:

Operación Regla de los signos Ejemplo
Multiplicación

El resultado de multiplicar dos números enteros positivos es igual a un número entero positivo.

\mathbf{(+)\cdot (+)=+}

(2)\cdot (3)=6

El resultado de multiplicar dos números enteros negativos es igual a un número entero positivo.

\mathbf{(-)\cdot (-)=+}

(-4)\cdot (-2)=8
El resultado de multiplicar un número entero positivo por otro negativo es igual a un número entero negativo.
\mathbf{(+)\cdot (-)=-}
(4)\cdot (-3)=-12

El resultado de multiplicar un número entero negativo por otro positivo es igual a un número entero negativo.

\mathbf{(-)\cdot (+)=-}

(-5)\cdot (2)=-10
División

El resultado de dividir dos números enteros positivos es igual a un número entero positivo.

\mathbf{(+): (+)=+}

(6): (3)=2

El resultado de dividir dos números enteros negativos es igual a un número entero positivo.

\mathbf{(-): (-)=+}

(-8): (-2)=4

El resultado de dividir un número entero positivo entre otro negativo es igual a un número entero negativo.

\mathbf{(+): (-)=-}

(12): (-2)=-6

El resultado de dividir un número entero negativo entre otro positivo es igual a un número entero negativo.

\mathbf{(-): (+)=-}

(-10): (2)=-5
Adición y sustracción

Si los dos números enteros son positivos, se suman y el resultado es un número entero positivo.

3+1= 4
Si los dos números enteros son negativos, se suman y el resultado es un número entero negativo. -5-3= -8
Si los dos números enteros tienen signos diferentes diferentes, se restan y el resultado tendrá el signo del número mayor. -5+3= -2

 

-5+10= 5

En este tipo de números, cuando no se indique el signo, se asume que es un número positivo.

Los números enteros contienen al conjunto de los números naturales y sus opuestos, es decir, contienen los números positivos y los negativos. Son muy importantes al momento de representar situaciones que los números naturales no podrían. Por ejemplo, algunas escalas representan temperaturas negativas y algunos sistemas de referencia también emplean números enteros.

¿Sabías qué?
El cero es el único número entero que no es ni positivo ni negativo, así que no sigue la regla de los signos.

adición y sustracción de números enteros

El conjunto de los números enteros están conformados por los números negativos, el cero y los números positivos. Con ellos se pueden resolver operaciones matemáticas, como la adición y la sustracción.

Adición

Para sumar números enteros existen tres casos distintos:

  • Si todos los números son positivos, el resultado de la suma será un número positivo:

  • Si todos los números son negativos, estos se suman y el resultado es un número negativo:

  • Si se suman números positivos y negativos, los positivos se suman con los positivos y los negativos con los negativos. Al final se restan ambos números resultantes y el resultado tendrá el signo del número mayor.

El número 3 quedó negativo porque el 11 era el número mayor y su signo era negativo.

¿Sabías qué?
Hace 2.400 años los chinos utilizaban varillas negras para representar a los números negativos y varillas rojas para los números positivos.

Sustracción

Para algunas sustracciones, como también para la suma, puede ser útil el siguiente recordatorio:

Hay que tener presente que el símbolo de resta cambia el signo al número que sigue. Entonces, si el número que sucede al signo menos es positivo, se convierte en negativo. Si el número que se resta es negativo, se convierte en positivo. Observemos los siguientes casos:

  • A un número positivo se le resta otro número positivo:

  • A un número positivo se le resta un número negativo:

  • A un número negativo se le resta otro número negativo:

  • A un número negativo se le resta un número positivo:

Los números negativos

Anteriormente a los números negativos se los conocía como “números deudos” o “números absurdos”. Se los empezó a utilizar en Asia durante el siglo V y en Europa en el siglo XVI. En Asia se operaban los números positivos y negativos a través del uso de ábacos, tablillas o bolas de colores. Los indios fueron los primeros en diferenciar los números positivos de los negativos ya que los interpretaban como créditos y débitos. Los símbolos de suma (+) y resta (-) como los conocemos en la actualidad fueron creados por el matemático alemán Michael Stifel.

En la vida cotidiana se nos presentan situaciones que no se pueden representar con números naturales, como por ejemplo, las temperaturas bajo cero, los pisos subterráneos de los edificios, las deudas y los gastos, entre otros.

multiplicación y división de números enteros

A los números enteros también se los puede operar a través de la multiplicación y de la división.

Multiplicación

Para multiplicar números enteros se pueden seguir los siguientes pasos:

  1. Se multiplican los números para obtener el resultado.
  2. Se determina el signo del resultado a través de la regla de los signos.

Veamos un ejemplo:

En este caso, el problema se resolvió a través de los pasos anteriores. Como se trata de enteros con diferente signo el resultado es negativo.

Observemos otro caso:

(-5)\cdot (-3)=15

En esta operación, al tratarse de una multiplicación de dos números negativos, el resultado es positivo.

División

Para dividir los números enteros se pueden seguir los siguientes pasos:

  1. Se dividen los números para obtener el resultado.
  2. Se determina el signo del resultado a través de la regla de los signos.

Veamos un ejemplo:

Al ser una división entre dos números con signo diferente el resultado es un número negativo.

Observemos otro ejemplo:

En este caso, al ser una división de números negativos el resultado es positivo.

Conjunto de los números enteros

Está formado por los números positivos, negativos y el cero. Este conjunto de números no considera a los números decimales y se denota con la letra Z. Las operaciones con los números enteros obedecen reglas aritméticas particulares como la regla de los signos.

¿Sabías qué?
Los números que utilizamos se denominan arábigos porque fueron introducidos a Europa por los árabes.

¡A practicar!

  1. Resuelve las siguientes operaciones:

RESPUESTAS

a) 1

b) −5

c) 14

d) −1

e) −36

f) 18

g) 7

h) −10

i) −80

j) −10

RECURSOS PARA DOCENTES

Artículo “Regla de los signos”

El siguiente recurso permite profundizar en la regla de los signos a través de ejercicios basados en situaciones en las que puede aplicarse.

VER

Artículo “Suma algebraica”

Este artículo explica qué es una suma algebraica, sus principales características y su influencia en el desarrollo de operaciones con números enteros.

VER

CAPÍTULO 2 / TEMA 1

OPERACIONES BÁSICAS

Los seres humanos tenemos la capacidad de contar cosas. Para este proceso de conteo necesitamos un conjunto de operaciones que facilitan los cálculos. La adición, la sustracción, la multiplicación y la resta son conocidas como operaciones básicas y su uso va desde lo cotidiano hasta lo científico. 

Adición y sustracción por reagrupación

Las adiciones y las sustracciones las utilizamos todos los días para contar cantidades como los puntos que obtenemos en un juego o cuando necesitamos saber lo que nos tienen que dar de vuelto al hacer una compra. Existen diversos métodos para realizar estas operaciones pero el resultado siempre es el mismo.

Adición por reagrupación

A menudo hacemos uso de las adiciones para resolver distintas situaciones. Cuando los números son pequeños usamos cálculos mentales, pero cuando los números son grandes generalmente hacemos la cuenta en un papel.

Los siguientes pasos te ayudarán a resolver adiciones por reagrupación:

1. Se escriben los números a sumar uno debajo del otro, de manera que coincidan las unidades, decenas, centenas, unidades de mil, etc.

2. Se inicia la suma de derecha a izquierda, a partir de las unidades. Si el resultado de la suma de las unidades es mayor a 9, se anota el resultado de la unidad de dicha suma y el valor de la otra cifra se anota sobre la columna de la izquierda. De esta manera, al resultado de la columna siguiente se le suma la cifra que se anotó con antelación.

Luego se procede a sumar las siguientes columnas junto con los números de las llevadas que se hayan podido generar en sumas de columnas anteriores.

Sustracción por reagrupación

Para resolver las sustracciones por reagrupación se pueden seguir los siguientes pasos:

1. Se escriben los números a restar uno debajo del otro, de manera que coincidan las unidades, decenas, centenas, etc.

2. Igual que en la adición, la sustracción se resuelve de derecha a izquierda. Si el número de la cifra superior es menor que el de la cifra inferior, no se puede restar de forma directa. En este caso, se coloca un 1 delante del número de arriba y se resuelve la resta. A este tipo de operación se la conoce como “resta con llevada” porque al resolver la siguiente columna se le debe restar el 1 que se tomó prestado anteriormente.

3. Se repite el procedimiento hasta abarcar todas las columnas.

Multiplicación

Las multiplicaciones nos sirven para simplificar situaciones en las que tendríamos que sumar reiteradamente un mismo número. De hecho, la multiplicación consiste en calcular el resultado de sumar un número por sí mismo tantas veces como indique otro número o multiplicador. Existen dos tipos de multiplicación: sin reagrupación y con reagrupación.

Multiplicación sin reagrupación

Las multiplicaciones sin reagrupación son aquellas que no tienen llevada, es decir, que cuando multiplicamos cada una de las cifras del multiplicador por el multiplicando da como resultado un número de una cifra.

Para resolver estas multiplicaciones se siguen estos pasos:

1. Primero se calculan los productos intermedios. Se comienza con la multiplicación de las unidades del multiplicador por todas las cifras del multiplicando de derecha a izquierda y se anotan las cifras correspondientes en cada columna. En este caso se multiplica 3 × 62.312 = 186.936.

2. Luego se multiplica la decena del multiplicador por las cifras del multiplicando, se deja un espacio y se anota el número obtenido debajo del resultado anterior. Aquí se multiplica 1 × 62.312 = 62.312.

3. Luego de obtener los productos intermedios, estos se suman para obtener el resultado de la multiplicación.

 

Observemos ahora un ejemplo en donde el multiplicador posee tres cifras:

1. Igual que en el ejemplo anterior, lo primero que hacemos es multiplicar las unidades del multiplicador (2) por cada una de las cifras.

2. Luego dejamos un espacio en la fila de abajo y anotamos el resultado de la multiplicación de las decenas del multiplicador y el multiplicando.

3. Después dejamos dos espacios y anotamos el resultado de multiplicar las centenas del multiplicador y el multiplicando.

4. Finalmente sumamos los tres productos obtenidos y obtenemos el resultado 45.245.252.

¿Sabías qué?
La multiplicación es una suma abreviada de sumandos iguales. El resultado de la multiplicación se llama producto.
La multiplicación presenta varias propiedades, como la del elemento neutro, en la que todo número multiplicado por 1 es igual al mismo número. Otra propiedad es la conmutativa que explica que el orden de los factores no altera el resultado. También presenta la propiedad distributiva la cual indica que no importan cómo se reagrupen los factores, el resultado siempre será el mismo.

Multiplicación con reagrupación

A diferencia de los ejemplos anteriores, las multiplicaciones por reagrupación tienen llevadas. Se resuelven con los mismos pasos anteriores, pero esta vez las llevadas se suman al resultado de cada multiplicación al momento de anotar los productos intermedios.

Para resolver este tipo de multiplicación se siguen estos pasos:

1. Primero se calculan los productos intermedios. Se comienza con la multiplicación de las unidades del multiplicador por todas las cifras del multiplicando de derecha a izquierda y se anotan las cifras correspondientes en cada columna. Cuando el producto de una cifra del multiplicador por una cifra del multiplicando tiene dos cifras, se anota la unidad de dicho número y la cifra correspondiente a las decenas se suma al producto siguiente.

Nota que 5 × 5 = 25. Así que colocamos la unidad (5) en la columna de los resultados y la decena (2) sobre la columna de la izquierda. Por lo tanto, al multiplicar 5 × 0 = 0 y 0 + 2 = 2.

2. Luego se multiplica la decena del multiplicador por las cifras del multiplicando, se deja un espacio y se anota el número obtenido debajo del resultado anterior.

3. Repetimos el paso anterior con las centenas del multiplicador.

4. Finalmente sumamos los productos parciales y obtenemos el resultado de la multiplicación.

división

Muchas veces tenemos la necesidad de hacer repartos de manera equitativa. La operación que nos permite hacerlo es la división. Esta puede ser exacta o inexacta.

Si la resta es la operación opuesta a la suma, la división es la opuesta a la multiplicación. Para expresar una división se pueden emplear los símbolos de “÷”, “:” y “/”. Esta operación nos sirve para repartir cantidades en partes iguales y pueden ser de dos tipos: divisiones exactas cuando el resto es igual a cero y divisiones inexactas cuando no lo es.

Divisiones exactas

Las divisiones exactas son aquellas cuyo resto es igual a cero. Esto lo determinamos al resolver la división por medio de los siguientes pasos:

Para dividir 323 ÷ 17 lo primero que debemos hacer es escribir los datos en su respectiva ubicación para poder comenzar a realizar cálculos:

2. Como tenemos dos cifras de divisor, tomamos dos de dividendo para comenzar la división y comprobamos que la cantidad sea menor a la del divisor.

3. Pensamos un número que multiplicado por 17 se acerque lo máximo posible a 32. Sabemos que 1 × 17 = 17 y 2 × 17 = 34 y es mayor que 32. Así que colocamos el 1 en el cociente, escribimos el producto debajo del 32 y restamos 32 − 17 = 15.

4. Bajamos el siguiente dígito del dividendo, en este caso el 3:

5. Buscamos un número que multiplicado por 17 sea igual o se acerque lo máximo posible a 153. En este caso sería 9, porque 17 × 9 = 153. Luego restamos el producto. Como 153 − 153 = 0 no seguimos la división y el resto de esta es cero, lo que significa que es exacta.

Podemos escribir que 323 ÷ 17 = 19.

Divisiones no exactas

Las divisiones no exactas son aquellas que tienen un resto distinto de cero. El procedimiento para resolverlas es igual al anterior lo único que cambia es que la división termina cuando el resto obtenido es menor al divisor. Observemos el siguiente ejemplo:

Podemos escribir esta división de la siguiente forma:

5.584 ÷ 24 = 232 y resto = 16.

Historia de los símbolos matemáticos

Muchos países en la Antigüedad utilizaban abreviaturas para indicar algunas operaciones matemáticas. Los italianos, por ejemplo, utilizaban una “p” y una “m” para indicar la suma y la resta (plus y minus, en latín). Luego se impuso el uso de la abreviatura alemana ­”+” y “−”. Estos símbolos se usaron por primera vez en un libro alemán de Widman en 1489.

El primer símbolo que se utilizó para la multiplicación fue “×”, utilizado por Oughtred en 1631. Varios años después Leibniz impuso el punto “·” como símbolo de la multiplicación porque decía que el símbolo que se usaba era fácil de confundir con la letra equis “x”.

Fibonacci, en el siglo XIII, creó la barra horizontal para las fracciones. Esta separaba el numerador del denominador. En 1845, De Morgan ideó la barra oblicua (/) para denotar a la división. Antes de la barra oblicua, Rahn inventó para la división el signo ÷. Los dos puntos (:) los introdujo Leibniz en el caso de que se quisiese escribir una división en una sola línea.

¡A practicar!

1. Resuelve las siguientes adiciones y sustracciones.

a) 3.005.078 + 5.119.839 = 

Solución
8.124.917

b) 4.313.528 − 499.999 = 

Solución
3.813.529

c) 27.521.666 − 14.124.917 = 

Solución
13.396.739

d) 187.324.949 + 153.286.084 = 

Solución
340.611.033

2. Resuelve las siguientes multiplicaciones.

a) 2.321.231 × 231 = 

Solución
536.204.361

b) 1.639.121 × 452 = 

Solución
740.882.692

c) 3.141.243 × 221 = 

Solución
694.214.703

d) 796.467 × 734 = 

Solución
584.606.778

3. Resuelve las siguientes divisiones.

a) 48.321.564 : 12 = 

Solución
4.026.797

b) 240.526 : 18 = 

Solución
13.362 y su resto es 10.

c) 451.542 : 42 = 

Solución
10.751

d) 2.795.615 : 26 = 

Solución
107.523 y su resto es 17.

RECURSOS PARA DOCENTES

Artículo “Operaciones básicas de los números naturales y sus propiedades”

El siguiente artículo destacado explica cuáles son las principales propiedades de las operaciones básicas en números naturales.

VER

Artículo “Suma y resta utilizando el algoritmo de descomposición”

Este artículo explica uno de los métodos para resolver sumas y restas que se fundamenta en la descomposición de un número de acuerdo a los valores posicionales de sus cifras.

VER

Artículo “Divisiones por dos o más cifras”

Este artículo explica uno de los métodos usados para realizar divisiones de dos o más cifras.

VER

CAPÍTULO 2 / TEMA 5 (REVISIÓN)

OPERACIONES CON NATURALES | ¿QUÉ APRENDIMOS?

CÁLCULOS MATEMÁTICOS

LOS CÁLCULOS MATEMÁTICOS SON OPERACIONES QUE REALIZAMOS PARA CONOCER EL RESULTADO DE ALGO EXPRESADO EN NÚMEROS. LAS OPERACIONES QUE UTILIZAMOS CON MAYOR FRECUENCIA SON LA SUMA Y LA RESTA. PARA REGISTRARLAS EN FORMA ESCRITA UTILIZAMOS EL SÍMBOLO + (QUE SE LEE “MÁS”) Y EL SÍMBOLO − (QUE SE LEE “MENOS”). REALIZAMOS CÁLCULOS MATEMÁTICOS EN NUESTRA VIDA DIARIA: CUANDO PAGAMOS ALGO, AL MEDIR EL TIEMPO, PARA CONOCER UNA DISTANCIA Y HASTA PARA HACER MÚSICA.

LA MATEMÁTICA NO SOLO NOS SIRVE PARA LA ESCUELA, SINO QUE LA UTILIZAMOS A DIARIO EN NUESTRA VIDA COTIDIANA.

ADICIÓN O SUMA

LA ADICIÓN O SUMA ES LA OPERACIÓN DE AGREGAR O AGRUPAR CANTIDADES PARA OBTENER UN RESULTADO. ESAS CANTIDADES LLEVAN EL NOMBRE DE SUMANDOS, EL RESULTADO SE DENOMINA SUMA. AL SUMAR NÚMEROS DE DOS DÍGITOS A VECES ES CONVENIENTE ESCRIBIR LA OPERACIÓN EN FORMA VERTICAL. EN ESE CASO ES IMPORTANTE UBICAR EN LA COLUMNA DE LA DERECHA LAS UNIDADES Y EN LA DE LA IZQUIERDA LAS DECENAS.

CUANDO LOS NÚMEROS SON PEQUEÑOS PODEMOS USAR PALITOS O LOS DEDOS PARA HACER LA SUMA.

SUSTRACCIÓN O RESTA

LA SUSTRACCIÓN O RESTA ES LA OPERACIÓN CONTRARIA A LA SUMA. CONSISTE EN EXTRAER O QUITAR A UNA CANTIDAD MAYOR A UNA MENOR. AL NÚMERO MAYOR LO LLAMAMOS MINUENDO Y AL MENOR LO LLAMAMOS SUSTRAENDO, EL RESULTADO DE LA RESTA SE CONOCE COMO DIFERENCIA O RESTA.

EN LA RESTA USAMOS EL SIGNO − QUE SE LEE “MENOS”. POR EJEMPLO, 4 − 3 = 1 SE LEE “CUATRO MENOS TRES ES IGUAL A UNO”.

SITUACIONES PROBLEMÁTICAS

LAS SUMAS Y RESTAS SON LAS OPERACIONES MATEMÁTICAS MÁS USADAS POR TODOS DÍA A DÍA, ASÍ QUE ES POSIBLE QUE MUCHAS SITUACIONES LAS TENGAS QUE RESOLVER CON CÁLCULOS. CUANDO ESTO SUCEDE, ES IMPORTANTE QUE SIGAMOS UNA SERIE DE PASOS QUE NOS AYUDEN A RAZONAR Y ORGANIZAR LA INFORMACIÓN PARA RESOLVER EL PROBLEMA. ALGUNOS DE ESTOS PASOS SON IDENTIFICAR LOS DATOS, PENSAR EN EL PROCEDIMIENTO PARA LA RESOLUCIÓN, HACER LA OPERACIÓN Y DAR LA RESPUESTA. 

AUNQUE NO LO CREAS, LAS OPERACIONES MATEMÁTICAS LAS USAS SIEMPRE, ASÍ QUE DE TANTO PRACTICAR PODRÁS HACER TODOS ESTOS CÁLCULOS MENTALMENTE, ES DECIR, SIN NECESIDAD DE LÁPIZ Y PAPEL.

 

CAPÍTULO 5 / TEMA 4

OPERACIONES CON FRACCIONES homogéneas

Si la mamá de Carla compró 1/2 kg de naranjas y su papá compró 3/2 kg de naranjas, ¿cuántos kg de naranja hay en total? Esta situación la podemos encontrar a diario en nuestra vida. Para resolverla tenemos que involucrar operaciones básicas como la suma o la resta a números fraccionarios. Las características de cada fracción nos indicarán qué pasos tenemos que seguir.

Cada vez que dividimos un todo en varias partes iguales usamos fracciones. Todas las fracciones son divisiones sin resolver que tienen un numerador y un denominador, ambos separados por una raya fraccionaria. Las usamos cuando repartimos comida, seguimos instrucciones de recetas o pedimos una parte o porción de algo.

VER INFOGRAFÍA

suma de fracciones homogéneas

Recordemos que dos o más fracciones son homogéneas cuando comparten el mismo denominador. Sumar este tipo de fracciones es muy fácil. Primero sumamos los numeradores, el número resultante será el numerador de la fracción y mantenemos el mismo denominador. Veamos un ejemplo:

\boldsymbol{\frac{{\color{Blue} 1}}{{\color{Red} 5}}+\frac{{\color{Blue} 6}}{{\color{Red} 5}}=\frac{{\color{Blue} 1+6}}{{\color{Red} 5}}=\frac{7}{5}}

 

– Otros ejemplos:

\boldsymbol{\frac{{\color{Blue} 1}}{{\color{Red} 2}}+\frac{{\color{Blue} 3}}{{\color{Red} 2}}=\frac{{\color{Blue} 1+3}}{{\color{Red} 2}}=\frac{4}{2}=2}

 

\boldsymbol{\frac{{\color{Blue} 12}}{{\color{Red} 8}}+\frac{{\color{Blue} 4}}{{\color{Red} 8}}=\frac{{\color{Blue} 12+8}}{{\color{Red} 8}}=\frac{20}{8}}

sustracción de fracciones homogéneas

Del mismo modo que se resuelve la suma de fracciones homogéneas, en la sustracción primero restamos los numeradores y conservamos el mismo denominador. Por ejemplo:

\boldsymbol{\frac{{\color{Blue} 6}}{{\color{Red} 7}}-\frac{{\color{Blue} 3}}{{\color{Red} 7}}=\frac{{\color{Blue} 6-3}}{{\color{Red} 7}}=\frac{3}{7}}

– Otros ejemplos:

\boldsymbol{\frac{{\color{Blue} 8}}{{\color{Red} 5}}-\frac{{\color{Blue} 4}}{{\color{Red} 5}}=\frac{{\color{Blue} 8-4}}{{\color{Red} 5}}=\frac{4}{5}}

 

\boldsymbol{\frac{{\color{Blue} 10}}{{\color{Red} 3}}-\frac{{\color{Blue} 8}}{{\color{Red} 3}}=\frac{{\color{Blue} 10-8}}{{\color{Red} 3}}=\frac{2}{3}}

fracciones equivalentes

Las fracciones equivalentes son fracciones que tienen distinto numerador y denominador pero representan una misma cantidad. Hay dos métodos para calcular fracciones equivalentes: por amplificación y por simplificación.

  • Por el método de amplificación multiplicamos el numerador y el denominador por un mismo número.

Por ejemplo, \frac{1}{3} es la fracción equivalente a \frac{3}{9}, porque tanto el numerador como el denominador fueron multiplicados por 3.

 

  • Por el método de simplificación dividimos el numerador y el denominador por un mismo número.

Por ejemplo, la fracción \frac{22}{10} es equivalente a \frac{11}{5} porque tanto el numerador como el denominador fueron divididos por 2.

 

Se puede simplificar una fracción hasta obtener su mínima expresión, es decir, hasta conseguir la fracción irreducible. Se la llama irreducible porque el numerador y el denominador no comparten los mismos divisores. Obtener esta expresión hace que se simplifiquen los cálculos y la escritura de fracciones.

¿Cómo sabemos si dos fracciones son equivalentes?

El cálculo que permite determinar si dos fracciones son iguales es el método de multiplicar cruzado los numeradores y denominadores de ambas fracciones.

Para saber si \frac{2}{5} y \frac{4}{10} son fracciones equivalentes debes seguir estos pasos:

1. Multiplica el numerador de la primera fracción por el denominador de la segunda.

2. Multiplica el numerador de la segunda fracción por el denominador de la primera.

3. Compara los dos resultados. Sin los dos son iguales significa que las dos fracciones son equivalentes.

\boldsymbol{\frac{2}{5}=\frac{4}{10}}

orden de fracciones

Todos los números tienen un orden y las fracciones no son la excepción. Para establecer ese orden podemos comparar sus elementos y determinar si son mayores, menores o iguales unas con otras. Los símbolos que se usan para compararlas son:

Símbolo Significado
> Mayor que
< Menor que

Cuando las fracciones tienen igual denominador y se quiere saber si una es mayor que la otra solo tenemos que comparar sus numeradores. Una fracción es mayor que otra si tiene el numerador más grande. Por ejemplo:

\boldsymbol{\frac{7}{6}>\frac{5}{6}} porque 7 es mayor que 5.

Para determinar si una fracción es menor que otra y sus denominadores son iguales, solo comparamos los numeradores. Veamos un ejemplo:

\boldsymbol{\frac{8}{9}<\frac{13}{9}} porque 8 es menor que 13.

problemas

Día a día nos cruzamos con problemas que involucran fracciones y son las diferentes operaciones básicas las que nos permiten resolverlos. Algunas veces nos toca comparar fracciones para saber, por ejemplo, quién comió más chocolate; otras veces cuántas partes de jugo se tomó y cuántas quedan.

Pasos a seguir para resolver problemas con fracciones

Los siguientes pasos también servirán para resolver problemas con números naturales.

  1. Lee atentamente el problema.
  2. Identifica y anota los datos del problema.
  3. Piensa qué pide el problema, ¿qué pregunta hace?
  4. Establece qué operaciones permiten resolver el problema.
  5. Haz los cálculos.
  6. Relee la pregunta del problema para luego contestarla.

1. Carla y María se repartieron una barra de chocolate en 6 partes iguales, Carla comió \frac{3}{6} y María \frac{2}{6}. ¿Quién comió más chocolate?

  • Datos

Cantidad de chocolate que comió Carla: \frac{3}{6}

Cantidad de chocolate que comió María: \frac{2}{6}

  • Pregunta

¿Quién comió más chocolate?

  • Piensa

Para saber quién comió más hay que comparar las dos fracciones. Como son homogéneas solo no fijamos en los numeradores.

  • Calcula

\boldsymbol{\frac{3}{6}>\frac{2}{6}} porque 3 es mayor que 2.

  • Respuesta

Carla comió más chocolate que María.


2. Pedro tenía en la heladera \frac{3}{4} de litro de jugo de naranja. Si tomó \frac{1}{4} de litro, ¿cuánto jugo le quedó?

  • Datos

Litros de jugo naranja en la heladera: \frac{3}{4}

Litros de jugo que tomó Pedro: \frac{1}{4}

  • Pregunta

¿Cuánto jugo le quedó?

  • Piensa

Hay que restar la cantidad de jugo que tomó Pedro a la cantidad de jugo que había en la heladera.

  • Calcula

\frac{3}{4}-\frac{1}{4}=\frac{3-1}{4}=\boldsymbol{\frac{2}{4}}

  • Respuesta

A Pedro le quedaron \frac{2}{4} de litro de jugo de naranja.


3. Si Pedro prepara \frac{5}{4} de litro de jugo y los une con \frac{2}{4} de litro de jugo que le quedaron, ¿cuánto jugo tiene ahora?

  • Datos

Litros de jugo que preparó Pedro: \frac{5}{4}

Litro de jugo que ya tiene Pedro: \frac{2}{4}

  • Pregunta

¿Cuánto jugo tiene ahora?

  • Piensa

Para saber la cantidad total de jugo hay que sumar las dos cantidades.

  • Calcula

\frac{5}{4}+\frac{2}{4}=\frac{5+2}{4}=\boldsymbol{\frac{7}{4}}

  • Respuesta

Pedro tiene ahora \frac{7}{4} de litro de jugo de naranja.

¡A practicar!

1. Resuelve las siguientes operaciones.

  • \frac{7}{8}-\frac{2}{8}=
Solución

\frac{7}{8}-\frac{2}{8}=\frac{7-2}{8}=\boldsymbol{\frac{5}{8}}

  • \frac{4}{3}+\frac{6}{3}=
Solución

\frac{4}{3}+\frac{6}{3}=\frac{4+6}{3}=\boldsymbol{\frac{10}{3}}

  • \frac{16}{5}-\frac{4}{5}=
Solución

\frac{16}{5}-\frac{4}{5}=\frac{16-4}{5}=\boldsymbol{\frac{12}{5}}

  • \frac{9}{7}+\frac{3}{7}=
Solución

\frac{9}{7}+\frac{3}{7}=\frac{9+3}{7}=\boldsymbol{\frac{12}{7}}

 

2. Ordenar de mayor a menor las siguientes fracciones.

\frac{4}{5},\: \: \: \frac{2}{5},\: \: \: \frac{1}{5},\: \: \: \frac{6}{5},\: \: \: \frac{3}{5}

Solución

\frac{6}{5}>\frac{4}{5}>\frac{3}{5}>\frac{2}{5}>\frac{1}{5}

3. Ordenar de menor a mayor las siguientes fracciones.

\frac{7}{7},\: \: \: \frac{3}{7},\: \: \: \frac{5}{7},\: \: \: \frac{2}{7},\: \: \: \frac{9}{7}

Solución

\frac{2}{7}<\frac{3}{7}<\frac{5}{7}<\frac{7}{7}<\frac{9}{7}

 

4. Determina si las siguientes fracciones son equivalentes.

  • \frac{3}{5} y \frac{9}{15}
Solución
Son fracciones equivalentes porque 3 × 15 = 45 y 9 × 5 = 45.

  • \frac{2}{9} y \frac{10}{42}
Solución
No son fracciones equivalentes porque 2 × 42 = 84 y 10 × 9 = 90.

  • \frac{6}{18} y \frac{3}{9}
Solución
Son fracciones equivalentes porque 6 × 9 = 54 y 18 × 3 = 54.

 

5. Marianela se va de vacaciones con su familia. En la primera hora de viaje recorrieron \frac{3}{8} del trayecto y en la segunda hora, \frac{2}{8} del trayecto. ¿Cuánto del trayecto ya recorrieron?

Solución
Recorrieron \frac{5}{8} del trayecto.

 

6. Marcos tiene \frac{9}{12} de una tarta y le regala a su vecino \frac{3}{12}, ¿cuánto le queda de la tarta?

Solución
Le queda \frac{6}{12} de tarta.
RECURSOS PARA DOCENTES

Artículo “Adición y sustracción de fracciones”

Este recurso permitirá profundizar en el tema de la suma y resta de fracciones.

VER

Artículo “Fracciones decimales y equivalentes”

Este recurso permitirá complementar la información sobre fracciones equivalentes mediante múltiples ejemplos.

VER

Artículo “Partes y porciones”

El siguiente artículo profundiza temas tales como fracciones equivalentes, orden de las fracciones y otros.

VER

CAPÍTULO 2 / TEMA 4 (REVISIÓN)

OPERACIONES | ¿QUÉ APRENDIMOS?

Adición y sustracción

La matemática presenta cuatro operaciones básicas: adición o suma, sustracción o resta, multiplicación y división. La adición consiste en combinar dos o más números para obtener un total. Esta operación emplea el símbolo “+” y tiene dos elementos: los sumandos, que son los números que se van a sumar, y la suma, que consiste en el resultado en sí. La sustracción, por su parte, es una operación que consiste en quitar una cantidad a otra, por esto es considerada como la operación inversa a la adición, y emplea el símbolo “−”. Los elementos de una resta son: el minuendo que es el número al que se le va a quitar la cantidad, el sustraendo que es el número que resta y la diferencia que es el resultado de la operación.

El método por reagrupación permite resolver problemas de adición y sustracción en función de los valores posicionales de los números.

 

Multiplicación y división

La multiplicación y la división son otras operaciones fundamentales de la matemática. Se dice que la multiplicación es una suma abreviada porque permite sumar tantas veces un número como indique otro, a menudo se usa la equis (x) para indicar esta operación pero también se usa el punto (·). Está formada por los factores, que son los números que se multiplican y por el producto que es el resultado de dicha operación. Por otro lado, la división es la operación opuesta a la multiplicación y consiste en repartir grupos de elementos en partes iguales. Su símbolo es “÷” y sus elementos principales son: el dividendo, que es el número que se reparte; el divisor, que es el número que indica las partes en las que se va a dividir el dividendo; el cociente, que es el resultado; y el resto, que es la cantidad que no se puede dividir.

Para resolver divisiones es muy importante dominar muy bien las multiplicaciones.

 

Operaciones combinadas

Las operaciones combinadas son aquellas en las que aparecen dos o más operaciones matemáticas. Aunque pueden incluir símbolos como los paréntesis, corchetes y llaves, cuando se aplican a números naturales estos símbolos no son necesarios. Para resolver cálculos combinados de suma y resta, se resuelven los números de izquierda a derecha en función de la operación que se indique. Cuando existan operaciones combinadas que además de suma o resta incluyan multiplicación, división o ambas, se resuelven las multiplicaciones y divisiones primero para luego sumar o restar de la manera mencionada anteriormente.

En las operaciones combinadas primero se resuelven las multiplicaciones y divisiones, después se resuelven sumas o restas.