CAPÍTULO 1 / TEMA 6

POTENCIAS

La matemática está compuesta por numerosos tipos de operaciones que varían según su complejidad. Entre esas operaciones se encuentra la potenciación, que consiste en la multiplicación de factores iguales de acuerdo a un exponente. Al igual que otros cálculos, tiene sus propiedades y sus características particulares. ¡Las aprenderemos a continuación!

La potenciación también puede ser definida como la forma abreviada de escribir un producto de varios factores iguales. En muchas ocasiones, los ejercicios de potenciación pueden parecer algo complejos. Para resolverlos de manera correcta es indispensable conocer sus elementos y propiedades.

LA POTENCIA Y SUS ELEMENTOS

La potencia se define como el resultado (b) de la multiplicación de la base (a) tantas veces como lo indica el exponente (n). En esta operación, a y b son números reales y n es un número entero.

– Ejemplo:

\boldsymbol{4^{3}=4\times 4\times4 =64}

\boldsymbol{5^{4}=5\times 5\times 5\times 5=625}

\boldsymbol{8^{2}=8\times 8 = 64}

¿Cómo se lee una potencia?

Si quieres leer una potencia es necesario que hayas aprendido bien a identificar sus elementos para luego aplicar los siguientes pasos.

  1. Lee la base como cualquier número seguido de la expresión “elevado a la” o “elevado al” según sea el caso.
  2. Lee el exponente como un número ordinal. A excepción del 2 y 3 que se expresan como “al cuadrado” y “al cubo” respectivamente.

– Ejemplo:

\boldsymbol{5^{{\color{Red} 3}}} se lee “cinco al cubo”.

\boldsymbol{4^{{\color{Red} 2}}} se lee “cuatro al cuadrado”.

\boldsymbol{9^{{\color{Red} 5}}} se lee “nueve a la quinta”.

¿Sabías qué?
René Descartes (1596-1650) realizó contribuciones importantes a la matemática y popularizó la notación para la potenciación. 

VER INFOGRAFÍA

¡A practicar!

¿Cómo se leen estas potencias?

\boldsymbol{4^{3}}

Solución

Cuatro al cubo.

\boldsymbol{25^{6}}

Solución

Veinticinco a la sexta.

\boldsymbol{64^{9}}

Solución

Sesenta y cuatro a la novena.

PROPIEDADES DE LA POTENCIA

Potencia de un exponente 0

Todo número elevado a la potencia cero es igual a 1.

\boldsymbol{a^{0}=1}

– Ejemplo:

\boldsymbol{5^{0}=1}

\boldsymbol{\left ( -3 \right )^{0} = 1}

Potencia de un exponente 1

Todo número elevado a la potencia 1 es igual al mismo número.

\boldsymbol{a^{1}=a}

– Ejemplo:

\boldsymbol{5^{1}=5}

\boldsymbol{\left ( -3 \right )^{1} = -3}

Potencia de un exponente negativo

Todo número elevado a la potencia negativa es igual a la fracción de uno sobre la misma base con potencia positiva.

\boldsymbol{a^{-n}=\frac{1}{a^{n}}}

– Ejemplo:

\boldsymbol{5^{-1}=\frac{1}{5^{1}}=\frac{1}{5}}

\boldsymbol{(-3)^{-2}=\frac{1}{(-3)^{2}} = \frac{1}{9}}

Multiplicación de potencias de igual base

En la multiplicación de potencias de igual base se coloca la misma base y se suman los exponentes.

\boldsymbol{a^{n}\times a^{m}=a^{n + m}}

– Ejemplo:

\boldsymbol{3^{2}\times 3^{4}=3^{2 + 4}=3^{6}}

\boldsymbol{(-7)^{5}\times (-7)^{-3}=(-7)^{5+( - 3)}=(-7)^{2}}

División de potencias de igual base

En la división de potencias se coloca la misma base y se restan los exponentes.

\boldsymbol{\frac{a^{n}}{a^{m}}=a^{n-m}}

– Ejemplo:

\boldsymbol{\frac{4^{6}}{4^{2}}=4^{6-2}=4^{4}}

\boldsymbol{\frac{(-3)^{-2}}{(-3)^{4}}=(-3)^{-2-4}= (-3)^{-6}}

Potencia de una potencia

En toda potencia elevada a otra potencia se coloca la misma base y se multiplican los exponentes.

\boldsymbol{(a^{n})^{m}=a^{n \times m}}

– Ejemplo:

\boldsymbol{(9^{2})^{3}=9^{2 \times 3}=9^{6}}

\boldsymbol{((-8)^{2})^{3}=(-8)^{2\times 3}=(-8)^{6}}

Potencia de un exponente racional

En una potencia con exponente fraccionario se extrae el denominador del exponente en forma de raíz y el numerador queda como exponente de la potencia.

\boldsymbol{a^{\frac{n}{m}}= \sqrt[m]{a^{n}}}

– Ejemplo:

\boldsymbol{5^{\frac{7}{3}}= \sqrt[3]{5^{7}}}

\boldsymbol{(-2)^{\frac{4}{5}}= \sqrt[5]{(-2)^{4}}}

Multiplicación de potencias con el mismo exponente

En la multiplicación de potencias de igual exponente se multiplican las bases y se coloca el mismo exponente.

\boldsymbol{a^{n}\times b^{n}=(a\times b)^{n}}

– Ejemplo:

\boldsymbol{5^{3}\times 4^{3}=(5\times 4)^{3}=(20)^{3}}

\boldsymbol{(-3)^{3}\times (-6)^{3}=((-3)\times (-6))^{3}=(18)^{3}}

División de potencias con el mismo exponente

En la división de potencias de igual exponente se coloca el mismo exponente y se dividen las bases.

\boldsymbol{\frac{a^{n}}{b^{n}}=(\frac{a}{b})^{n}}

– Ejemplo:

\boldsymbol{\frac{8^{2}}{4^{2}}=(\frac{8}{4})^{2}=2^{2}}

\boldsymbol{\frac{(-6)^{3}}{(-3)^{3}}=(\frac{(-6)}{(-3)})^{3}=2^{2}}

¿Resultado par o impar?

Toda potencia de base negativa con exponente par da como resultado un número positivo. Por ejemplo:

\boldsymbol{\left ( -3 \right )^{4} = (-3)\times (-3)\times (-3)\times (-3)=81}

Toda potencia de base negativa con exponente impar da como resultado un número negativo. Por ejemplo:

\boldsymbol{\left ( -2 \right )^{5} = (-2)\times (-2)\times (-2)\times (-2)\times (-2)=-32}

Potencias de base 10

Las potencias de base 10 son fáciles de calcular porque el valor es igual a la base seguida de tantos ceros como indica el exponente. Estas son muy útiles para escribir de forma polinómica un número, es decir, permiten escribir números muy grandes de forma reducida.

\boldsymbol{10^{2} = 10 \times 10 = 100}

\boldsymbol{10^{3} = 10 \times 10\times 10 = 1.000}

\boldsymbol{10^{4} = 10 \times 10\times 10\times 10 = 10.000}

\boldsymbol{10^{5} = 10 \times 10 \times 10\times 10\times 10 = 100.000}

\boldsymbol{10^{6} = 10 \times 10\times 10\times 10\times 10\times 10 = 1.000.000}

APLICACIONES DE LAS POTENCIAS

Debido a las diversas propiedades que estas poseen pueden utilizarse para:

  • Aplicar el teorema de Pitágoras
Uno de los teoremas más famosos de la geometría es el teorema de Pitágoras. Este emplea potencias para expresar su fórmula, la cual dice que la hipotenusa al cuadrado de un triángulo rectángulo es igual a la suma de sus catetos al cuadrado, es decir, C= A+ B2.
  • Emplear la notación científica

La notación científica utiliza potencias de base 10 para expresar números muy grandes o muy pequeños en forma reducida. Observa cómo algunos números pueden ser expresados de forma simplificada:

\boldsymbol{0,00000465 = 465\times 10^{-8}}

\boldsymbol{0,00000465 = 46,5\times 10^{-7}}

\boldsymbol{0,00000465 = 4,65\times 10^{-6}}

  • Expresar sucesiones matemáticas y progresiones geométricas

Existen series matemáticas que requieren el uso de las potencias para expresar su forma general o enésima.

Uno de los campos o áreas que usan la potenciación es la biología, específicamente en el estudio de la reproducción de virus y bacterias. Allí, para poder expresar su rápido crecimiento, es necesario emplear este tipo de operación matemática.

¡A practicar!

1. Resuelve las siguientes potencias y aplica las propiedades necesarias:

\boldsymbol{4^{3}+5^{2}=}

Solución

\boldsymbol{4^{3}+5^{2}= 4\times 4\times 4+5\times 5=64+25 = 89}

\boldsymbol{3^{3}\times 9^{3}=}

Solución

\boldsymbol{3^{3}\times 9^{3}= (3\times 9)^{3}= (27)^{3}=27\times 27\times 27=19.683}

\boldsymbol{\frac{8^{5}}{8^{3}}=}

Solución

\boldsymbol{\frac{8^{5}}{8^{3}}= 8^{5-3}=8^{2}= 8\times 8=64}

\boldsymbol{(\frac{4^{3}}{4^{2}})^{2}+\frac{5^{6}\times4^{3}}{5^{5}\times4^{2}}-\frac{2^{0}\times1^{9}}{5^{0}}}

Solución

\boldsymbol{(\frac{4^{3}}{4^{2}})^{2}+\frac{5^{6}\times4^{3}}{5^{5}\times4^{2}}-\frac{2^{0}\times1^{9}}{5^{0}}= 4^{6-4}+5^{6-5}\times4^{3-2}-\frac{1\times1}{1}}

\boldsymbol{4^{2}+5^{1}\times4^{1}-\frac{1\times1}{1}=4\times4+20-1=16+19=35}

2. Expresa los siguientes números en notación científica.

  • \boldsymbol{1.320.000}
Solución

\boldsymbol{1.320.000=1,32\times 10^{6}=13,2\times 10^{5}=132\times 10^{4}}

  • \boldsymbol{0,000968}
Solución

\boldsymbol{0,000968 = 968\times 10^{-6}}

RECURSOS PARA DOCENTES

Artículo “Propiedades de potencias”

En el siguiente artículo hay más estrategias para ampliar los conocimientos acerca de las propiedades de las potencias.

VER

Artículo “Ejercicios de propiedades de la potencia”

El siguiente recurso le brindará apoyo con ejercicios de potencias, con sus resultados y explicaciones.

VER

CAPÍTULO 1 / TEMA 5

SUCESIONES

Hacemos uso de las sucesiones al contar los días de la semana, del mes o del año. También al contar las horas del día o simplemente al contar los pasos para llegar a casa. Las sucesiones no son más que un conjunto de números organizados de un forma determinada. No solo las podemos encontrar con números, sino también con figuras.

Las primeras nociones sobre las sucesiones fueron propuestas por Fibonacci. A él se le ocurrió estudiar este concepto por medio de la relación que tenía con la reproducción de los conejos. ¡Sí! Los conejos se reproducen de forma sucesiva. Cada mes una hembra puede dar a luz, y por lo tanto, puede tener cientos de hijos al año.

¿QUÉ SON SUCESIONES?

Una sucesión es un conjunto de elementos ordenados de forma ascendente o descendente. Los elementos de este conjunto se denominan términos y estos siguen una regla, la cual permite calcular cada uno de ellos.

Las sucesiones pueden ser finitas o infinitas. Las sucesiones finitas tienen un número determinado de términos y las infinitas no tienen término final. Por ejemplo:

  • Sucesión finita = \boldsymbol{\left \{ 2,4,6,8,10 \right \}}
  • Sucesión infinita = \boldsymbol{\left \{ 3,6,9,12,15,18... \right \}}
¿Sabías qué?
Los puntos suspensivos (…) indican que la sucesión continua hasta el infinito.

Términos de una sucesión

Los términos de una sucesión se expresan con subíndices: a1, a2, a3, a4, a5, los cuales indican la posición de cada uno dentro de la secuencia, por ejemplo, el término a1 ocupa la primera posición de la secuencia, el término a2 corresponde al segundo lugar y así sucesivamente con cada uno.

Podemos calcular cada término de una sucesión de acuerdo a esta relación:

an = a0 + nr

Donde:

a0: término anterior al primero.

r: regla de la sucesión.

n: número de término.

– Ejemplo:

Podemos representar una sucesión por un término general o enésimo. En este caso su fórmula es:

an = −1 + n · (+3)

an = −1 + 3n

Observa que la regla de sucesión (r) es +3, por lo tanto, el término anterior al primero (t0) es igual a −1. Si queremos hallar el término a8 solo aplicamos la fórmula anterior:

a8 = −1 + 3 · 8 ⇒ a8 = −1 + 24 ⇒ a8 = 23

¿Cuáles son los términos?

Emplea la fórmula y determina cuáles son los términos a10, a12 y a15 de la secuencia anterior.

Solución

a10 = −1 + 3 · 10 ⇒ a10 = −1 + 30 ⇒ a10 = 29

a12 = −1 + 3 · 12 ⇒ a12 = −1 + 36 ⇒ a12 = 35

a15 = −1 + 3 · 15 ⇒ a15 = −1 + 45 ⇒ a15 = 44

Sucesión de Fibonacci

Una de las sucesiones conocidas más importantes es la de Fibonacci. Este tipo de secuencia lleva su nombre en honor al matemático italiano Leonardo Fibonacci y se caracteriza por el hecho de que cada número resulta de sumar los dos números anteriores a este. El término general de la misma es a_{n}= a_{n-1} + a_{n-2} y la forma más básica de este tipo de sucesión es: 1,1,2,3,5,8,13,21,34,55,89,144,233...

VER INFOGRAFÍA

SUCESIONES CON FIGURAS

No solo podemos encontrar sucesiones de números, también es posible encontrar sucesiones con diferentes figuras. Por ejemplo:

En ella se puede ver que las figuras están en orden ascendente con respecto a sus lados. Cada figura tiene un lado más que la anterior.

– Ejemplo 2:

También es posible conseguir sucesiones con figuras en distintas posiciones, como este ejemplo:

Como puedes ver en la imagen, todas las flechas tienen una dirección y sentido diferente, pero si te fijas con atención, el movimiento es igual al de las agujas del reloj, es decir, van en sentido horario. Este patrón nos permite saber cuál será la próxima figura en la sucesión:

Uno de los campeonatos más vistos es el Mundial de fútbol de la FIFA. En este, se clasifican 32 selecciones y, a medida que transcurre el torneo, se eliminan la mitad de los equipos en encuentros entre ellos. Así, comienzan 32, luego 16, 8, 4, 2, hasta que solo queda 1, el equipo campeón. Como ves, esta es una sucesión descendente en la que cada término es igual a la mitad del anterior.

SUCESIONES CON SUMAS Y RESTAS

Podemos construir sucesiones por medio de sumas, restas o la combinación de ambas operaciones. Por ejemplo:

– Otro ejemplo:

En la sucesión anterior, a medida que disminuye el número en cada término, la resta entre el término siguiente y el anterior aumenta.

Algunas aplicaciones

Debido a lo práctico que resulta expresar en forma general una secuencia ordenada de números, las sucesiones matemáticas han sido aplicadas en muchas disciplinas además de la matemática. Por ejemplo, la sucesión de Fibonacci se ha aplicado en la arquitectura, el arte y la informática.

Las progresiones son un tipo de sucesiones que se utilizan para realizar diversos cálculos como la determinación del interés compuesto. Las progresiones aritméticas también se usan en las interpolaciones, que consisten en calcular valores que se encuentran entre dos dados.

¡A practicar!

1. Consigue la regla de la sucesión en cada caso.

  • {2, 4, 6, 8, 10, 12, 14}
Solución

  • {45, 44, 42, 39, 35, 30, 24, 17, 9} 
Solución

2. ¿Cuál es la imagen que falta?

Solución

3. ¿Cuáles son las figuras que deben ir en los espacios en gris?

Solución

4. Selecciona cuál de las imágenes del segundo bloque es la que corresponde al cuadrado que falta en el primer bloque.

Solución

5. Calcula el término a25 de la siguiente sucesión:

{23, 27, 31, 35, 39}

Solución
  • Datos:

a0 = 19

r = +4

  • Término enésimo:

an = 19 + n · (+4)

an = 19 + 4n

  • Resultado:

a25 = 19 + 4 · 25

a25 = 19 + 100

a25 = 119  

RECURSOS PARA DOCENTES

Artículo “Sucesiones”

Este artículo lo ayudará a complementar la información sobre las sucesiones.

VER

Artículo “Sucesiones y series”

Con este artículo podrá ampliar los conocimiento sobre las series y sucesiones.

VER