CAPÍTULO 2 / TEMA 2

MÚLTIPLOS Y DIVISORES

Un múltiplo de un número es el resultado de multiplicar ese número por otro. Debido a esto, los múltiplos de un número son infinitos. Por otra parte, los divisores son los valores que dividen a un números en partes iguales y permiten saber si se trata de un número primo o compuesto.

nÚMEROS PRIMOS

Los números primos son aquellos números naturales que son divisibles por uno y por sí mismos, es decir, sus únicos divisores son ellos mismos y la unidad. Por ejemplo: 2, 3, 5, 7 y 11 son números primos.

Número Divisores
2 2 y 1
3 3 y 1
5 5 y 1
7 7 y 1
11 11 y 1

¿Sabías qué?
El matemático griego Euclides demostró que los números primos son infinitos.

La maravilla de los números primos

Los números primos son como los arquitectos de otros números, ya que la multiplicación de varios números primos da lugar a un número compuesto. Los números primos son equivalentes en las matemáticas a lo que los átomos son en la materia. Esta naturaleza los hace tan peculiares que muchos matemáticos los han estudiado a través de los años.

¿Sabías qué?
El número 2 es el único número primo que es par.

nÚMEROS COMPUESTOS

Los números compuestos son aquellos números naturales que tienen más de dos divisores, además del uno y de sí mismo. Estos números pueden ser expresados como un producto de números primos que es único para cada número.

Esta cuadrícula es conocida como “la criba de Eratóstenes” y muestra en celeste los números primos y en naranja los números compuestos. Recuerda que los números son infinitos. Aquí mostramos los números primos y compuestos mayores que 1 hasta el 100, pero los números siguen hasta el infinito. El número 1, está en verde porque no es primo ni compuesto, ya que tiene un solo divisor que es él mismo.

Algunos números compuestos

Número Divisores
4 4, 2 y 1
6 6, 3, 2 y 1
8 8, 4, 2 y 1
9 9, 3 y 1
10 10, 5, 2 y 1

DIVISORES

Un divisor es el número que divide a otro en una cantidad entera. Un número es divisible por otro si su división es exacta, es decir, el resto de la división es cero. Si un número “a” se divide por otro “b” y el resto de la división es cero quiere decir que “b” es divisor de “a” o que “a es divisible por b”. Por ejemplo, 4 es divisor de 8 porque 8 : 4 = 2 y el resto es cero. Por lo tanto, 8 es divisible por 4.

Para encontrar los divisores de un número se pueden usar las tablas de multiplicar o los criterios de divisibilidad. Por ejemplo, para buscar los divisores de 16 sabemos que se trata de un número par. Por lo tanto, va a ser divisible por 2. Por otra parte, el 16 se encuentra dentro de las tablas de multiplicar del 4 y del 8. Entonces, esos números forman parte de sus divisores. También sabemos que todos los números (primos o compuestos) son divisibles entre ellos mismos y entre 1, por lo tanto, los divisores de 16 son: 1, 2, 4, 8 y 16.

Números perfectos

El matemático griego Euclides estudiaba los números naturales y denominaba números perfectos a un tipo de números compuestos. Él describía a un número perfecto como aquel número natural que es igual a la suma de sus divisores excepto él mismo. Un ejemplo de número perfecto es el 6 ya que sus divisores son: 1, 2, 3 y 6. Si los sumamos a todos, menos al seis tenemos, el resultado es igual al mismo número: 1 + 2 + 3 = 6. El siguiente número con estas características es el 28. Sus divisores son 1, 2, 4, 7, 14 y 28. La cuenta sería: 1 + 2 + 4 + 7 + 14 = 28.

DESCOMPOSICIÓN DE NÚMEROS EN SUS FACTORES PRIMOS

Todos los números compuestos pueden descomponerse en un producto de sus factores primos. Para descomponer un número en sus factores primos, se divide por el menor de sus divisores primos. El cociente de esa división se vuelve a dividir por el menor divisor primo de este y así sucesivamente hasta conseguir como cociente el 1. La manera de representar la descomposición es a través de una raya vertical que separa la división del número y sus factores primos.

Por ejemplo, procedimiento para descomponer el número 84 en sus factores primos es el siguiente:

El menor divisor primo de 84 es 2, por lo tanto, se divide 84 : 2 = 42. El cociente se escribe en la parte inferior y se vuelve a repetir el procedimiento. El menor divisor primo de 42 es 2, se escribe el divisor y el resultado que es 21 se escribe debajo de 42. Luego, el menor divisor primo de 21 es 3, se escribe dicho divisor y el resultado, que es 7, se escribe en la parte inferior. Como 7 es un número primo, el mínimo divisor primo es sí mismo, por lo tanto, se escribe el divisor 7 y el resultado de la división es 1. Como el número 1 no es un número primo se da por concluida la descomposición.

De esta manera, el 84 se puede escribir como la multiplicación de todos sus factores primos:

84 = 2 · 2 · 3 · 7

En estos casos, las descomposiciones de factores primos suelen representarte en forma de potencia en aquellos factores que se repiten. Para este ejemplo, observamos que el número 2 se repite dos veces por lo tanto se puede expresar como 22. De esta forma, la descomposición quedaría expresada de la siguiente forma:

84 = 22 · 3 · 7

Códigos secretos

Los números se pueden descomponer en sus factores primos, pero cuando hablamos de números realmente grandes resulta casi imposible a menos que utilicemos herramientas informáticas o programas de computadora. Es por esto que los números primos son perfectos para crear códigos secretos indescifrables. Por ejemplo, cuando se hacen compras por internet, los datos de las personas que compran quedan ocultos por un código creado por números enormes que funcionan como una cerradura cuya llave son los factores primos de este número.

¡A ejercitar!

  1. Encierra en color azul los números primos y en rojo los números compuestos.

RESPUESTAS

2. Encuentra los divisores de los siguientes números.

a) 24 

RESPUESTAS
Divisores de 24: 1, 2, 3, 4, 6, 8, 12 y 24.

b) 60 

RESPUESTAS
Divisores de 60: 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30 y 60.

c) 73 

RESPUESTAS
Divisores de 73: 1 y 73

d) 48 

RESPUESTAS
Divisores de 48: 1, 2, 3, 4, 6, 8, 12, 16, 24 y 48.

3. Señala cuál de los siguientes números es un número compuesto.

a) 53

b) 63

c) 73

d) 83

RESPUESTAS
b) 63 

4. Descompone en factores primos los siguientes números:

a) 54 

RESPUESTAS

b) 150 

RESPUESTAS

c) 72 

RESPUESTAS

d) 100 

RESPUESTAS

e) 63 

RESPUESTAS

f) 132 

RESPUESTAS

RECURSOS PARA DOCENTES

Artículo “Criterios de divisibilidad”

El artículo propone una serie de reglas que permiten identificar los divisores de un número.

VER

CAPÍTULO 2 / TEMA 6

MÍnimo común múltiplo y máximo común divisor

La multiplicación y la división son operaciones básicas relacionadas directamente con dos conceptos: múltiplos y divisores. Ambos términos señalan la cantidad de veces que un número está contenido dentro de otro y la cantidad de veces que un número puede dividir a otro. Gracias a ellos podemos calcular múltiplos y divisores comunes en dos o más números y así poder simplificar operaciones más complejas.

múltiplos y divisores

El múltiplo de un número natural se obtiene al multiplicar ese número por otro número natural, por ejemplo:

  • 4 × 1 = 4
  • 4 × 2 = 8
  • 4 × 3 = 12
  • 4 × 4 = 16
  • 4 × 5 = 20
  • 4 × 6 = 24
  • 4 × 7 = 28
  • 4 × 8 = 32
  • 4 × 9 = 36

Los números marcados en rojo son múltiplos de 4. Estos números resultan de la multiplicación del número 4 por números naturales. Como los números naturales son infinitos, los múltiplos de un número también lo son, así que los múltiplos de 4 y de cualquier número continúan hasta el infinito.

Por otro lado, un divisor es todo número que al dividir a otro resulta en una división exacta, por ejemplo:

  • 12 ÷ 1 = 12
  • 12 ÷ 2 = 6
  • 12 ÷ 3 = 4
  • 12 ÷ 4 = 3
  • 12 ÷ 5 = 2 y resto = 2
  • 12 ÷ 6 = 2
  • 12 ÷ 7 = 1 y resto = 5
  • 12 ÷ 8 = 1 y resto = 4
  • 12 ÷ 9 = 1 y resto = 3

Los números marcados en rojo son divisores de 12 porque su división tiene un cociente entero con resto igual a cero, es decir, son divisiones exactas.

¡Es tu turno!

Escribe los múltiplos y divisores de 25.

Solución

Múltiplos: 25, 50, 75, 100,…

  • 25 × 1 = 25
  • 25 × 2 = 50
  • 25 × 3 = 75
  • 25 × 4 = 100

Divisores: 1, 5, 25

  • 25 ÷ 1 = 25
  • 25 ÷ 5 = 5
  • 25 ÷ 25 = 1
Los múltiplos y los divisores no son conceptos aislados, de hecho, están muy relacionados entre sí. Si un número a es múltiplo de otro número b, este último es divisor del primero. Por ejemplo, el número 6 es múltiplo de 2 porque 2 × 3 = 6, pero al mismo tiempo, 2 es divisor de 6, porque 6 ÷ 2 = 3. ¿Puedes buscar esta relación en otros números? ¡Inténtalo!

Mínimo común múltiplo

Entre dos o más números, el mínimo común múltiplo o mcm es el menor múltiplo que tienen dichos números en común. Por ejemplo, observa los múltiplos de 4 y 5:

Múltiplos de 4 → 4, 8, 12, 16, 20, 24, 28, 28, 32, 36, 40, …

Múltiplos de 5 → 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, …

Tanto el número 4 como el número 5 tienen al 20 y el 40 como múltiplos. Como 20 es el menor de ellos, decimos que el mínimo común múltiplo entre 4 y 5 es 20 y lo representamos de la siguiente forma:

mcm (4, 5) = 20

 

– Otro ejemplo:

¿Cuál es el mcm entre 12 y 18?

Múltiplos de 12 → 12, 24, 36, 48, 60, 72, 84, 96, …

Múltiplos de 18 → 18, 36, 54, 72, 90, 108, 126, …

Así que:

mcm (12, 18) = 36

¿Sabías qué?
Al mínimo común múltiplo también se lo conoce como múltiplo común menor.
El mcm se utiliza en operaciones con fracciones, especialmente en la simplificación de resultados. Por ejemplo, al sumar y restar fracciones es más sencillo calcular el mcm de los denominadores, el cual será el denominador final. Luego calcula las fracciones equivalentes de cada elemento del problema para hacer un cálculo con fracciones homogéneas.

Mcm por descomposición

Hay una forma en la que no es necesario calcular varios múltiplos, consiste en descomponer cada número en sus factores primos, para luego multiplicar a los factores comunes y no comunes con su mayor exponente. Ejemplo:

– Calcula el mcm entre 15 y 36.

1. Descomponemos cada números en sus factores primos:

2. Identificamos el factor común en los dos números y seleccionamos el de mayor exponente. En este caso el factor común de mayor exponente es el 32.

3. Luego multiplicamos por el factor no común. En este caso los factores no comunes son el 22 y el 5. Así que el mínimo común múltiplo entre 15 y 36 se escribe así:

mcm (15, 36) = 32 × 22 × 5 = 180

Los mínimos divisores y los números primos

Los mínimos divisores que calculamos reciben el nombre de “números primos”. Estos números se caracterizan por ser divisibles entre sí mismos y entre 1. Por ejemplo, el 5 solo se divide entre 5 y entre 1. Lo mismo ocurre con el 2, con el 3, con el 7… De hecho los números primos son infinitos y hay ocasiones en las que los matemáticos anuncian el descubrimiento de nuevos números primos.

Máximo común divisor

Entre dos o más números, el máximo común divisor o mcd es el divisor común mayor entre todos los divisores. Por ejemplo, observa los divisores de 32 y 40:

Divisores de 32 → 1, 2, 4, 8, 16, 32

Divisores de 40 → 1, 2, 4, 5, 8, 10, 20, 40

Los números 32 y 40 tienen varios divisores en común: 1, 2, 4 y 8. Como el 8 es el mayor de todos, decimos que el máximo común divisor entre 32 y 40 es 8. Lo escribimos de la siguiente manera:

mcd (32, 40) = 8

– Otro ejemplo:

¿Cuál es el mcd entre 35 y 49?

Divisores de 35 → 1, 5, 7, 35

Divisores de 49 → 1, 7, 49

Así que:

mcd (35, 49) = 7

¿Sabías qué?
El máximo común divisor también es conocido como “divisor común mayor”.

Mcd por descomposición

Otra forma para calcular el mcd es por medio de la factorización o descomposición en factores primos. Luego de esto, multiplicamos solo los factores comunes con su menor exponente. Por ejemplo:

– Calcular el mcd entre 30 y 20.

1. Factorizamos cada número.

2. Multiplicamos los factores comunes con su menor exponente. Los factores no comunes no se consideran para este cálculo. Entonces, el mcd entre 30 y 20 se escribe así:

mcd (30, 20) = 2 × 5 = 10

El mcd en la historia

El estudio del mcd se remonta a la antigua Grecia con Euclides, quien fue un líder de un grupo de matemáticos que vivió en los siglos IV y III a. C. En su obra Elementos, él describió un método para calcular el máximo común divisor de un número por medio del algoritmo de Euclides.

¡A practicar!

1. ¿Cuáles son los divisores de los siguientes números?

  • 56
Solución
1, 2, 4, 8, 7, 14, 28 y 56.
  • 28
Solución
1, 2, 4, 7, 14 y 28.
  • 74
Solución
1, 2, 37 y 74.

 

2. ¿Cuáles son los primeros seis múltiplos de estos números?

  • 34
Solución
34, 68, 102, 136 y 170.
  • 23
Solución
23, 46, 69, 92, 115 y 138.
  • 50
Solución
50, 100, 150, 200, 250 y 300.

 

3. ¿Cuál es el mcm de los siguientes números?

  • 60 y 38.
Solución
mcm (60, 38) = 420
  • 10 y 25.
Solución
mcm (10, 25) = 50
  • 8 y 12.
Solución
mcm (8, 12) = 24

 

4. ¿Cuál es el mcd de los siguientes números?

  • 50 y 80.
Solución
mcd (50, 80) = 10
  • 16 y 72.
Solución
mcd (16, 72) = 8
  • 60 y 75
Solución
mcd (60, 75) = 15

 

RECURSOS PARA DOCENTES

Artículo “Mínimo común múltiplo y máximo común divisor”

Con este recurso podrás poner en práctica los aprendido en este artículo, ya que cuenta con problemas que puedes resolver por medio de mcm y mcd.

VER

Artículo “Mínimo común múltiplo (mcm)”

En esta animación podrás trabajar con tus alumnos una aplicación directa del mcm.

VER

Tabla comparativa “Múltiplos y divisores”

Con este recurso podrás profundizar la información sobre las propiedades de los múltiplos y los divisores.

VER

CAPÍTULO 2 / TEMA 8 (REVISIÓN)

OPERACIONES | ¿qué aprendimos?

ADICIÓN Y SUSTRACCIÓN

La adición consiste en combinar, agrupar o sumar números; la sustracción, en cambio, consiste en quitar o restar números a un grupo. Siempre que queramos resolver cualquiera de estas operaciones, debemos considerar el valor posicional de cada una de las cifras de los números. Por otro lado, la adición cumple con ciertas propiedades como la asociativa y la conmutativa que no se pueden aplicar a la sustracción.

Un ejemplo de la adición por reagrupación es la suma de dinero. Si tienes $ 1.324 y luego te dan $ 3.984, tienes en total  $ 1.324 + $ 3.984 = $ 5.318.

Multiplicación

La multiplicación es una operación matemática que consiste en sumar varias veces un mismo número. Los factores son los números que se multiplican o suman reiteradas veces y el producto es el resultado de la multiplicación. La multiplicación sin reagrupación es un método que consiste en multiplicar las unidades, las decenas y las centenas de 2 factores entre sí cuando ninguno de los productos formados supera la decena, mientras que la multiplicación con reagrupación es un procedimiento que podemos utilizar cuando algún producto entre dos cifras es igual o mayor a 10.

La multiplicación por reagrupación es útil en muchas situaciones cotidianas, como saber la cantidad de butacas que hay en el cine. Si cuentas las que hay en una fila (6) y las multiplicas por la cantidad de filas (3) tienes que 6 x 3 = 18. Así que hay 18 butacas.

División

La división es la operación opuesta a la multiplicación. Sus elementos son el dividendo, el divisor, el cociente y el resto. El dividendo es la cantidad que se quiere repartir; el divisor indica entre cuántas partes se reparte; el cociente es la cantidad que le corresponde a cada parte y también es el resultado de la división; y el resto representa lo que no se puede repartir. Cuando el resto es igual a cero (0) decimos que la división es exacta.

El cociente de una división también puede ser un número decimal, por ejemplo, si deseamos repartir 3 naranjas entre 6 personas, cada una tendrá 0,5 = 1/2, es decir, cada una tendrá media naranja.

OPERACIONES CON NÚMEROS DECIMALES

Para la adición y sustracción de números decimales procedemos igual que en el caso de los números naturales, pues debemos colocar cada elemento uno sobre otro según su valor posicional, al final nos aseguramos de que la coma esté en la misma columna. En el caso de las multiplicaciones, realizamos la operación tal y como si fuera una de números naturales, luego le colocamos al producto final la coma de acuerdo a los decimales de los factores.

Si sube la temperatura corporal un grado más allá de los 36,6° de la imagen, la persona tiene fiebre. ¿Cuál es la temperatura a la que puede tener fiebre? El cálculo es 36,6° + 1° = 37,6°. Este es un ejemplo de adición de decimales.

OPERACIONES COMBINADAS

Las operaciones combinadas son aquellas que agrupan diversos cálculos en una sola expresión. Cuando no hay paréntesis debemos seguir un orden de resolución: primero las multiplicaciones y divisiones, luego las sumas y restas. Si la operación combinada tiene paréntesis tenemos que realizar primero los cálculos que están dentro de ellos, es decir, estos tienen prioridad sobre otros.

Los paréntesis son de gran importancia si deseamos realizar operaciones en una calculadora, pues indican que son prioritarias sobre las demás.

MÍNIMO COMÚN MÚLTIPLO Y MÁXIMO COMÚN DIVISOR

El mínimo común múltiplo (mcm) y el máximo común divisor (mcd) son operaciones que nos ayudan a simplificar cálculos más complejos. El mcm es el mínimo múltiplo que tienen en común dos o más números y el mcd es el divisor mayor que tienen en común dos o más números. Ambos pueden ser calculados por comparación de múltiplos y divisores o por descomposición de su números en factores primos.

La descomposición en factores primos consiste en dividir cada número entre su divisor mínimo para representar un número como producto de sus números primos. Algunos números primos están en esta imagen.

CONVERSIONES DE MEDIDAS

Algunas magnitudes que podemos medir son la longitud, la masa, el volumen y el tiempo. Cada una de ellas tiene una unidad básica de medida pero no son las únicas. Para medir longitudes podemos usar unidades como el metro, el kilómetro o el centímetro; para medir masas usamos unidades como el gramo, el kilogramo o el miligramo; para medir el volumen usamos unidades como el centímetro cúbico o el metro cúbico; y para medir el tiempo usamos unidades como los segundos, los minutos, las horas, los días o los años.

Hay mariposas que solo viven 1 día. Si convertimos esta unidad, también podemos decir que hay mariposas que viven 24 horas.

CAPÍTULO 1 / TEMA 7 (REVISIÓN)

SENTIDO NUMÉRICO | REVISIÓN

UNIVERSO DE LOS NÚMEROS

Los números desde su invención han servido para contar cosas y por eso existen diferentes sistemas y tipos de números que permiten un mejor conocimiento de las cantidades. Para comprender el sentido numérico, dentro del universo de los números se utilizan diversas clasificaciones. Un tipo de números son los ordinales que sirven para establecer un orden. Por otro lado, existen los cardinales que indican cantidades numéricas de elementos que pertenecen a un grupo o conjunto. Actualmente, el sistema más usado es el sistema numérico decimal pero no es el único que existe. Otras culturas crearon sistemas de numeración distintos al decimal, como por ejemplo, los mayas y los romanos.

El sistema de numeración binario se utiliza principalmente en la informática. Está conformado solo por dos cifras: el 0 y el 1.

NÚMEROS PRIMOS Y COMPUESTOS

De acuerdo a la cantidad de divisores que poseen los número, los podemos clasificar en primos y compuestos. Los números primos son aquellos que solo son divisibles por el número uno y por sí mismos. En cambio, los números compuestos son aquellos que además de ser divisibles por el uno y por sí mismos, también son divisibles por otro u otros números, es decir, tienen más de dos divisores. Todos los números compuestos pueden expresarse como un producto de factores primos.

Para determinar los factores primos de un número compuesto se emplean los criterios de divisibilidad.

VALOR POSICIONAL

Una de las principales características de nuestro sistema de numeración decimal es que el valor de los dígitos varía de acuerdo a su ubicación dentro del número. Esta característica se denomina valor posicional y aplica tanto en los números enteros como en los fraccionarios. Una herramienta que nos permite observar directamente el valor de cada dígito de acuerdo al lugar que ocupa es la tabla posicional.

Según la posición de cada dígito, los números pueden descomponerse en forma de suma (descomposición aditiva) o de multiplicación (descomposición multiplicativa).

NÚMEROS DECIMALES

Hay números que se ubican entre dos números enteros consecutivos, estos números se denominan números decimales y se caracterizan porque presentan una parte entera y una decimal, que se encuentran separadas por una coma o punto de acuerdo a la convención del país. Los números decimales se clasifican en racionales y en irracionales. Los racionales se pueden representar en forma de fracción, y los irracionales son números infinitos cuya parte decimal no sigue ningún patrón, como sucede en el caso del número pi.

A menudo se pueden aplicar redondeos en las cifras decimales de un número para simplificar los cálculos.

POTENCIAS

La potenciación es una operación compuesta de tres partes fundamentales: el exponente, la base y la potencia. El exponente indica cuántas veces se debe multiplicar la base por si misma. La base es el número que se multiplica por sí mismo las veces que indique el exponente. La potencia es el resultado de la operación de potenciación. Como toda operación matemática, las potencias cumplen con algunas propiedades. Por ejemplo, todo número elevado a 0 es igual a 1. Para resolver potencias se aplican sus propiedades y se realizan multiplicaciones sucesivas de la base.

Cuando el exponente es 1, la potencia es siempre igual a la base.

RAÍZ DE UN NÚMERO

La radicación es la operación inversa a la potenciación y por ello se encuentran estrechamente relacionadas. Esta operación emplea el símbolo (√) denominado radical. Sus elementos principales son el radicando, el índice y la raíz. El radicando es el número al cual se le va a calcular la raíz y se encuentra en la parte inferior del radical. El índice es el número que índica la cantidad de veces en las que debe multiplicarse un número por sí mismo para que el resultado sea igual al radicando, y se ubica en la parte izquierda del radical. La raíz es el resultado de la operación. Para calcular una raíz se debe buscar un número que multiplicado por sí mismo las veces que indique el índice dé como resultado el mismo valor del radicando.

En las raíces cuadradas, el índice 2 no se coloca en el radical: simplemente se denotan como (√).

 

CAPÍTULO 4 / TEMA 5

APLICACIÓN DE LA POTENCIA Y DE LA RADICACIÓN

La potenciación y la radicación son operaciones estrechamente relacionadas. Mientras que la primera es una multiplicación condensada de un número por sí mismo n cantidad de veces, la segunda busca ese número que multiplicado por sí mismo resulte en el radicando. Si bien sus propiedades ya se trataron en temas anteriores, aquí aprenderás otras aplicaciones de estos cálculos.

operaciones que simplifican

Tanto la potenciación como la radicación son operaciones útiles para mostrar números de manera más simple. Por ejemplo, dentro del conjunto de los números reales encontramos otros tipos de números que no son sencillos de representar, como los números irracionales, cuyas expresiones decimales son ilimitadas y no periódicas, por lo que es más fácil mostrarlo como una raíz:

\boldsymbol{\sqrt{2}=1,414213562...}

\boldsymbol{\sqrt{3}=1,732050807...}

\boldsymbol{\sqrt{5}=2,236067977...}

Por su parte, la potencia nos ayuda a expresar números muy grandes o muy pequeños de manera resumida, pues la potencia no es más que una multiplicación abreviada.

La descomposición en factores primos y la notación científica son solo dos de los procesos que pueden verse involucrados con la potenciación y la radicación. Ambas operaciones son empleadas en múltiples cálculos cotidianos y en diversas áreas como la astronomía, la ingeniería o la biología.

Las bacterias son microorganismos que crecen con un ritmo acelerado. Este crecimiento suele expresarse en forma de potencia con exponente positivo y se grafica en forma de línea curva ascendente. Saber que tan rápida puede ser la reproducción de una bacteria puede prevenir focos de infección en un paciente y evitar que este sea una víctima mortal.

descomposición en factores primos

También conocida como descomposición factorial o factorización, consiste en escribir un número como producto de sus números primos. Cada vez que un factor se repita en la descomposición, este se convertirá  en la base de una potencia y la cantidad de veces que se repita será el exponente.

– Ejemplo:

¿Qué es un número primo?

Un número primo es un número natural que tiene dos divisores positivos: al uno y a sí mismo. Esta tabla muestra los primero números primos en color azul.

¿Sabías qué?
Las factorización es un paso indispensable para calcular el mínimo común múltiplo y el máximo común divisor de un número.

Las raíces también se pueden obtener por medio de la descomposición del radicando en sus números primos.

– Ejemplo:

Halla la raíz cuadrada de 625 por descomposición de sus factores primos.

1. Descomponemos al número 625 en sus factores primos.

2. Expresamos la raíz cuadrada con producto de la descomposición.

\boldsymbol{\sqrt{625}=\sqrt{5^{4}}}

3. Aplicamos la propiedad “raíz de un potencia”.

\boldsymbol{\sqrt{5^{4}}=5^{\frac{4}{2}}=5^{2}=25}

4. Escribimos el resultado.

\boldsymbol{\sqrt{625}=25}


– Otro ejemplo:

Halla la raíz cuadrada de 196 por descomposición de sus factores primos.

1. Descomponemos al número 196 en sus factores primos.

2. Expresamos la raíz cuadrada con su radicando igual al producto de su descomposición.

\boldsymbol{\sqrt{196}=\sqrt{2^{2}\times 7^{2}}}

3. Aplicamos la propiedad “raíz de un producto”.

\boldsymbol{\sqrt{2^{2}\times 7^{2}}=\sqrt{2^{2}}\times \sqrt{7^{2}}}

4. Aplicamos la propiedad “raíz de una potencia”.

\boldsymbol{\sqrt{2^{2}}\times \sqrt{7^{2}}=2^{\frac{2}{2}}\times 7^{\frac{2}{2}}=2\times 7=14}

5. Escribimos el resultado.

\boldsymbol{\sqrt{196}=14}


– Otro ejemplo:

Halla la raíz cúbica de 1.728 por descomposición de sus factores primos.

  1. Descomponemos el número 1.728 en sus factores primos.

2. Expresamos la raíz cúbica con su radicando igual al producto de su descomposición.

\boldsymbol{\sqrt[3]{1.728}=\sqrt[3]{2^{6}\times 3^{3}}}

3. Aplicamos la propiedad “raíz de un producto”.

\boldsymbol{\sqrt[3]{2^{6}\times 3^{3}}=\sqrt[3]{2^{6}}\times \sqrt[3]{3^{3}}}

4. Aplicamos la propiedad “raíz de una potencia”.

\boldsymbol{\sqrt[3]{2^{6}}\times \sqrt[3]{3^{3}}=2^{\frac{6}{3}}\times 3^{\frac{3}{3}}=2^{2}\times 3=4\times 3=12}

5. Escribimos el resultado.

\boldsymbol{\sqrt[3]{1.728}=12}

Velocidad de un auto en un accidente

Cuando ocurre una accidente de tránsito, por lo general las llantas de los autos dejan una marca sobre el pavimento al frenar. Esta marca es de gran utilidad para los fiscales de tránsito, pues la raíz cuadrada del producto entre la aceleración y la longitud de la marca de frenado es igual a la velocidad del vehículo al momento del choque.

\boldsymbol{\sqrt{-2ax}}

Donde:

a = aceleración

x = longitud de las marcas de frenado

NOTACIÓN CIENTÍFICA

La notación científica es la expresión de números a partir de potencias de base 10. De forma general se representan así:

a × 10n

Donde:

a: es el número entero o decimal que multiplica a la potencia de base 10. Su módulo debe tener un valor igual o mayor que 1 pero menor que 10.

n: es un número entero distinto de cero que corresponde al exponente de la potencia de base 10. Es conocido también como “orden de magnitud”.

Se escriben de la siguientes manera:

  • 10−5 = 0,00001
  • 10−4 = 0,0001
  • 10−3 = 0,001
  • 10−2 = 0,01
  • 10−1 = 0,1
  • 100 = 1
  • 101 = 10
  • 102 = 100
  • 103 = 1.000
  • 104 = 10.000
  • 105 = 100.000

Signos del exponente

Cuando los números son muy pequeños o menores a 1 el exponente es negativo, mientras que si el número es muy grande o mayores a 1 el exponente es positivo.

  • Los exponentes positivos indican la cantidad de ceros que se encuentran a la derecha del número que multiplica la potencia. Por ejemplo, el número 2.000.000 representado en notación científica es 2 × 106 en donde el exponente 6 indica la cantidad de ceros que están después del dos.
  • Los exponentes negativos indican la cantidad de ceros a la izquierda del número que multiplica la potencia. Por ejemplo, el número 0,00000004 representado en notación científica es 4 × 10−8. En este caso el signo menos indica que hay 8 ceros delante del 4.
Nuestro planeta Tierra se encuentra en la galaxia espiral llamada Vía Láctea, la cual tiene unos 100.000 años luz de diámetro. Los científicos estiman que hay alrededor de 400.000.000.000 estrellas en esta galaxia. Estos número tan grandes podemos expresarlos por medio de notación científica como 1 × 105 años luz de diámetro y 4 × 1011 estrellas.

– Otros ejemplos:

  • 3,2 × 10−3 = 0,0032
  • 4 × 10−4 = 0,0004
  • 1,05 × 106 = 1.050.000
  • 6,78 × 10−1 = 0,678
  • 9,43 × 102 = 943

¿Sabías qué?
En el caso de números muy grandes, lo primero que se debe hacer es mover la coma decimal a un número que esté comprendido entre 1 y 10. El número de espacios recorridos hasta dicho número corresponderá al exponente de la potencia de base 10.
  • 8.956.000.000.000 = 8,956 × 1012
  • 243.000 = 2,43 × 105
  • 90.000 = 9 × 104
  • 0,00000045 = 4,5 × 10−7
  • 0,007 = 7 × 10−3

¡A practicar!

1. Expresa los siguientes números como producto de sus factores primos.

  • 520
Solución
520 = 23 × 5 × 13
  • 156
Solución
156 = 22 × 3 × 13
  • 200
Solución
200 = 23 × 52
  • 86
Solución
86 = 2 × 43
  • 22
Solución
22 = 2 × 11

2. Calcula las siguientes raíces por descomposición de sus factores primos.

  • \sqrt[3]{729}
Solución
\sqrt[3]{729}=9
  • \sqrt[3]{64}
Solución
\sqrt[3]{64}=4
  • \sqrt[3]{343}
Solución
\sqrt[3]{343}=7
  • \sqrt{324}
Solución
\sqrt{324}=18
  • \sqrt{400}
Solución
\sqrt{400}=20

3. Calcula:

  • 6 × 108
Solución
6 × 108 = 600.000.000
  • 3 × 10−5
Solución
3 × 10−5 = 0,00003
  • 1,26 × 10−6 
Solución
1,26 × 10−6 = 0,00000126
  • 1,78 × 105
Solución
1,78 × 105 = 178.000 
  • 2 × 104
Solución
2 × 104 = 20.000

RECURSOS PARA DOCENTES

Video “Notación científica”

Este recurso audiovisual le permitirá poner en práctica lo aprendido sobre la notación científica.

VER

Artículo “Factorización de números”

Este artículo detalla cómo descomponer números en sus factores primos y su relación con el cálculo del mínimo común múltiplo y máximo común divisor.

VER

CAPÍTULO 1 / TEMA 2

NÚMEROS PRIMOS Y COMPUESTOS

Podemos clasificar los números según distintos criterios, y uno de esos es la cantidad de divisores que tengan. Si un número tiene solo dos divisores, el uno y él mismo, decimos que ese número es primo; en cambio, si el número tiene más de dos divisores, a ese número lo llamamos compuesto.

CARACTERÍSTICAS DE LOS NÚMEROS PRIMOS Y COMPUESTOS

Números primos

Los números primos son aquellos que solo son divisibles por el número uno y por sí mismos. Por ejemplo, el número 13 es un número primo porque solo es divisible por el número 1 y por el número 13.

Además, los números primos no pueden formarse como producto de la multiplicación de otros dos factores que no sean el 1 y el mismo número. Por ejemplo, el número 7 solo puede formarse al multiplicar 7 × 1 = 7.

Divisibilidad

Un número es divisible por otro cuando al efectuar la operación de división entre ellos el resto es cero.

  • El 12 es divisible por 2 porque el resto de la división en 0.
  • El 13 no es divisible por 2 porque el resto de la división no es 0.

El número 12 es divisible por 1, 2, 3, 4, 6 y 12.

Números compuestos

Los números compuestos son aquellos que aparte de ser divisibles por el uno y por sí mismos, también son divisibles por otro u otros números. Por ejemplo, el número 4 es un número compuesto porque tiene tres divisores: 1, 2 y 4.

A su vez, los números compuestos pueden ser formados como productos de la multiplicación de otros dos factores. Por ejemplo, el número 10 puede ser formado por la multiplicación de 5 x 2 = 10.

¿Sabías qué?
El número 1 no es primo ni compuesto ya que solo puede dividirse por sí mismo.
Los números primos solo son divisibles por el uno y por sí mismos, mientras que los números compuestos, además de ser divisibles por uno y por sí mismos, también pueden ser divididos por otro u otros números. No obstante, hay un número que no cumple con estas características: el uno. El número 1 no es primo ni compuesto.

CRIBA DE ERATÓSTENES

Es un procedimiento para identificar los números primos. La podemos elaborar de la siguiente manera:

  1. Comenzamos desde el número 2, que es el primer número primo, por lo tanto no lo vamos a tachar. Pero sí eliminamos todos los siguientes múltiplos de 2: 4, 6, 8, 10, 12,…
  2. El siguiente primo es el 3, así que debemos tachar todos los múltiplos de este número: 6, 9, 12, 15…
  3. En esta instancia, ya tenemos gran parte de los números eliminados. Podemos observar que el siguiente número que aparece sin tachar es el 5, que sería el siguiente primo. Entonces, tachamos los múltiplos de 5 que aparecen a continuación: 5, 10, 15, 20…
  4. Del mismo modo procedemos con el 7.
  5. El siguiente número que aparece sin eliminar es el 11, pero… ¡Todos sus múltiplos están tachados! Por ello, aquellos números que han quedado sin descartar en esta instancia son los primos.

Observa que los números resaltados son los primos y los tachados son los compuestos.

¿Sabías qué?
El 2 es el único número primo que es par.
¡A practicar!

Marca con una circunferencia los números que sean primos:

Solución

EXPRESIÓN DE NÚMEROS EN FACTORES PRIMOS

Todos los números compuestos pueden representarse como producto de una multiplicación de 2 o más factores primos. Esto se conoce comúnmente como factorización en números primos, o factorización de números compuestos.

Así como podemos representar cualquier número como una suma (por ejemplo: 5 = 2 + 3) o como una resta (por ejemplo 5 = 7 − 2), también podemos descomponer un número compuesto por medio de una multiplicación de sus números primos.

Recuerda que:

  • Factor: es el número que multiplica.
  • Producto: es el resultado de una multiplicación.

Pasos para factorizar en números primos

  1. Escribe el número compuesto que se quiere expresar en factores primos y a su derecha traza una semirrecta vertical.
  2. Pon a la derecha de la semirrecta el número primo más pequeño que sea divisor, es decir, que pueda dividir de forma exacta el número compuesto elegido.
  3. Escribe el cociente de la división anterior debajo del número compuesto elegido y a su derecha, del otro lado de la semirrecta, escribe el número primo más pequeño que sea divisor de este último.
  4. Repite el procedimiento la cantidad de veces que sean necesarias hasta obtener el número 1 como cociente.

– Ejemplo:

Expresa el número 36 como producto de sus factores primos.

El número compuesto 36 se expresa como producto de factores primos así: 2 x 2 x 3 x 3.

Observa que también podemos expresar los factores primos como una potencia, de este modo, 2 × 2 = 22 y 3 × 3 = 32.

¡A practicar!

Expresa los siguientes números como productos de factores primos:

  • 12
  • 40
  • 64
Solución

CRITERIOS DE DIVISIBILIDAD

Los criterios de divisibilidad son reglas que nos permiten reconocer si un número es divisible por otro sin necesidad de hacer la división. Es decir, por medio de la observación de las características de un número podemos darnos cuenta si se puede dividir o no por otro número determinado.

Todo número tiene sus múltiplos, de la misma manera, también tiene sus divisores; estos son números que lo dividen de forma exacta, es decir, que al hacer la operación el cociente es un número exacto y el resto es cero. Por ejemplo, 2 es divisor de 8 y 3 es divisor de 6 porque al calcular 2 : 8 = 4 y 6 : 3 = 2, el resto es cero en ambos casos.

 

Cada número tiene un criterio de divisibilidad distinto. En la siguiente tabla están desde el 2 hasta el 10:

Número Criterio Ejemplos
2 Un número es divisible por 2 si es un número par. 6

8

125.972

Son números pares.

3 Un número es divisible por 3 si la suma de sus cifras da como resultado un número múltiplo de 3. 93 porque 9 + 3 = 12 y 12 es múltiplo de 3.

 

123 porque 1 + 2 + 3 = 6 y 6 es múltiplo de 3.

4 Un número es divisible por 4 si las 2 últimas cifras del número forman un múltiplo de 4 o si son dos ceros. 140 porque 40 es múltiplo de 4.

 

33.624 porque 24 es múltiplo de 4.

 

700 porque termina con dos ceros.

5 Un número es divisible por 5 si su última cifra es un 0 o un 5. 495 porque termina en 5.

 

874.280 porque termina en 0.

6 Un número es divisible por 6 si es divisible por 2 y por 3 a la vez. 12 porque es divisible por 2 y por 3 a la vez.

 

150 porque es divisible por 2 y por 3 a la vez.

7 Un número es divisible por 7 si al restar el doble de la unidad a el resto de la cantidad sin la última cifra el resultado es 0 o un múltiplo de 7. 91 porque 9 −2 = 7 y 7 es múltiplo de 7.

 

105 porque 10 − 10 = 0.

 

182 porque 18 − 4 = 14 y 14 es múltiplo de 7.

8 Un número es divisible por 8 si sus 3 últimas cifras forman un múltiplo de 8 o son tres ceros. 25.200 porque 200 es múltiplo de 8.

 

9.000 porque sus últimas 3 cifras son tres ceros.

9 Un número es divisible por 9 si la suma de sus cifras da como resultado un número múltiplo de 9. 99 porque 9 + 9 = 18 y 18 es múltiplo de 9.

 

207 porque 2 + 0 + 7 = 9 y 9 es múltiplo de 9.

10 Un número es divisible por 10 si su última cifra es un 0. 1.235.250 porque termina en 0.

 

2.000 porque termina en 0.

 

¡A practicar!

1. Expresa los siguientes números como productos de factores primos:

  • 98
  • 60
  • 18
  • 36
Solución

2. Indica si las siguientes afirmaciones son verdaderas o falsas.

  • 161 es divisible por 7.
Solución
Verdadero.
  • 222 es divisible por 3.
Solución
Verdadero.
  • 523 es divisible por 5.
Solución
Falso.
  • 234 es divisible por 9.
Solución
Verdadero.
  • 10.001 es divisible por 10.
Solución
Falso.
  • 32 es divisible por 6.
Solución
Falso.
  • 500 es divisible por 4.
Solución
Verdadero.
RECURSOS PARA DOCENTES

Artículo destacado “Números primos y compuestos”

El siguiente artículo te permitirá ampliar la noción de números primos y compuestos.

VER

Artículo destacado “Criterios de divisibilidad”

El siguiente artículo profundiza en las explicaciones sobre los criterios de divisibilidad.

VER

CAPÍTULO 1 / TEMA 6 (REVISIÓN)

NÚMEROS | ¿QUÉ APRENDIMOS?

El universo de los números

El ser humano ha creado muchos inventos, pero uno de los más significativos han sido los números. En la actualidad, el sistema de numeración más usado es el decimal, llamado así porque emplea diez dígitos: 0, 1, 2, 3, 4, 5, 6, 7, 8 y 9. Este sistema es posicional porque cada cifra adquiere un valor distinto de acuerdo a la posición en donde se encuentre. A lo largo del tiempo han existido otros sistemas de numeración como el romano, que es usado hoy en día en ciertas situaciones.

La falta del número cero y la imposibilidad de representar fracciones y números decimales hizo que el sistema romano quedara en desuso.

Números primos y compuestos

Los números enteros que solo son divisibles entre ellos mismos y la unidad se denominan números primos. Hay números que además de ser divisibles entre ellos mismos y la unidad pueden ser divisibles por otros números, y se conocen como números compuestos. Por convención, el 1 no es clasificado como número primo ni compuesto; por otro lado, el 0, al no poder ser dividido entre él mismo, tampoco entra en dichas clasificaciones.

La Criba de Eratóstenes es una tabla que permite identificar de manera simple los números primos.

Un vistazo a los números decimales

Los números que se encuentran entre dos números enteros consecutivos se denominan números decimales y se caracterizan por una parte entera y otra parte decimal. La parte entera puede ser igual o diferente de cero y la parte decimal está ubicada después del separador decimal que puede ser un punto o una coma de acuerdo a la convención de cada país. La suma y resta de decimales se hace igual que con los números enteros, pero se debe tener la precaución que cada cifra esté ordenada de acuerdo a su mismo valor posicional.

Los números decimales pueden tener decimales infinitos como sucede en el caso del número pi: 3,141592…

Valor posicional

Cada cifra adquiere un valor dentro de un número y por medio de una tabla posicional se pueden representar dichos valores. Para números de seis dígitos estos son, de mayor a menor: centena de mil, decena de mil, unidad de mil, centena, decena y unidad. Conocer los valores posicionales facilita realizar operaciones como la descomposición aditiva de un número.

La descomposición aditiva permite expresar un número en forma de suma. Este tipo de descomposición relaciona el valor relativo de cada cifra.

Secuencias

Al conjunto de elementos que guardan relación y conservan un orden particular se lo denomina “secuencia”. El orden de una secuencia viene dado por una regla que puede ser, por ejemplo, su forma, tamaño o color. Además, en el caso de las secuencias numéricas, la regla puede implicar que los números incrementen o disminuyan su valor, en estos casos se denominan secuencias ascendentes y descendentes respectivamente. Conocer las secuencias permite realizar operaciones como las divisiones con restas sucesivas.

Los números naturales corresponden a una secuencia numérica infinita del tipo ascendente donde cada número se encuentra ordenado de 1 en 1.

CAPÍTULO 1 / TEMA 2

Números primos y compuestos

Los números naturales son usados comúnmente para contar y se clasifican según sus divisores. Aquellos que solo pueden dividirse de forma exacta entre ellos mismos y entre el 1, es decir, tienen solo dos divisores, se denominan números primos; mientras que los que tienen más de dos divisores se denominan números compuestos.

Divisores de un número

Antes de abordar el tema de los números primos y números compuestos, es indispensable comprender el concepto de divisor. Este es un número natural que al dividir a otro natural da como resultado una división con cociente entero y resto igual a cero.

¿Sabías qué?
El divisor de un número siempre lo divide en partes exactas, por eso el resto siempre es igual a cero.

En este sentido, si deseas saber si un número es o no divisor de otro, debes realizar una división entre el número en cuestión y el posible divisor. Si el resultado es un cociente entero (no decimal) y si el resto es igual a cero (división exacta) entonces decimos que efectivamente es divisor de dicho número.

Por ejemplo:

– Para determinar si el número 2 es divisor del número 6:

Lo primero es dividir 6 entre 2.

En este caso, el número 2 es divisor del número 6 porque el cociente de la división es un número entero (no es decimal) y la división es exacta con el resto igual a cero.

Otro ejemplo:

– Para determinar si el número 3 es divisor del número 14:

 

 

 

Aunque la división es exacta, el número 4 no es divisor del número 14, porque el cociente de la división es un número decimal, en este caso se dice que el número 14 no es divisible entre 4.

Criterios de divisibilidad

Son simples reglas que permiten determinar de manera rápida si un número es divisor o no de otro sin necesidad de realizar la división. Algunos de estos criterios son:

– Un número es divisible entre 2 si es un número par o termina en 0.
Por ejemplo: 20, 54, 12, 1.050, 76 y 80.

– Un número es divisible entre 5 si termina en 5 o en 0.
Por ejemplo: 15, 225, 3.110 y 400.

– Un número es divisible entre 10 si termina en 0.
Por ejemplo: 10, 500, 3.410 y 780.

¡A practicar!

  1. ¿Cuáles de los siguientes números es divisor del número 12?
    a) 5
    b) 2
    c)10
    RESPUESTAS
    2
  2. ¿Cuáles de los siguientes números es divisor del número 25?
    a) 3
    b) 7
    c) 5
    RESPUESTAS
    5
  3. ¿Cuáles de los siguientes números es divisor del número 200?
    a) 10
    b) 3
    c) 6
    RESPUESTAS
    10
  4. ¿Cuáles de los siguientes números es divisor del número 16?
    a) 5
    b) 4
    c) 9
    RESPUESTAS
    4

Números primos

Son números que poseen únicamente dos divisores: ellos mismos y el 1.

Por ejemplo, el número 2 es un número primo porque solamente es divisible entre 2 y entre 1.

 

VER INFOGRAFÍA

¿Sabías qué?
El número uno es divisor de todos los números enteros pero solo es divisible por sí mismo.

Números compuestos

Los números compuestos son números divisibles por ellos mismos, por el uno (1) y por otros números, es decir, tienen más de dos divisores y son más frecuentes que los números primos.

Por ejemplo, el número 24 es un número compuesto, ya que es divisible entre 1, 2, 3, 4, 6, 8, 12 y 24. En total tiene 8 números divisores.

Números especiales

Los números 1 y 0 son números muy particulares. En el caso del 1, su único divisor es él mismo y en el caso del número 0, aunque puede ser dividido entre infinitos números, no puede dividirse entre sí mismo porque la división entre cero no esta determinada. Por estas razones, los números 1 y 0 no se consideran números primos ni compuestos.

Tabla de los números primos y compuestos

Existe un simple procedimiento que permite determinar con facilidad los conjuntos de números primos y compuestos; se conoce como Criba de Eratóstenes y aunque su nombre parezca complicado, su procedimiento no lo es.

1. Lo primero que hay que hacer es realizar una tabla con los números del 1 al 100 y se deberán tachar los números que no son primos. El primer número que se tacha es el 1 al no ser considerado número primo.
2. Luego, el siguiente número es el 2, al ser un número primo no se tacha pero a partir de él se empieza a contar de dos en dos al mismo tiempo que se tachan los números que resulten de dicho conteo.

3. Luego del 2, el siguiente número que no se ha tachado es el 3, a partir de él se empieza a contar de 3 en 3 y se tachan los números al mismo tiempo.

4. El siguiente número sin tachar es el 5, se deja sin tachar y se empieza a contar de 5 en 5 mientras se tachan los números.

5. El siguiente número sin marcar el el 7, se mantiene en la tabla sin tachar y se empieza a contar de 7 en 7 mientras se tachan los números.

Los números que no fueron tachados corresponden a números primos, y los números tachados son los compuestos, es una manera gráfica de identificar estos tipos de números del 1 al 100.

La Criba de Eratóstenes es una herramienta muy práctica para tener una visión general de los números primos y compuestos, sin embargo; en la vida cotidiana no es necesario ni aconsejable memorizarlos para resolver los ejercicios, por el contrario; al entender los elementos de cada número se podrá determinar con mayor rapidez si es primo o no.

 

¡A practicar!

1. ¿Qué número tiene infinitos divisores?

RESPUESTAS
El número cero.

2. ¿Cómo se llaman los números que solo tienen dos divisores?

RESPUESTAS
Números primos.

3. ¿Qué números no son considerados ni primos ni compuestos?

RESPUESTAS
El cero y el uno.

4. Un número es divisible entre dos si es par o termina en __________.

RESPUESTAS
cero

5. ¿Cuáles de estos números no es primo?
a) 7
b) 19
c) 25
d) 2

RESPUESTAS
25

6. El número 32 es un número _________.

a) impar
b) primo
c) compuesto

RESPUESTAS
compuesto

7. Clasifica cada uno de los siguientes números como “primo” o “compuesto”:

a) 21
b) 59
c) 18
d) 13

RESPUESTAS
a) Compuesto.
b) Primo.
c) Compuesto.
d) Primo.
RECURSOS PARA DOCENTES

Artículo “Números primos y compuestos”

En el siguiente artículo se desarrolla el tema de números primos y compuestos. Además se explica qué son los coprimos, y se señalan algunos números especiales.

VER

Artículo “Criterios de divisibilidad”

Este recurso ayuda a conocer los criterios de divisibilidad, ampliados para más números de los que se mencionaron en este artículo.

VER