CAPÍTULO 5 / TEMA 3

LOS ÁNGULOS Y SUS TIPOS

Es posible que identifiques diversas figuras geométricas al observar el mundo que te rodea y los objetos presentes en él. La mayoría de estas figuras están compuestas por semirrectas unidas por un punto en común, es decir, un vértice. Esa porción del plano delimitada por dos semirrectas que nacen de un mismo punto se conoce como ángulo y según su medida puede ser de distintos tipos.

¿qué es un ángulo?

Es una porción del plano delimitada por dos semirrectas, las cuales también son llamadas lados. Ambos lados coinciden en un punto de origen o vértice. La abertura de un lado con respecto al otro es la que denominamos ángulo.

 

VER INFOGRAFÍA 

¿Cómo nombrar ángulos?

  • Con una letra griega, por ejemplo α y se lee “ángulo alpha”. En esta imagen vemos un ángulo α = 52,13°.

  • Con los puntos correspondientes a las semirrectas que lo constituyen y al vértice. Estos puntos se nombran mediante letras, por ejemplo, en la imagen vemos el ángulo AOB.

 

CLASIFICACIÓN DE LOS ÁNGULOS

Los ángulos se clasificar según tres criterios diferentes: su medida, su posición y la suma de sus medidas con otros ángulos.

¿Sabías qué?
Los ángulos se miden en grados (°).

Ángulos según su medida

  • Ángulo completo: tiene una amplitud de 360°, significa que es un giro completo.
  • Ángulo nulo: tiene una amplitud de 0°.
  • Ángulo llano: tiene una amplitud de 180°, podrás verlo representado como una línea recta.
  • Ángulo cóncavo: tiene una amplitud mayor que 180° pero menor que 360°.
  • Ángulo convexo: tiene una amplitud menor que 180°.

Dentro de los ángulos convexos encontramos otras clasificaciones:

  • Ángulos rectos: miden 90°.
  • Ángulos obtusos: miden más de 90°.
  • Ángulos agudos: miden menos de 90°.

 

Ángulos según su posición

Según su posición los ángulos pueden ser:

  • Adyacentes: son aquellos que tienen el vértice y un lado en común. Al sumar las amplitudes de cada uno de ellos el resultado será 180°.
  • Consecutivos: son aquellos que comparten tanto el vértice como uno de sus lados.
  • Opuestos por el vértice: son aquellos que solo tienen el vértice en común.

Ángulos según la suma de su medida con otros ángulos

Los ángulos también pueden clasificarse según el resultado obtenido al sumar la medida de la amplitud de un ángulo con la de otro ángulo, así sabrás que:

  • Un ángulo es suplementario con otro si la suma de sus amplitudes da como resultado un ángulo de 180°.
  • Un ángulo es complementario con otro si la suma de sus amplitudes da como resultado un ángulo de 90°.

MEDICIÓN DE ÁNGULOS

Por lo general, la medición de los ángulos se realiza por medio de un transportador.

¿Qué es un transportador?

Es un instrumento geométrico que puede tener una forma circular o semicircular y se utiliza para medir gráficamente un ángulo así como para construirlo. Cuenta con graduaciones o marcas iguales que sirven de escala para identificar la medida del ángulo. Los transportadores circulares están divididos en 360 partes iguales, mientras que los semicirculares están divididos en 180 partes iguales. Cada una de estas partes representa un grado (1°) .

Para medir un ángulo con transportador seguimos estos pasos:

1. Identificamos el vértice, es decir, el punto del que nacen las semirrectas y hacemos que coincida con el centro del transportador.

2. Verificamos que el cero (0) en el transportador esté justo sobre uno de los lados del ángulo.

3. Observamos el valor que marca el otro lado que pasa por la escala graduada. En este caso, la medida del ángulo â = 165°.

¿Sabías qué?
Los transportadores tienen escalas graduadas dobles: una va en sentido de las manecillas del reloj y las otra en sentido contrario. Siempre debes recordar comenzar a medir a partir del cero. 

LOS ÁNGULOS EN LAS FIGURAS GEOMÉTRICAS

Las figuras geométricas planas poseen ángulos interiores, ubicados dentro de la figuras; y ángulos exteriores, ubicados entre un lado de la figura y el otro lado siguiente.

VER INFOGRAFÍA 

Ángulos interiores de los triángulos

Los ángulos interiores de los triángulos siempre suman 180°. Según sus ángulos los triángulos pueden ser:

Nombre Figura Características
Triángulo rectángulo Tiene un ángulo recto (90°).
Triángulo acutángulo Tiene todos sus ángulos agudos (menores a 90°).
Triángulo obtusángulo Tiene un ángulo obtuso (mayores a 90° pero menores a 180°).

 

Ángulos interiores de los cuadriláteros

En el caso de los cuadriláteros, la suma de sus cuatro ángulos internos siempre es igual a 360°. De acuerdo al tipo de cuadrilátero el valor del ángulo puede variar. Su clasificación es la siguiente:

Nombre Figura Característica
Cuadrado Tiene cuatro ángulos rectos (90°).
Rectángulo Tiene cuatro ángulos rectos (90°).
Rombo Tiene ángulos opuestos iguales.
Romboide Tiene ángulos opuestos iguales.
Trapecio rectángulo Tiene dos ángulos rectos (90°).
Trapecio isósceles Los dos ángulos de la base menor son iguales. Los dos ángulos de la base mayor son iguales.
Trapecio escaleno Todos sus ángulos son diferentes.

¿Sabías qué?
La palabra “geometría” viene de geo que significa “Tierra”, y de metría que significa “medir”.

Ángulos internos de polígonos regulares

Los polígonos regulares son aquellos que tienen todos sus ángulos internos iguales. Para calcular su valor se emplea la ecuación (n − 2) × 180°/n donde n es el número de lados que tiene el polígono. Por ejemplo, para un hexágono se sustituye la n por el número 6 que corresponde al número de sus lados y obtenemos que (6 − 2) × 180°/6 = 120°, lo que quiere decir que cada uno de los ángulos internos de un hexágono mide 120°.

¡A practicar!

1. Observa los ángulos entre estas rectas. Completa la tabla con los ángulos solicitados.

Tipo de ángulo Nombre del ángulo
Recto  Ángulo α
Agudo
Obtuso
Complementario
Suplementario
Adyacente
Solución
Tipo de ángulo Nombre del ángulo
Recto Ángulo α
Agudo Ángulo β
Obtuso Ángulo GOC
Complementario Ángulos BOE y EOC
Suplementario Ángulos EOG y GOF
Adyacente Ángulos AOC y COB

2. Calcula los ángulos complementarios y suplementarios para los siguientes ángulos:

  • β = 50°
Solución

Ángulo complementario = 40° porque 50° + 40° = 90°.

Ángulo suplementario = 130° porque 50° + 130° = 180°.

  • γ = 15°
Solución

Ángulo complementario = 75° porque 15° + 75° = 90°.

Ángulo suplementario = 165° porque 15° + 165° = 180°.

  • δ = 75°
Solución

Ángulo complementario = 15° porque 75° + 15 = 90°.

Ángulo suplementario = 105° porque 75° + 105° = 180°.

 

RECURSOS PARA DOCENTES

Artículo “Ángulos”

En el siguiente artículo encontrarás información sistematizada sobre las diferentes clasificaciones de los ángulos.

VER

Enciclopedia “Matemática Tomo I”.

En esta enciclopedia podrás encontrar las explicaciones necesarias para comprender la clasificación de los ángulos y su medición.

VER 

CAPÍTULO 4 / TEMA 3

FIGURAS TRIDIMENSIONALES

LA GEOMETRÍA ES UNA DE LAS DISCIPLINAS MÁS ANTIGUAS. GRACIAS A ELLA SABEMOS LOS ELEMENTOS Y PROPIEDADES DE LAS FIGURAS QUE NOS RODEAN. YA SABEMOS QUE LAS FIGURAS PLANAS SON AQUELLAS QUE TIENEN DOS DIMENSIONES. HOY APRENDEREMOS CUÁLES SON ESAS FIGURAS QUE ADEMÁS DE ALTO Y ANCHO TIENEN PROFUNDIDAD: LAS FIGURAS TRIDIMENSIONALES.

¿QUÉ SON LaS figuras tridimensionales?

LAS FIGURAS TRIDIMENSIONALES, TAMBIÉN LLAMADAS CUERPOS GEOMÉTRICOS, SON AQUELLAS QUE TIENEN TRES DIMENSIONES: ALTO, LARGO Y ANCHO. A SU VEZ TIENEN VOLUMEN, ES DECIR, OCUPAN UN LUGAR EN EL ESPACIO.

EXISTE UNA CLASIFICACIÓN BÁSICA DE LOS CUERPOS GEOMÉTRICOS: LOS POLIEDROS Y LOS CUERPOS REDONDOS.

– EJEMPLOS:

POLIEDROS CUERPOS REDONDOS
LOS POLIEDROS SE DIFERENCIAN DE LOS CUERPOS REDONDOS POR SUS CARAS. LAS CARAS DE LOS POLIEDROS SON PLANAS, EN CAMBIO, LA CARA DE LOS CUERPOS REDONDOS SON CURVAS, ES DECIR QUE PUEDEN RODAR. LOS CUERPOS REDONDOS SON LA ESFERA, EL CONO Y EL CILINDRO. EL CILINDRO Y LA ESFERA NO TIENEN VÉRTICES PORQUE NO HAY UNA UNIÓN ENTRE DOS LADOS PLANOS.

ELEMENTOS DE LAS FIGURAS TRIDIMENSIONALES

POLIEDROS

  • CARAS: SON LAS SUPERFICIES QUE LIMITAN EL CUERPO GEOMÉTRICO. ESAS SUPERFICIES SON FIGURAS GEOMÉTRICAS. LAS CARAS BASALES SON LAS QUE SIRVEN PARA APOYAR EL CUERPO EN EL PLANO.
  • VÉRTICE: ES EL PUNTO DONDE SE UNEN TRES O MÁS CARAS.
  • ARISTAS: SON LAS LÍNEAS QUE SE FORMAN CUANDO SE UNEN DOS CARAS.

CUERPOS REDONDOS

  • CARAS BASALES: SON LAS QUE SIRVEN PARA APOYAR EL CUERPO EN EL PLANO.
  • ALTURA: INDICA LA LONGITUD DEL ALTO DEL CUERPO.

LOS POLIEDROS Y SUS TIPOS

UN POLIEDRO ES UN CUERPO GEOMÉTRICO QUE SOLO PRESENTA SUPERFICIES PLANAS. CADA UNA DE SUS CARAS ES UN POLÍGONO. EXISTEN LOS POLIEDROS IRREGULARES Y LOS REGULARES. VEAMOS CUÁLES SON:

POLIEDROS IRREGULARES

  • PRISMAS: SON POLIEDROS QUE TIENEN DOS CARAS PARALELAS LLAMADAS CARAS BASALES. LOS PRISMAS SE IDENTIFICAN POR SU CARA BASAL, SI ES UN TRIÁNGULO EL PRISMA ES TRIANGULAR, SI ES UN CUADRADO EL PRISMA ES CUADRANGULAR, Y SI ES UN RECTÁNGULO EL PRISMA ES RECTANGULAR.

  • PIRÁMIDE: SON POLIEDROS QUE TIENEN UN POLÍGONO CUALQUIERA COMO BASE Y SUS CARAS LATERALES SON TRIÁNGULOS QUE SE UNEN EN UN VÉRTICE COMÚN.

POLIEDROS REGULARES

SON POLIEDROS CON TODAS LAS CARAS FORMADAS POR POLÍGONOS REGULARES IGUALES. LA CLASIFICACIÓN DE LOS POLIEDROS REGULARES DEPENDE DE SU NÚMERO DE CARAS:

[/su_note]

¿SABÍAS QUÉ?
EL CUBO TAMBIÉN ES UN PRISMA CUADRANGULAR.

FIGURAS TRIDIMENSIONALES EN EL ENTORNO

EN NUESTRO ENTORNO ENCONTRAMOS OBJETOS QUE OCUPAN UN LUGAR EN EL ESPACIO Y TIENEN UN VOLUMEN. AL MISMO TIEMPO, MUCHOS DE ESTOS SE PARECEN O TIENEN LA FORMA DE LOS CUERPOS GEOMÉTRICOS, YA SEAN POLIEDROS O CUERPOS REDONDOS. POR EJEMPLO, UNA CAJA TIENE FORMA DE PRISMAS RECTANGULAR, UNA PIRÁMIDE EN EGIPTO TIENE FORMA DE PIRÁMIDE, UNA PELOTA DE TENIS ES UNA ESFERA, UNA VASO ES SIMILAR A UN CILINDRO Y UN DADO TIENE FORMA DE CUBO.

MUCHOS DE LOS OBJETOS QUE USAMOS COTIDIANAMENTE EN NUESTRAS CASAS O QUE OBSERVAMOS CUANDO RECORREMOS UNA CIUDAD SON CUERPOS GEOMÉTRICOS. POR EJEMPLO, EL JABÓN TIENE FORMA DE PRISMA PORQUE TIENE CARAS, VÉRTICES Y ARISTAS. ES DECIR, UNA BARRA DE JABÓN ES UN POLIEDRO PORQUE SUS CARAS SON PLANAS. SI SOLO TOMAMOS UNA CARA DEL PRISMA PODEMOS VER UNA FIGURA GEOMÉTRICA.

LAS PIRÁMIDES

LOS EGIPCIOS CREÍAN QUE LA PIRÁMIDE ESTABA RELACIONADA CON LAS RIQUEZAS Y LAS RELACIONES SOCIALES, POR ESO SUS MÁS GRANDES OBRAS TENÍAN ESTA FORMA. ESTAS PIRÁMIDES TIENEN UNA BASE CUADRANGULAR Y LAS CARAS SON IGUALES A LOS TRIÁNGULOS.

¡A PRACTICAR!

1. COMPLETA LA SIGUIENTE TABLA:

OBJETO FIGURA TRIDIMENSIONAL QUE REPRESENTA
CUADERNO
DADO
VOLIGOMA
HELADERA
SOLUCIÓN
OBJETO FIGURA TRIDIMENSIONAL QUE REPRESENTA
CUADERNO PRISMA RECTANGULAR
DADO CUBO
VOLIGOMA CILINDRO
HELADERA PRISMA DE BASE CUADRANGULAR

2. OBSERVA LOS SIGUIENTES CUERPOS Y RESPONDE:

  • ¿CUÁNTOS LADOS TIENE LA FIGURA A?
SOLUCIÓN
LA FIGURA A TIENE 3 LADOS.
  • ¿CUÁNTOS LADOS TIENE LA FIGURA B?
SOLUCIÓN
LA FIGURA B TIENE 6 LADOS.
  • ¿AMBAS FIGURAS TIENEN VÉRTICES? ¿POR QUÉ?

SOLUCIÓN
NO. SOLO LA FIGURA B LOS TIENE, YA QUE ES UN POLIEDRO. LOS CUERPOS REDONDOS NO TIENEN VÉRTICES PORQUE SUS LADOS SON CURVOS, EXCEPTO EL CONO.
RECURSOS PARA DOCENTES

Artículo “Poliedros irregulares”

Este recurso será de ayuda para profundizar sobre los cuerpos geométricos y es especial sobre los poliedros irregulares.

VER

CAPÍTULO 4 / TEMA 2

FIGURAS PLANAS

SI OBSERVAMOS DETENIDAMENTE EL LUGAR EN DONDE ESTAMOS PODEMOS ENCONTRAR INFINIDAD DE FIGURAS. LA UNIÓN DE DIFERENTES LÍNEAS HA FORMADO LAS FIGURAS Y LAS HAY DE DIFERENTES TIPOS. ES IMPOSIBLE NO ENCONTRAR EN NUESTRO ENTORNO CUADRADOS, RECTÁNGULOS Y CÍRCULOS. TODOS SON PARTE DE LA FORMA QUE TIENEN LOS OBJETOS QUE UTILIZAMOS A DIARIO.

FIGURAS PLANAS Y SUS TIPOS

LAS FIGURAS PLANAS SON AQUELLAS QUE TIENEN DOS DIMENSIONES: ALTO Y ANCHO. ALGUNOS EJEMPLOS DE FIGURAS PLANAS SON LO CÍRCULOS, LOS TRIÁNGULOS Y LO CUADRILÁTEROS.

  • LA FIGURA VERDE ES UN CÍRCULO.
  • LA FIGURA AZUL ES UN TRIÁNGULO.
  • LA FIGURA ROJA ES UN CUADRILÁTERO.

¿QUÉ SON LOS TRIÁNGULOS?

SON LAS FIGURAS FORMADAS POR TRES SEGMENTOS.

ALGUNOS EJEMPLOS DE TRIÁNGULOS SON LOS SIGUIENTES:

¿QUÉ SON LOS CUADRILÁTEROS?

SON LAS FIGURAS FORMADAS POR CUATRO SEGMENTOS.

ALGUNOS EJEMPLOS DE CUADRILÁTEROS SON LOS SIGUIENTES:

¿QUÉ SON LOS CÍRCULOS?

SON FIGURAS CURVAS CON IGUAL DISTANCIA ENTRE UN PUNTO DE SU EXTREMO Y EL CENTRO.

ALGUNOS EJEMPLOS DE CÍRCULOS SON LOS SIGUIENTES:

LAS FIGURAS CIRCULARES ESTÁN FORMADAS POR UNA LÍNEA CURVA CERRADA Y TIENEN UNA CARACTERÍSTICA FUNDAMENTAL: TODOS LOS PUNTOS DE LA LÍNEA CURVA ESTÁN A LA MISMA DISTANCIA DEL CENTRO DE LA FIGURA. LA LÍNEA QUE BORDEA AL CÍRCULO SE LLAMA CIRCUNFERENCIA. EN LA IMAGEN VEMOS EL TRAZO DE UNA CIRCUNFERENCIA. PARA DIBUJAR CIRCUNFERENCIAS USAMOS UN COMPÁS.

ELEMENTOS DE Los triángulos y cuadriláteros

LADOS

CON CADA UNO DE LOS SEGMENTOS QUE FORMAN LA FIGURA.

TRIÁNGULOS CUADRILÁTEROS

LOS TRIÁNGULOS TIENEN 3 LADOS.

LOS CUADRILÁTEROS TIENEN 4 LADOS.

VÉRTICES

SON LOS PUNTOS DONDE SE UNEN DOS LADOS.

TRIÁNGULOS CUADRILÁTEROS

LOS TRIÁNGULOS TIENEN 3 VÉRTICES.

LOS CUADRILÁTEROS TIENEN 4 VÉRTICES.

ÁNGULOS

SON LAS ABERTURAS QUE SE FORMAN ENTRE DOS LADOS.

TRIÁNGULOS CUADRILÁTEROS

LOS TRIÁNGULOS TIENEN 3 ÁNGULOS.

LO CUADRILÁTEROS TIENEN 4 ÁNGULOS.

ELEMENTOS DEL CÍRCULO

CIRCUNFERENCIA

ES EL LÍNEA CURVA CERRADA.

CENTRO

ES EL PUNTO CENTRAL QUE TIENE LA MISMA DISTANCIA A CUALQUIER PUNTO DE LA CIRCUNFERENCIA.

DIÁMETRO

ES LA DISTANCIA DE UN PUNTO DE LA CIRCUNFERENCIA A OTRO QUE PASA POR EL CENTRO.

RADIO

ES LA DISTANCIA DESDE EL CENTRO DE LA FIGURA HASTA CUALQUIER PUNTO DE LA CIRCUNFERENCIA. EL RADIO ES IGUAL A LA MITAD DEL DIÁMETRO.

AVISOS Y GEOMETRÍA

LA MAYORÍA DE LOS AVISOS COMERCIALES Y DE TRÁNSITO SON FIGURAS PLANAS. POR EJEMPLO, ESTA SEÑAL NOS INDICA QUE PRONTO SE ACERCA UNA CURVA. LA SEÑAL TIENE FORMA DE CUADRILÁTERO PORQUE TIENE 4 LADOS, 4 VÉRTICES Y 4 ÁNGULOS.

TIPOS DE ÁNGULOS

EXISTEN VARIOS TIPOS DE ÁNGULOS Y SU CLASIFICACIÓN DEPENDE DE SU ABERTURA.

ÁNGULO ABERTURA REPRESENTACIÓN
RECTO 90°
AGUDO MENOS DE 90° Y MÁS DE 0°
OBTUSO MENOS DE 180° Y MÁS DE 90°
LLANO 180°

¿SABÍAS QUÉ?
LOS ÁNGULOS SE MIDEN EN GRADOS. EL SÍMBOLO DE LOS GRADOS ES °. 

EL ÁREA Y SUPERFICIE

SI QUEREMOS SABER LA MEDIDA DE LA PARTES EXTERNA DE UN OBJETOS O DE UN TERRENO, TENEMOS QUE CALCULAR SU ÁREA.

LA SUPERFICIE ES LA PARTE EXTERNA DE UN OBJETO Y EL ÁREA ES LA MEDIDA DE LA SUPERFICIE. LA UNIDAD DE MEDIDA ES EL CENTÍMETRO CUADRADO (cm2).

EN LOS RECTÁNGULOS SOLO TENEMOS QUE MULTIPLICAR LA MEDIDA DE LA ALTURA POR LA DEL ANCHO.

ÁREA DE RECTÁNGULO = ALTO × ANCHO

– EJEMPLO:

OBSERVA ESTE RECTÁNGULO. ESTÁ FORMADO POR CUADRADOS MÁS PEQUEÑOS. SI CADA CUADRADO MIDE 1 CENTÍMETRO DE ALTO Y 1 CENTÍMETRO DE ANCHO. RESPONDE:

  1. ¿CUÁNTOS CENTÍMETROS DE LARGO MIDE ESTE RECTÁNGULO?
  2. ¿CUÁNTOS CENTÍMETROS DE ANCHO MIDE ESTE RECTÁNGULO?
  3. ¿CUÁL ES EL ÁREA DEL RECTÁNGULO?

A. EL RECTÁNGULO TIENE 4 cm DE ALTO.

B. EL RECTÁNGULO TIENE 5 cm DE ANCHO.

C. EL ÁREA DEL RECTÁNGULO ES DE 20 cm2 PORQUE 4 cm × 5 cm = 20 cm2.


– EJEMPLO 2:

¿CUÁL ES EL ÁREA DE ESTE RECTÁNGULO?

EL RECTÁNGULO TIENE 3 cm DE ALTO Y 4 cm DE ANCHO. POR LO TANTO:

ÁREA = 3 cm × 4 cm = 12 cm2

EL RECTÁNGULO TIENE UN ÁREA DE 12 cm2.

¡A PRACTICAR!

1. COLOCAR EL TIPO DE ÁNGULO SEGÚN SU MEDIDA:

  • 160°
SOLUCIÓN
ÁNGULO OBTUSO.
  • 45°
SOLUCIÓN
ÁNGULO AGUDO.
  • 79°
SOLUCIÓN
ÁNGULO AGUDO.
  • 92°
SOLUCIÓN
ÁNGULO OBTUSO.
  • 180°
SOLUCIÓN
ÁNGULO LLANO.
  • 90°
SOLUCIÓN
ÁNGULO RECTO.

 

2. CALCULAR EL ÁREA DE LOS SIGUIENTES RECTÁNGULOS. CADA CUADRO MIDE 1 cm DE ALTO Y 1 cm DE ANCHO.

A. 

SOLUCIÓN

ÁREA = 9 cm x 5 cm

ÁREA = 45 cm2

B. 

SOLUCIÓN

ÁREA = 8 cm x 5 cm

ÁREA = 40 cm2

C. 

SOLUCIÓN

ÁREA = 5 cm × 2 cm

ÁREA = 10 cm2

RECURSOS PARA DOCENTES

Artículo “Área y perímetro de las figuras planas”

En el siguiente artículo se amplía la información sobre área con más tipos de figuras planas.

VER

CAPÍTULO 5 / TEMA 8 (REVISIÓN)

Geometría y mediciones | ¿Qué aprendimos?

Perímetro

El perímetro es el contorno de una figura geométrica. En el caso de los polígonos regulares, el perímetro lo calculamos al multiplicar la cantidad de sus lados por la longitud de uno de estos. Otra forma de calcular el perímetro es a través de la suma de cada uno de los lados de una figura. En cambio, el perímetro del círculo es igual a la multiplicación del número pi por el diámetro de la circunferencia. Existen también figuras compuestas que están formadas por dos o más figuras geométricas, para calcular su perímetro basta con sumar cada uno de los lados.

El perímetro tiene múltiples aplicaciones en disciplinas como la arquitectura y también se usa en el ámbito militar.

Ángulos

Uno de los elementos fundamentales para la geometría es el ángulo, el cual está formado por un par de semirrectas denominadas lados que tienen un origen común o vértice. Uno de los sistemas más usados para medir ángulos es el sistema sexagesimal, en el que medimos los ángulos en grados, minutos y segundos. De acuerdo a su tamaño, los ángulos pueden clasificarse en agudos, rectos, obtusos y llanos. Los agudos son mayores a 0° pero menores a 90°, los rectos miden 90°, los obtusos son mayores a 90° pero menores de 180° y los llanos miden siempre 180°.

El transportador es uno de los instrumentos más usados para medir ángulos.

Área

Para calcular superficies usamos el área, que es la extensión comprendida por una figura. Para cada figura plana existe una fórmula que permite determinar su área. En el Sistema Internacional de Unidades se emplea el metro cuadrado (m2) como unidad de medida de área, pero también podemos usar otras unidades derivadas, como el centímetro cuadrado (cm2) o el milímetro cuadrado (mm2). Podemos obtener el área de las figuras compuestas al descomponerlas en figuras geométricas más simples, para luego sumar las áreas de cada una.

El conocimiento del área puede ser aplicado para calcular cuántas baldosas son necesarias para cubrir una superficie.

Sistemas de referencia

Uno de los sistemas de referencias más usados es el sistema cartesiano, el cual está formado por dos ejes en el plano: uno horizontal denominado eje X o de las abscisas y otro vertical denominado eje Y o de las ordenadas. Para representar un punto en el plano cartesiano necesitamos sus coordenadas en el eje X y en el eje Y: la intersección de ambas coordenadas constituye su ubicación. Por otro lado, las figuras pueden experimentar transformaciones isométricas, es decir, cambios de posición y orientación que no afectan su forma. Estas transformaciones son: traslación, rotación y simetría.

Los sistemas de referencia son usados por el ser humano para medir las posiciones y las magnitudes de las cosas.

Cuadriláteros

Un cuadrilátero es un polígono de cuatro lados, y aunque se pueden clasificar en varios grupos, comparten elementos en común: tienen cuatro ángulos, la suma de estos es siempre igual 360° y tienen dos diagonales que dividen al cuadrado en triángulos. De manera general, los cuadriláteros son clasificados como paralelogramos, trapecios y trapezoides. Los paralelogramos tienen sus lados opuestos paralelos y pueden ser cuadrados, rombos y rectángulos. Los trapecios tienen dos de sus lados paralelos y los trapezoides no tienen ningún lado paralelo.

El campo de fútbol tiene forma de rectángulo que es un tipo de cuadrilátero.

Capacidad y volumen

El volumen es el espacio que ocupa un objeto mientras que la capacidad indica la cantidad que un objeto puede contener dentro de él. Todos los objetos tienen volumen pero no todos tienen capacidad. En el caso de los sólidos y los líquidos mientras mayor sea su volumen, mayor espacio van a ocupar. No es lo mismo el volumen de un grano de arroz que el de un edificio. Algunas unidades de volumen son el metro cúbico (m3), el centímetro cúbico (cm3) y milímetro cúbico (mm3), entre otras. El litro es una medida de capacidad que equivale a 1.000 cm3.

A pesar de estar muy relacionadas, no se deben confundir las medidas de volumen con las de capacidad.

La circunferencia

La circunferencia es una curva plana con todos sus puntos ubicados a la misma distancia del origen o centro. No debe ser confundida con el círculo que corresponde al área contenida dentro de ella, es decir, la circunferencia es el perímetro del círculo. Presenta ciertos elementos como el radio, el diámetro, la tangente, la cuerda, el arco y la semicircunferencia. Uno de los instrumentos usados para su trazado es el compás.

Los antiguos griegos empleaban la recta y la circunferencia como figuras básicas en sus cálculos.

CAPÍTULO 4 / TEMA 7 (REVISIÓN)

GEOMETRÍA | ¿QUÉ APRENDIMOS?

UBICACIÓN ESPACIAL

La ubicación espacial nos sirve para conocer dónde estamos con respecto a todo lo que nos rodea, de este modo podemos señalar con facilidad nuestra ubicación. Términos como arriba, abajo, derecha, izquierda, delante y detrás son de gran utilidad para el desarrollo del sentido de la orientación. Si deseamos ubicar puntos en un plano podemos usar los ejes de coordenadas: un conjunto de líneas verticales y horizontales que nos brindan los datos necesarios para saber la posición exacta de un objeto en una cuadrícula.

En esta imagen, los crayones están dentro de un recipiente, el cuaderno está sobre la mesa y los bolígrafos están al lado del cuaderno.

CUERPOS GEOMÉTRICOS

Los cuerpos geométricos poseen tres dimensiones: alto, largo y ancho. Estos cuerpos pueden ser poliedros, tales como el cubo, la pirámide y el prisma; también pueden ser cuerpos redondos, como la esfera, el cono y el cilindro. Los elementos que los componen son las caras, las aristas y los vértices. Las caras de los cuerpos geométricos son figuras planas.

Las pirámides de Egipto fueron construidas con forma de pirámide cuadrangular porque simbolizaban los rayos del Sol.

ELEMENTOS GEOMÉTRICOS

El punto, la recta, el rayo y el segmento son elementos geométricos. El punto indica una posición, el rayo posee un origen y se extiende hacia el infinito, el segmento tiene un principio y un final, y la recta es una sucesión de puntos que siguen una misma dirección. Por otro lado, dos rectas pueden ser paralelas cuando no se cortan en ningún punto; perpendiculares cuando al cortarse forman cuatro ángulos rectos y oblicuas cuando al cortarse no forman ángulos rectos.

Los cables de electricidad representan rectas paralelas. Al verlos dan la ilusión de tres rectas que no se tocan entre sí.

ángulos

El ángulo es una porción comprendida entre dos lados con un origen en común llamado vértice. Según sus medidas el ángulo puede ser convexo, nulo, agudo, recto, obtuso, cóncavo, llano y completo. Según su posición existen ángulos adyacentes, consecutivos y opuestos por el vértice. Para estimar la medida de un ángulo es preferible usar medidas de referencia que ya conocemos, como ángulos de 45° y 90°.

Las escuadras son instrumentas de medidas que también nos ayudan a estimar ángulos, por ejemplo, esta escuadra tiene un ángulo recto (90 grados) y dos ángulos de 45 grados.

perímetro

El perímetro es el contorno de una figura. Para averiguar el perímetro de polígonos regulares multiplicamos la cantidad de lados por la longitud del lado. En cambio, para polígonos no regulares el perímetro lo calculamos al sumar todos los lados de la figura. Conocer cuánto mide el perímetro de una figura te ayudará a saber cuánto material se utilizó para alambrar una cancha de fútbol y en otros múltiples usos.

A lo largo de la historia los perímetros de muchos castillos fueron amurallados para defender el territorio.

transformaciones isométricas

Una transformación isométrica es el cambio de posición que sufre una figura. Estas transformaciones pueden ser por rotación, por traslación o por reflexión. La rotación se refiere al giro alrededor de un punto fijo; la traslación consiste en mover todos los puntos de una figura en la misma dirección, sentido y distancia; y la reflexión no es más que el reflejo de la figura respecto de un eje de simetría. Estas transformaciones no cambian ni la forma ni el tamaño de las figuras.

El planeta Tierra presenta varios movimientos, dos de ellos son la traslación y la rotación.

CAPÍTULO 4 / TEMA 4

Ángulos

Gracias al estudio de la geometría y la trigonometría, la humanidad evolucionó de tal manera que logró edificar ciudades, construir herramientas y diseñar su vestimenta; y los ángulos son parte de esto. Si observamos a nuestro alrededor todos los objetos tienen algún tipo de ángulo.

¿Qué es un ángulo?

Un ángulo es la porción comprendida entre dos semirrectas con un origen en común llamado vértice.

Tipos de ángulos

La clasificación de los ángulos dependerá por un lado de sus medidas y por el otro de sus posiciones.

Según sus medidas un ángulo puede ser:

  • Convexo: es el que mide menos de 180°.
  • Nulo: es que el que no tiene amplitud, mide 0°.
  • Agudo: es el que mide menos de 90°.
  • Recto: es el que mide 90°.
  • Obtuso: es el que mide más de 90° y menos de 180°.
  • Cóncavo: es el que mide más de 180°.
  • Llano: es el que mide 180°.
  • Completo: es el que mide 360°.

 

¿Sabías qué?
Los ángulos agudos, rectos y obtusos están dentro de la clasificación de ángulos convexos.

Según su posición, dos ángulos pueden ser:

  • Adyacentes: tienen un lado y un vértice en común. La suma de sus ángulos suma 180°.
  • Consecutivos: tienen un lado y un vértice en común.
  • Opuestos por el vértice: tienen en común solamente el vértice.

VER INFOGRAFÍA

¿Sabías qué?
Los egipcios fueron los primeros en establecer la medida de los ángulos en grados, minutos y segundos.

¡Encuentra los ángulos!

Observa la siguiente imagen:

  1. ¿Qué tipos de ángulos encuentras en la casa?
    Solución
    Agudos, rectos y obtusos.
  2. ¿Dónde encontraste los ángulos agudos?
    Solución
    En el triángulo de la chimenea y en la unión de la pared con el techo.
  3. ¿Dónde encontraste los ángulos rectos?
    Solución
    En la puerta, en las ventanas y en la unión del suelo con las paredes.
  4. ¿Dónde encontraste los ángulos obtusos?
    Solución
    En el techo.

La vuelta del Sol

En la Antigüedad, los babilonios hicieron varios estudios sobre los astros porque creían que en ellos estaba escrito el futuro. Tras observar el cielo, consideraban que el Sol tardaba 360 días en volver a estar en la misma posición. Por esto decidieron dividir la circunferencia en 360 partes iguales. Llamamos grado a cada una de las 360 partes iguales en la que dividimos a un ángulo completo.

elementos de los ángulos

Como ya vimos, un ángulo es el espacio que existe entre dos semirrectas que parten desde un mismo punto. Los elementos que componen al ángulo son los siguientes:

  • Lado: es lo que antes llamábamos semirrecta.
  • Vértice: es el punto en el que coinciden las dos semirrectas.
  • Amplitud: es la apertura que hay entre los dos lados. Medimos la amplitud en grados y usamos un transportador para eso.

 

Transportador

El transportador es el instrumento que nos permite medir y construir un ángulo gráficamente. Por lo general son de plástico y poseen una forma circular o semicircular. Para utilizarlo apoyamos el centro del semicírculo en el vértice del ángulo, hacemos coincidir uno de los lados con el 0° y el otro lado del ángulo marcará la abertura en el punto del semicírculo graduado.

Estimación de ángulos

Para conocer la medida exacta de un ángulo se usa el transportador, pero también podemos estimar su valor. Para esto podemos usar como referencia medidas ya conocidas, como el ángulo de 45° y el ángulo de 90°; y así poder saber una medida aproximada del ángulo.

Escuadra y estimación

La escuadra es una herramienta de geometría que podemos utilizar para estimar ángulos, pues posee un ángulo de 90° como se observa en la imagen. El ángulo de 45° se obtiene de dividir a la mitad el ángulo de 90°. En la última escuadra vemos la estimación de un ángulo de 30° y otro de 80°. Para aproximar usamos las referencias de los ángulos conocidos. La abertura del ángulo de 30° es más pequeña que la de 45°, por eso el ángulo es menor. Lo mismo nos pasa con el ángulo de 80°, su apertura es menor que 90°.

Cuando un ángulo es mayor que 90°, uno de los lados del ángulo quedará a la izquierda de la escuadra. Veamos un ejemplo:

Vamos a imaginar que un espejo está enmarcado en esta figura y queremos estimar cuánto mide el ángulo que está señalado en color rojo. La escuadra ya está apoyada en uno de los lados pero el otro lado se inclina a la izquierda de la escuadra. Como ya sabemos que el ángulo de la escuadra mide 90°, entonces el ángulo que debemos estimar es mayor. Por lo tanto, ese ángulo puede medir aproximadamente 120°.

¡Estima medidas!

Estima las medidas de los ángulos marcados:

  1. ¿Cuánto estimas que mide el ángulo del objeto A?
    Solución
    Como la abertura es más pequeña que 45°, pero más grande que 0°, podemos decir que mide aproximadamente 30°.
  2. ¿Cuánto estimas que mide el ángulo objeto B?
    Solución
    Como la abertura es un poco más pequeña que 90°, pero mayor a 45°, podemos decir que mide aproximadamente 60°.
  3. ¿Cuánto estimas que mide el ángulo del objeto C?
    Solución
    Mide 90°.
  4. ¿Cuánto estimas que mide el ángulo del objeto D?
    Solución
    Como la abertura es mayor a los 90°, pero está lejos de llegar a 180°, podemos decir que mide aproximadamente 120°.
  5. ¿Cuánto estimas que mide el ángulo del objeto E?
    Solución
    Como la abertura es un poco más pequeña que 90°, pero mayor a 45°, podemos decir que mide aproximadamente 75°.
RECURSOS PARA DOCENTES

Artículo “Ángulos”

Este recurso le permitirá profundizar la información sobre los ángulos y su clasificación.

VER

 

CAPÍTULO 4 / TEMA 2

CUERPOS GEOMÉTRICOS

Los cuerpos geométricos ocupan un lugar en el espacio y poseen tres dimensiones: alto, largo y ancho. Un ejemplo de esto son los dados, los cuales tienen forma de cubo; o una pelota de fútbol, que tiene forma de esfera. Si miras a tu alrededor, es posible que encuentres diferentes cuerpos geométricos con los que interactúas todos los días.

cuerpos geométricos y sus tipos

Existen dos tipos de cuerpos geométricos: los poliedros y los cuerpos redondos.

Los poliedros tienen todas sus caras planas y no pueden rodar. Entre los poliedros más conocidos encontramos:

VER INFOGRAFÍA

Pirámides de Egipto

Las pirámides de Egipto fueron construidas hace miles de años por el primer arquitecto reconocido en la historia: Imhotep. Estos increíbles monumentos servían como tumba para los faraones y fueron construidos en forma de pirámide cuadrangular porque simbolizan los rayos del Sol. Creían que, de esta manera, el alma de los faraones iría directo al cielo.

Los cuerpos redondos están formados por una cara en forma curva y pueden rodar. Encontramos los siguientes:

¿Sabías qué?

El Sol es la esfera más perfecta que se ha observado hasta el momento. Si esta esfera estuviese, vacía necesitaríamos un millón de planetas Tierra para llenarla.

elementos de los cuerpos geométricos

Los elementos de un cuerpo geométrico son: caras, aristas y vértices.

  • Caras: son figuras planas que rodean el cuerpo geométrico. Las caras de las bases sirven para apoyarse en el plano.
  • Aristas: son las uniones entre dos caras de un cuerpo.
  • Vértices: son los puntos de unión de tres o más aristas.

Atomium

Es una de las construcciones más impresionantes de Bruselas y fue construida para la exposición universal de 1958. Está construido por 9 esferas y su diseño completo tiene forma de cubo. En la esfera más alta los visitantes pueden conocer el restaurante circular y una de las vistas panorámicas más grandiosas de la ciudad. Una de las esferas tiene una exposición con los detalles de su construcción, mientras que otra está dedicada a juegos interactivos para niños.

¡Observa y responde!

  • ¿Qué elementos de la imagen son cuerpos redondos?
    Solución
    La lata de gaseosa, la Tierra y el cono de tránsito.
  • ¿Qué elementos son poliedros?
    Solución
    La caja de cereal, la pirámide y la caja marrón.
  • ¿Cómo se llama el cuerpo geométrico representado por la lata de gaseosa?
    Solución
    Cilindro.
  • ¿Cómo se llama el cuerpo geométrico representado por la caja marrón?
    Solución
    Cubo.
  • ¿Qué forma tiene la base de la pirámide?
    Solución
    Cuadrangular.
  • ¿Cuántas caras, vértices y aristas tiene esta pirámide?
    Solución
    5 caras, 5 vértices y 8 aristas.
  • ¿Qué cuerpo geométrico es la Tierra?
    Solución
    Una esfera.
  • ¿Cuántas caras, vértices y aristas tiene la caja de cereales?
    Solución
    6 caras, 8 vértice y 12 aristas.
  • ¿Qué cuerpo geométrico representa la caja de cereal?
    Solución
    Un prisma cuadrangular.

construcción de cuerpos geométricos

Podemos dibujar figuras planas como el triángulo en una hoja con las herramientas de geometría, pero para construir un cuerpo geométrico necesitamos dibujar con perspectiva, ya que estos cuerpos tienen profundidad. Veremos que los diagramas nos ayudarán a identificar las características que tiene cada cuerpo geométrico.

¿Qué podemos observar en este diagrama? ¿Qué cuerpo geométrico será? Como vemos, está formado por triángulos que son las caras del cuerpo. El triángulo que se encuentra en el medio es la base de la figura y el resto serán las caras laterales. El cuerpo geométrico que cumple con estas características es la pirámide triangular.

¡A practicar!

  1. Observa las características del diagrama, ¿qué cuerpo geométrico se forma?
    Solución
    Un cono.
  2. Observa las características del diagrama, ¿qué cuerpo geométrico se forma?
    Solución
    Una pirámide cuadrangular.
  3. Observa las características del diagrama, ¿qué cuerpo geométrico se forma?
    Solución
    Un cubo.

Relación de los cuerpos geométricos y las figuras planas

Las caras de los cuerpos geométricos están formadas por figuras planas. Si observamos una caja de zapatos con la tapa al frente, notaremos que la figura plana es un rectángulo. ¿Qué pasará con la forma de las caras si la apoyamos en la mesa?

La forma de las caras también son rectángulos, entonces, la caja en forma de prisma con caras rectangulares está relacionada directamente con la figura plana llamada rectángulo.

Pirámide del Louvre

El museo de Louvre en París es uno de los museos más importantes de Francia y en su entrada se encuentra una pirámide de cristal, justo en el patio del palacio y en frente al jardín de las Tullerías. La diseñó Ieoh Ming Pei y tiene las mismas medidas que la pirámide de Keops ubicada en Egipto. Este monumento con forma de pirámide cuadrangular posee todas sus caras triangulares cubiertas por 673 placas de vidrio con formas de triángulos y rombos.

¡Cuenta caras, vértices y aristas!

  • Observa el siguiente cuerpo geométrico. ¿Cuántas caras, vértices y aristas tiene?
    Solución
    7 caras, 10 vértices y 15 aristas.
  • Observa el siguiente cuerpo geométrico. ¿Cuántas caras, vértices y aristas tiene?
    Solución
    7 caras, 8 vértices y 12 aristas.

  • Observa el siguiente cuerpo geométrico. ¿Cuántas caras, vértices y aristas tiene?
    Solución
    8 caras, 12 vértices y 18 aristas.

 

RECURSOS PARA DOCENTES

Artículo “Prismas”

Este recurso le permitirá obtener más información sobre los prismas y sus características.

VER

Artículo “Cuerpos redondos. Áreas y volúmenes.”

Este artículo le permitirá profundizar sobre la manera en que se generan los cuerpos de redondos y las características de los mismos.

VER