CAPÍTULO 4 / TEMA 5

APLICACIÓN DE LA POTENCIA Y DE LA RADICACIÓN

La potenciación y la radicación son operaciones estrechamente relacionadas. Mientras que la primera es una multiplicación condensada de un número por sí mismo n cantidad de veces, la segunda busca ese número que multiplicado por sí mismo resulte en el radicando. Si bien sus propiedades ya se trataron en temas anteriores, aquí aprenderás otras aplicaciones de estos cálculos.

operaciones que simplifican

Tanto la potenciación como la radicación son operaciones útiles para mostrar números de manera más simple. Por ejemplo, dentro del conjunto de los números reales encontramos otros tipos de números que no son sencillos de representar, como los números irracionales, cuyas expresiones decimales son ilimitadas y no periódicas, por lo que es más fácil mostrarlo como una raíz:

\boldsymbol{\sqrt{2}=1,414213562...}

\boldsymbol{\sqrt{3}=1,732050807...}

\boldsymbol{\sqrt{5}=2,236067977...}

Por su parte, la potencia nos ayuda a expresar números muy grandes o muy pequeños de manera resumida, pues la potencia no es más que una multiplicación abreviada.

La descomposición en factores primos y la notación científica son solo dos de los procesos que pueden verse involucrados con la potenciación y la radicación. Ambas operaciones son empleadas en múltiples cálculos cotidianos y en diversas áreas como la astronomía, la ingeniería o la biología.

Las bacterias son microorganismos que crecen con un ritmo acelerado. Este crecimiento suele expresarse en forma de potencia con exponente positivo y se grafica en forma de línea curva ascendente. Saber que tan rápida puede ser la reproducción de una bacteria puede prevenir focos de infección en un paciente y evitar que este sea una víctima mortal.

descomposición en factores primos

También conocida como descomposición factorial o factorización, consiste en escribir un número como producto de sus números primos. Cada vez que un factor se repita en la descomposición, este se convertirá  en la base de una potencia y la cantidad de veces que se repita será el exponente.

– Ejemplo:

¿Qué es un número primo?

Un número primo es un número natural que tiene dos divisores positivos: al uno y a sí mismo. Esta tabla muestra los primero números primos en color azul.

¿Sabías qué?
Las factorización es un paso indispensable para calcular el mínimo común múltiplo y el máximo común divisor de un número.

Las raíces también se pueden obtener por medio de la descomposición del radicando en sus números primos.

– Ejemplo:

Halla la raíz cuadrada de 625 por descomposición de sus factores primos.

1. Descomponemos al número 625 en sus factores primos.

2. Expresamos la raíz cuadrada con producto de la descomposición.

\boldsymbol{\sqrt{625}=\sqrt{5^{4}}}

3. Aplicamos la propiedad “raíz de un potencia”.

\boldsymbol{\sqrt{5^{4}}=5^{\frac{4}{2}}=5^{2}=25}

4. Escribimos el resultado.

\boldsymbol{\sqrt{625}=25}


– Otro ejemplo:

Halla la raíz cuadrada de 196 por descomposición de sus factores primos.

1. Descomponemos al número 196 en sus factores primos.

2. Expresamos la raíz cuadrada con su radicando igual al producto de su descomposición.

\boldsymbol{\sqrt{196}=\sqrt{2^{2}\times 7^{2}}}

3. Aplicamos la propiedad “raíz de un producto”.

\boldsymbol{\sqrt{2^{2}\times 7^{2}}=\sqrt{2^{2}}\times \sqrt{7^{2}}}

4. Aplicamos la propiedad “raíz de una potencia”.

\boldsymbol{\sqrt{2^{2}}\times \sqrt{7^{2}}=2^{\frac{2}{2}}\times 7^{\frac{2}{2}}=2\times 7=14}

5. Escribimos el resultado.

\boldsymbol{\sqrt{196}=14}


– Otro ejemplo:

Halla la raíz cúbica de 1.728 por descomposición de sus factores primos.

  1. Descomponemos el número 1.728 en sus factores primos.

2. Expresamos la raíz cúbica con su radicando igual al producto de su descomposición.

\boldsymbol{\sqrt[3]{1.728}=\sqrt[3]{2^{6}\times 3^{3}}}

3. Aplicamos la propiedad “raíz de un producto”.

\boldsymbol{\sqrt[3]{2^{6}\times 3^{3}}=\sqrt[3]{2^{6}}\times \sqrt[3]{3^{3}}}

4. Aplicamos la propiedad “raíz de una potencia”.

\boldsymbol{\sqrt[3]{2^{6}}\times \sqrt[3]{3^{3}}=2^{\frac{6}{3}}\times 3^{\frac{3}{3}}=2^{2}\times 3=4\times 3=12}

5. Escribimos el resultado.

\boldsymbol{\sqrt[3]{1.728}=12}

Velocidad de un auto en un accidente

Cuando ocurre una accidente de tránsito, por lo general las llantas de los autos dejan una marca sobre el pavimento al frenar. Esta marca es de gran utilidad para los fiscales de tránsito, pues la raíz cuadrada del producto entre la aceleración y la longitud de la marca de frenado es igual a la velocidad del vehículo al momento del choque.

\boldsymbol{\sqrt{-2ax}}

Donde:

a = aceleración

x = longitud de las marcas de frenado

NOTACIÓN CIENTÍFICA

La notación científica es la expresión de números a partir de potencias de base 10. De forma general se representan así:

a × 10n

Donde:

a: es el número entero o decimal que multiplica a la potencia de base 10. Su módulo debe tener un valor igual o mayor que 1 pero menor que 10.

n: es un número entero distinto de cero que corresponde al exponente de la potencia de base 10. Es conocido también como “orden de magnitud”.

Se escriben de la siguientes manera:

  • 10−5 = 0,00001
  • 10−4 = 0,0001
  • 10−3 = 0,001
  • 10−2 = 0,01
  • 10−1 = 0,1
  • 100 = 1
  • 101 = 10
  • 102 = 100
  • 103 = 1.000
  • 104 = 10.000
  • 105 = 100.000

Signos del exponente

Cuando los números son muy pequeños o menores a 1 el exponente es negativo, mientras que si el número es muy grande o mayores a 1 el exponente es positivo.

  • Los exponentes positivos indican la cantidad de ceros que se encuentran a la derecha del número que multiplica la potencia. Por ejemplo, el número 2.000.000 representado en notación científica es 2 × 106 en donde el exponente 6 indica la cantidad de ceros que están después del dos.
  • Los exponentes negativos indican la cantidad de ceros a la izquierda del número que multiplica la potencia. Por ejemplo, el número 0,00000004 representado en notación científica es 4 × 10−8. En este caso el signo menos indica que hay 8 ceros delante del 4.
Nuestro planeta Tierra se encuentra en la galaxia espiral llamada Vía Láctea, la cual tiene unos 100.000 años luz de diámetro. Los científicos estiman que hay alrededor de 400.000.000.000 estrellas en esta galaxia. Estos número tan grandes podemos expresarlos por medio de notación científica como 1 × 105 años luz de diámetro y 4 × 1011 estrellas.

– Otros ejemplos:

  • 3,2 × 10−3 = 0,0032
  • 4 × 10−4 = 0,0004
  • 1,05 × 106 = 1.050.000
  • 6,78 × 10−1 = 0,678
  • 9,43 × 102 = 943

¿Sabías qué?
En el caso de números muy grandes, lo primero que se debe hacer es mover la coma decimal a un número que esté comprendido entre 1 y 10. El número de espacios recorridos hasta dicho número corresponderá al exponente de la potencia de base 10.
  • 8.956.000.000.000 = 8,956 × 1012
  • 243.000 = 2,43 × 105
  • 90.000 = 9 × 104
  • 0,00000045 = 4,5 × 10−7
  • 0,007 = 7 × 10−3

¡A practicar!

1. Expresa los siguientes números como producto de sus factores primos.

  • 520
Solución
520 = 23 × 5 × 13
  • 156
Solución
156 = 22 × 3 × 13
  • 200
Solución
200 = 23 × 52
  • 86
Solución
86 = 2 × 43
  • 22
Solución
22 = 2 × 11

2. Calcula las siguientes raíces por descomposición de sus factores primos.

  • \sqrt[3]{729}
Solución
\sqrt[3]{729}=9
  • \sqrt[3]{64}
Solución
\sqrt[3]{64}=4
  • \sqrt[3]{343}
Solución
\sqrt[3]{343}=7
  • \sqrt{324}
Solución
\sqrt{324}=18
  • \sqrt{400}
Solución
\sqrt{400}=20

3. Calcula:

  • 6 × 108
Solución
6 × 108 = 600.000.000
  • 3 × 10−5
Solución
3 × 10−5 = 0,00003
  • 1,26 × 10−6 
Solución
1,26 × 10−6 = 0,00000126
  • 1,78 × 105
Solución
1,78 × 105 = 178.000 
  • 2 × 104
Solución
2 × 104 = 20.000

RECURSOS PARA DOCENTES

Video “Notación científica”

Este recurso audiovisual le permitirá poner en práctica lo aprendido sobre la notación científica.

VER

Artículo “Factorización de números”

Este artículo detalla cómo descomponer números en sus factores primos y su relación con el cálculo del mínimo común múltiplo y máximo común divisor.

VER

CAPÍTULO 1 / TEMA 6

POTENCIAS

La matemática está compuesta por numerosos tipos de operaciones que varían según su complejidad. Entre esas operaciones se encuentra la potenciación, que consiste en la multiplicación de factores iguales de acuerdo a un exponente. Al igual que otros cálculos, tiene sus propiedades y sus características particulares. ¡Las aprenderemos a continuación!

La potenciación también puede ser definida como la forma abreviada de escribir un producto de varios factores iguales. En muchas ocasiones, los ejercicios de potenciación pueden parecer algo complejos. Para resolverlos de manera correcta es indispensable conocer sus elementos y propiedades.

LA POTENCIA Y SUS ELEMENTOS

La potencia se define como el resultado (b) de la multiplicación de la base (a) tantas veces como lo indica el exponente (n). En esta operación, a y b son números reales y n es un número entero.

– Ejemplo:

\boldsymbol{4^{3}=4\times 4\times4 =64}

\boldsymbol{5^{4}=5\times 5\times 5\times 5=625}

\boldsymbol{8^{2}=8\times 8 = 64}

¿Cómo se lee una potencia?

Si quieres leer una potencia es necesario que hayas aprendido bien a identificar sus elementos para luego aplicar los siguientes pasos.

  1. Lee la base como cualquier número seguido de la expresión “elevado a la” o “elevado al” según sea el caso.
  2. Lee el exponente como un número ordinal. A excepción del 2 y 3 que se expresan como “al cuadrado” y “al cubo” respectivamente.

– Ejemplo:

\boldsymbol{5^{{\color{Red} 3}}} se lee “cinco al cubo”.

\boldsymbol{4^{{\color{Red} 2}}} se lee “cuatro al cuadrado”.

\boldsymbol{9^{{\color{Red} 5}}} se lee “nueve a la quinta”.

¿Sabías qué?
René Descartes (1596-1650) realizó contribuciones importantes a la matemática y popularizó la notación para la potenciación. 

VER INFOGRAFÍA

¡A practicar!

¿Cómo se leen estas potencias?

\boldsymbol{4^{3}}

Solución

Cuatro al cubo.

\boldsymbol{25^{6}}

Solución

Veinticinco a la sexta.

\boldsymbol{64^{9}}

Solución

Sesenta y cuatro a la novena.

PROPIEDADES DE LA POTENCIA

Potencia de un exponente 0

Todo número elevado a la potencia cero es igual a 1.

\boldsymbol{a^{0}=1}

– Ejemplo:

\boldsymbol{5^{0}=1}

\boldsymbol{\left ( -3 \right )^{0} = 1}

Potencia de un exponente 1

Todo número elevado a la potencia 1 es igual al mismo número.

\boldsymbol{a^{1}=a}

– Ejemplo:

\boldsymbol{5^{1}=5}

\boldsymbol{\left ( -3 \right )^{1} = -3}

Potencia de un exponente negativo

Todo número elevado a la potencia negativa es igual a la fracción de uno sobre la misma base con potencia positiva.

\boldsymbol{a^{-n}=\frac{1}{a^{n}}}

– Ejemplo:

\boldsymbol{5^{-1}=\frac{1}{5^{1}}=\frac{1}{5}}

\boldsymbol{(-3)^{-2}=\frac{1}{(-3)^{2}} = \frac{1}{9}}

Multiplicación de potencias de igual base

En la multiplicación de potencias de igual base se coloca la misma base y se suman los exponentes.

\boldsymbol{a^{n}\times a^{m}=a^{n + m}}

– Ejemplo:

\boldsymbol{3^{2}\times 3^{4}=3^{2 + 4}=3^{6}}

\boldsymbol{(-7)^{5}\times (-7)^{-3}=(-7)^{5+( - 3)}=(-7)^{2}}

División de potencias de igual base

En la división de potencias se coloca la misma base y se restan los exponentes.

\boldsymbol{\frac{a^{n}}{a^{m}}=a^{n-m}}

– Ejemplo:

\boldsymbol{\frac{4^{6}}{4^{2}}=4^{6-2}=4^{4}}

\boldsymbol{\frac{(-3)^{-2}}{(-3)^{4}}=(-3)^{-2-4}= (-3)^{-6}}

Potencia de una potencia

En toda potencia elevada a otra potencia se coloca la misma base y se multiplican los exponentes.

\boldsymbol{(a^{n})^{m}=a^{n \times m}}

– Ejemplo:

\boldsymbol{(9^{2})^{3}=9^{2 \times 3}=9^{6}}

\boldsymbol{((-8)^{2})^{3}=(-8)^{2\times 3}=(-8)^{6}}

Potencia de un exponente racional

En una potencia con exponente fraccionario se extrae el denominador del exponente en forma de raíz y el numerador queda como exponente de la potencia.

\boldsymbol{a^{\frac{n}{m}}= \sqrt[m]{a^{n}}}

– Ejemplo:

\boldsymbol{5^{\frac{7}{3}}= \sqrt[3]{5^{7}}}

\boldsymbol{(-2)^{\frac{4}{5}}= \sqrt[5]{(-2)^{4}}}

Multiplicación de potencias con el mismo exponente

En la multiplicación de potencias de igual exponente se multiplican las bases y se coloca el mismo exponente.

\boldsymbol{a^{n}\times b^{n}=(a\times b)^{n}}

– Ejemplo:

\boldsymbol{5^{3}\times 4^{3}=(5\times 4)^{3}=(20)^{3}}

\boldsymbol{(-3)^{3}\times (-6)^{3}=((-3)\times (-6))^{3}=(18)^{3}}

División de potencias con el mismo exponente

En la división de potencias de igual exponente se coloca el mismo exponente y se dividen las bases.

\boldsymbol{\frac{a^{n}}{b^{n}}=(\frac{a}{b})^{n}}

– Ejemplo:

\boldsymbol{\frac{8^{2}}{4^{2}}=(\frac{8}{4})^{2}=2^{2}}

\boldsymbol{\frac{(-6)^{3}}{(-3)^{3}}=(\frac{(-6)}{(-3)})^{3}=2^{2}}

¿Resultado par o impar?

Toda potencia de base negativa con exponente par da como resultado un número positivo. Por ejemplo:

\boldsymbol{\left ( -3 \right )^{4} = (-3)\times (-3)\times (-3)\times (-3)=81}

Toda potencia de base negativa con exponente impar da como resultado un número negativo. Por ejemplo:

\boldsymbol{\left ( -2 \right )^{5} = (-2)\times (-2)\times (-2)\times (-2)\times (-2)=-32}

Potencias de base 10

Las potencias de base 10 son fáciles de calcular porque el valor es igual a la base seguida de tantos ceros como indica el exponente. Estas son muy útiles para escribir de forma polinómica un número, es decir, permiten escribir números muy grandes de forma reducida.

\boldsymbol{10^{2} = 10 \times 10 = 100}

\boldsymbol{10^{3} = 10 \times 10\times 10 = 1.000}

\boldsymbol{10^{4} = 10 \times 10\times 10\times 10 = 10.000}

\boldsymbol{10^{5} = 10 \times 10 \times 10\times 10\times 10 = 100.000}

\boldsymbol{10^{6} = 10 \times 10\times 10\times 10\times 10\times 10 = 1.000.000}

APLICACIONES DE LAS POTENCIAS

Debido a las diversas propiedades que estas poseen pueden utilizarse para:

  • Aplicar el teorema de Pitágoras
Uno de los teoremas más famosos de la geometría es el teorema de Pitágoras. Este emplea potencias para expresar su fórmula, la cual dice que la hipotenusa al cuadrado de un triángulo rectángulo es igual a la suma de sus catetos al cuadrado, es decir, C= A+ B2.
  • Emplear la notación científica

La notación científica utiliza potencias de base 10 para expresar números muy grandes o muy pequeños en forma reducida. Observa cómo algunos números pueden ser expresados de forma simplificada:

\boldsymbol{0,00000465 = 465\times 10^{-8}}

\boldsymbol{0,00000465 = 46,5\times 10^{-7}}

\boldsymbol{0,00000465 = 4,65\times 10^{-6}}

  • Expresar sucesiones matemáticas y progresiones geométricas

Existen series matemáticas que requieren el uso de las potencias para expresar su forma general o enésima.

Uno de los campos o áreas que usan la potenciación es la biología, específicamente en el estudio de la reproducción de virus y bacterias. Allí, para poder expresar su rápido crecimiento, es necesario emplear este tipo de operación matemática.

¡A practicar!

1. Resuelve las siguientes potencias y aplica las propiedades necesarias:

\boldsymbol{4^{3}+5^{2}=}

Solución

\boldsymbol{4^{3}+5^{2}= 4\times 4\times 4+5\times 5=64+25 = 89}

\boldsymbol{3^{3}\times 9^{3}=}

Solución

\boldsymbol{3^{3}\times 9^{3}= (3\times 9)^{3}= (27)^{3}=27\times 27\times 27=19.683}

\boldsymbol{\frac{8^{5}}{8^{3}}=}

Solución

\boldsymbol{\frac{8^{5}}{8^{3}}= 8^{5-3}=8^{2}= 8\times 8=64}

\boldsymbol{(\frac{4^{3}}{4^{2}})^{2}+\frac{5^{6}\times4^{3}}{5^{5}\times4^{2}}-\frac{2^{0}\times1^{9}}{5^{0}}}

Solución

\boldsymbol{(\frac{4^{3}}{4^{2}})^{2}+\frac{5^{6}\times4^{3}}{5^{5}\times4^{2}}-\frac{2^{0}\times1^{9}}{5^{0}}= 4^{6-4}+5^{6-5}\times4^{3-2}-\frac{1\times1}{1}}

\boldsymbol{4^{2}+5^{1}\times4^{1}-\frac{1\times1}{1}=4\times4+20-1=16+19=35}

2. Expresa los siguientes números en notación científica.

  • \boldsymbol{1.320.000}
Solución

\boldsymbol{1.320.000=1,32\times 10^{6}=13,2\times 10^{5}=132\times 10^{4}}

  • \boldsymbol{0,000968}
Solución

\boldsymbol{0,000968 = 968\times 10^{-6}}

RECURSOS PARA DOCENTES

Artículo “Propiedades de potencias”

En el siguiente artículo hay más estrategias para ampliar los conocimientos acerca de las propiedades de las potencias.

VER

Artículo “Ejercicios de propiedades de la potencia”

El siguiente recurso le brindará apoyo con ejercicios de potencias, con sus resultados y explicaciones.

VER