CAPÍTULO 4 / TEMA 3

FIGURAS TRIDIMENSIONALES

LA GEOMETRÍA ES UNA DE LAS DISCIPLINAS MÁS ANTIGUAS. GRACIAS A ELLA SABEMOS LOS ELEMENTOS Y PROPIEDADES DE LAS FIGURAS QUE NOS RODEAN. YA SABEMOS QUE LAS FIGURAS PLANAS SON AQUELLAS QUE TIENEN DOS DIMENSIONES. HOY APRENDEREMOS CUÁLES SON ESAS FIGURAS QUE ADEMÁS DE ALTO Y ANCHO TIENEN PROFUNDIDAD: LAS FIGURAS TRIDIMENSIONALES.

¿QUÉ SON LaS figuras tridimensionales?

LAS FIGURAS TRIDIMENSIONALES, TAMBIÉN LLAMADAS CUERPOS GEOMÉTRICOS, SON AQUELLAS QUE TIENEN TRES DIMENSIONES: ALTO, LARGO Y ANCHO. A SU VEZ TIENEN VOLUMEN, ES DECIR, OCUPAN UN LUGAR EN EL ESPACIO.

EXISTE UNA CLASIFICACIÓN BÁSICA DE LOS CUERPOS GEOMÉTRICOS: LOS POLIEDROS Y LOS CUERPOS REDONDOS.

– EJEMPLOS:

POLIEDROS CUERPOS REDONDOS
LOS POLIEDROS SE DIFERENCIAN DE LOS CUERPOS REDONDOS POR SUS CARAS. LAS CARAS DE LOS POLIEDROS SON PLANAS, EN CAMBIO, LA CARA DE LOS CUERPOS REDONDOS SON CURVAS, ES DECIR QUE PUEDEN RODAR. LOS CUERPOS REDONDOS SON LA ESFERA, EL CONO Y EL CILINDRO. EL CILINDRO Y LA ESFERA NO TIENEN VÉRTICES PORQUE NO HAY UNA UNIÓN ENTRE DOS LADOS PLANOS.

ELEMENTOS DE LAS FIGURAS TRIDIMENSIONALES

POLIEDROS

  • CARAS: SON LAS SUPERFICIES QUE LIMITAN EL CUERPO GEOMÉTRICO. ESAS SUPERFICIES SON FIGURAS GEOMÉTRICAS. LAS CARAS BASALES SON LAS QUE SIRVEN PARA APOYAR EL CUERPO EN EL PLANO.
  • VÉRTICE: ES EL PUNTO DONDE SE UNEN TRES O MÁS CARAS.
  • ARISTAS: SON LAS LÍNEAS QUE SE FORMAN CUANDO SE UNEN DOS CARAS.

CUERPOS REDONDOS

  • CARAS BASALES: SON LAS QUE SIRVEN PARA APOYAR EL CUERPO EN EL PLANO.
  • ALTURA: INDICA LA LONGITUD DEL ALTO DEL CUERPO.

LOS POLIEDROS Y SUS TIPOS

UN POLIEDRO ES UN CUERPO GEOMÉTRICO QUE SOLO PRESENTA SUPERFICIES PLANAS. CADA UNA DE SUS CARAS ES UN POLÍGONO. EXISTEN LOS POLIEDROS IRREGULARES Y LOS REGULARES. VEAMOS CUÁLES SON:

POLIEDROS IRREGULARES

  • PRISMAS: SON POLIEDROS QUE TIENEN DOS CARAS PARALELAS LLAMADAS CARAS BASALES. LOS PRISMAS SE IDENTIFICAN POR SU CARA BASAL, SI ES UN TRIÁNGULO EL PRISMA ES TRIANGULAR, SI ES UN CUADRADO EL PRISMA ES CUADRANGULAR, Y SI ES UN RECTÁNGULO EL PRISMA ES RECTANGULAR.

  • PIRÁMIDE: SON POLIEDROS QUE TIENEN UN POLÍGONO CUALQUIERA COMO BASE Y SUS CARAS LATERALES SON TRIÁNGULOS QUE SE UNEN EN UN VÉRTICE COMÚN.

POLIEDROS REGULARES

SON POLIEDROS CON TODAS LAS CARAS FORMADAS POR POLÍGONOS REGULARES IGUALES. LA CLASIFICACIÓN DE LOS POLIEDROS REGULARES DEPENDE DE SU NÚMERO DE CARAS:

[/su_note]

¿SABÍAS QUÉ?
EL CUBO TAMBIÉN ES UN PRISMA CUADRANGULAR.

FIGURAS TRIDIMENSIONALES EN EL ENTORNO

EN NUESTRO ENTORNO ENCONTRAMOS OBJETOS QUE OCUPAN UN LUGAR EN EL ESPACIO Y TIENEN UN VOLUMEN. AL MISMO TIEMPO, MUCHOS DE ESTOS SE PARECEN O TIENEN LA FORMA DE LOS CUERPOS GEOMÉTRICOS, YA SEAN POLIEDROS O CUERPOS REDONDOS. POR EJEMPLO, UNA CAJA TIENE FORMA DE PRISMAS RECTANGULAR, UNA PIRÁMIDE EN EGIPTO TIENE FORMA DE PIRÁMIDE, UNA PELOTA DE TENIS ES UNA ESFERA, UNA VASO ES SIMILAR A UN CILINDRO Y UN DADO TIENE FORMA DE CUBO.

MUCHOS DE LOS OBJETOS QUE USAMOS COTIDIANAMENTE EN NUESTRAS CASAS O QUE OBSERVAMOS CUANDO RECORREMOS UNA CIUDAD SON CUERPOS GEOMÉTRICOS. POR EJEMPLO, EL JABÓN TIENE FORMA DE PRISMA PORQUE TIENE CARAS, VÉRTICES Y ARISTAS. ES DECIR, UNA BARRA DE JABÓN ES UN POLIEDRO PORQUE SUS CARAS SON PLANAS. SI SOLO TOMAMOS UNA CARA DEL PRISMA PODEMOS VER UNA FIGURA GEOMÉTRICA.

LAS PIRÁMIDES

LOS EGIPCIOS CREÍAN QUE LA PIRÁMIDE ESTABA RELACIONADA CON LAS RIQUEZAS Y LAS RELACIONES SOCIALES, POR ESO SUS MÁS GRANDES OBRAS TENÍAN ESTA FORMA. ESTAS PIRÁMIDES TIENEN UNA BASE CUADRANGULAR Y LAS CARAS SON IGUALES A LOS TRIÁNGULOS.

¡A PRACTICAR!

1. COMPLETA LA SIGUIENTE TABLA:

OBJETO FIGURA TRIDIMENSIONAL QUE REPRESENTA
CUADERNO
DADO
VOLIGOMA
HELADERA
SOLUCIÓN
OBJETO FIGURA TRIDIMENSIONAL QUE REPRESENTA
CUADERNO PRISMA RECTANGULAR
DADO CUBO
VOLIGOMA CILINDRO
HELADERA PRISMA DE BASE CUADRANGULAR

2. OBSERVA LOS SIGUIENTES CUERPOS Y RESPONDE:

  • ¿CUÁNTOS LADOS TIENE LA FIGURA A?
SOLUCIÓN
LA FIGURA A TIENE 3 LADOS.
  • ¿CUÁNTOS LADOS TIENE LA FIGURA B?
SOLUCIÓN
LA FIGURA B TIENE 6 LADOS.
  • ¿AMBAS FIGURAS TIENEN VÉRTICES? ¿POR QUÉ?

SOLUCIÓN
NO. SOLO LA FIGURA B LOS TIENE, YA QUE ES UN POLIEDRO. LOS CUERPOS REDONDOS NO TIENEN VÉRTICES PORQUE SUS LADOS SON CURVOS, EXCEPTO EL CONO.
RECURSOS PARA DOCENTES

Artículo “Poliedros irregulares”

Este recurso será de ayuda para profundizar sobre los cuerpos geométricos y es especial sobre los poliedros irregulares.

VER

CAPÍTULO 4 / TEMA 1

EL PUNTO Y LA LÍNEA

OBSERVA LOS OBJETOS QUE TE RODEAN, ES PROBABLE QUE NO TE HAYAS DADO CUENTA PERO TODOS ESTÁN COMPUESTOS POR LÍNEAS, Y ESTAS, A SU VEZ, POR UNA SUCESIÓN DE PUNTOS. SEGÚN LA DIRECCIÓN QUE TOMEN ESTOS PUNTOS LAS LÍNEAS PUEDEN SER RECTAS O CURVAS.

¿QUÉ ES EL PUNTO?

EL PUNTO ES ENTE FUNDAMENTAL DE LA GEOMETRÍA, NO TIENE LONGITUD, NO TIENE ÁREA Y NO TIENE DIMENSIÓN. EL PUNTO ES SOLO UNA POSICIÓN EN EL ESPACIO. PODEMOS IDENTIFICAR LOS PUNTOS CON UNA LETRA MAYÚSCULA.

– EJEMPLO:

OBSERVA LA CUADRÍCULA, ¿CUÁNTOS PUNTOS HAY?

A, B, C, D, E, F Y G SON PUNTOS. HAY 7 PUNTOS.

LAS LÍNEAS Y SUS TIPOS

LA LÍNEA ES UNA SUCESIÓN DE INFINITOS PUNTOS. UNA LÍNEA SE ASEMEJA A UNA CUERDA QUE PUEDE SER RECTA O CURVA, ABIERTA O CERRADA PERO QUE ESTÁ FORMADA POR PUNTOS MUY PEQUEÑOS Y JUNTOS. LAS LÍNEAS TIENEN UNA DIMENSIÓN: LA LONGITUD.

SUCESIÓN DE PUNTOS LÍNEA

 

SI OBSERVAMOS CADA LUGAR QUE CONFORMA NUESTRO DÍA PODEMOS VER MUCHOS TIPOS DE LÍNEAS. POR EJEMPLO, EL HORIZONTE ES UNA LÍNEA. TIENE SU NOMBRE POR SER UNA LÍNEA RECTA EN POSICIÓN HORIZONTAL. PUEDES VER OTROS EJEMPLOS DE LÍNEAS EN TUS LÁPICES, EN UNA MESA O EN LA FORMA DE NUESTRO PLANETA.

TIPOS DE LÍNEAS

EXISTEN DOS TIPOS DE LÍNEAS QUE EXPRESAN SU FORMA:

  • LÍNEA RECTA: ES LA LÍNEA CUYOS PUNTOS ESTÁN ALINEADOS EN UNA MISMA DIRECCIÓN.

  • LÍNEA CURVA: ES LA LÍNEA CUYOS PUNTOS NO ESTÁN ALINEADOS EN UNA MISMA DIRECCIÓN. EXISTEN DOS TIPOS DE LÍNEAS CURVAS, LAS ABIERTAS, EN LAS QUE SU INICIO Y SU FINAL NO COINCIDEN, Y LAS CERRADAS, EN LAS QUE SU INICIO Y FINAL SÍ COINCIDEN.

ESTAS SON LÍNEAS CURVAS ABIERTAS.

 

ESTAS SON LÍNEAS CURVAS CERRADAS.

 

  • LÍNEA POLIGONAL: ES LA COMBINACIÓN DE LÍNEAS RECTAS QUE EN UN DETERMINADO PUNTO CAMBIAN DE DIRECCIÓN. EXISTEN DOS TIPOS DE LÍNEAS POLIGONALES, LAS ABIERTAS, EN LAS QUE SU INICIO Y SU FINAL NO COINCIDEN, Y LAS CERRADAS, EN LAS QUE SU INICIO Y FINAL SÍ COINCIDEN.

ESTAS SON LÍNEAS POLIGONALES ABIERTAS.

 

ESTAS SON LÍNEAS POLIGONALES CERRADAS.

 

¿SABÍAS QUÉ?
USAMOS UNA LÍNEA PARA REPRESENTAR LA DISTANCIA ENTRE DOS PUNTOS.

¿QUÉ ES UN SEGMENTO?

ES UNA LÍNEA RECTA LIMITADA POR DOS PUNTOS. EN LA IMAGEN HAY TRES SEGMENTOS: AB, CD Y FE.

¡IDENTIFIQUEMOS LÍNEAS!

OBSERVA ESTE DIBUJO, ¿QUÉ TIPO DE LÍNEAS PUEDES VER?

SOLUCIÓN

HAY MUCHAS LÍNEAS MÁS. ¡DESCÚBRELAS!

LAS LÍNEAS RECTAS SE EXTIENDEN EN UNA MISMA DIRECCIÓN, ES COMÚN VERLAS EN LOS BORDES DE LAS PANTALLAS DE NUESTROS TELÉFONOS MÓVILES, ASÍ COMO EN LAS SILUETAS DE MUCHAS FIGURAS GEOMÉTRICAS. LAS LÍNEAS RECTAS SON MUY USADAS EN EL SECTOR DE TRANSPORTES, PUES LAS VEMOS EN LOS RIELES DE LOS TRENES, EN LOS PASOS PEATONES, EN LAS CICLOVÍAS Y EN LAS CARRETERAS.

CONSTRUCCIÓN DE LOS DIFERENTES TIPOS DE LÍNEAS

PARA EL TRAZADO Y CONSTRUCCIÓN DE LAS DIFERENTES LÍNEAS DEBEMOS UTILIZAR ELEMENTOS GEOMÉTRICOS, COMO POR EJEMPLO, UNA REGLA O UNA ESCUADRA.

PARA CONSTRUIR LÍNEAS RECTAS O POLIGONALES BASTA CON USAR UNA REGLA O ESCUADRA PARA REALIZAR LOS TRAZOS. EN CAMBIO, SI QUIERES DIBUJAR UNA LÍNEA CURVA NO NECESITAS INSTRUMENTOS ADEMÁS DE TU LÁPIZ. RECUERDA QUE SI QUIERE DIBUJAR ALGUNA LÍNEA ABIERTA, EL PUNTO DE FINAL Y EL PUNTO DE INICIO NO DEBEN COINCIDIR, ES DECIR, DEBEN ESTAR SEPARADOS.

 

¡A PRACTICAR!

1. IDENTIFICA LAS SIGUIENTES LÍNEAS:

SOLUCIÓN
  1. LÍNEA POLIGONAL CERRADA.
  2. LÍNEA RECTA.
  3. LÍNEA CURVA CERRADA.
  4. LÍNEA POLIGONAL ABIERTA.
  5. LÍNEA CURVA ABIERTA.

 

2. TRAZA LAS SIGUIENTES LÍNEAS:

  • UNA LÍNEA ROJA RECTA.
  • UNA LÍNEA VERDE POLIGONAL ABIERTA,
  • UNA LÍNEA AMARILLA CURVA ABIERTA.
  • UNA LÍNEA MORADA POLIGONAL CERRADA.

SOLUCIÓN

 

3. OBSERVA LA IMAGEN, IDENTIFICA LAS LÍNEAS QUE VES.

 

RECURSOS PARA DOCENTES

Artículo “El punto, la recta y el plano”

En el siguiente artículo hay información extra para ampliar los conceptos principales de la geometría.

VER