Linfocitos B y linfocitos T

Aunque todos los linfocitos maduros se parecen, son extraordinariamente diversos en sus funciones. Los linfocitos más abundantes son los T y los B, y a pesar de mostrar una variación en su funcionamiento, estas células luchan con el mismo objetivo de destruir al invasor o las partículas extrañas que son perjudiciales para el cuerpo.

Linfocitos B Linfocitos T
Otro nombre Células B. Células T.
Origen Médula ósea. Médula ósea.
Maduran en… Médula ósea. Timo.
Posición Exterior del nódulo linfático. Interior del ganglio linfático.
Receptor BCR o inmunoglobulina. TCR.
Conexiones Pueden conectarse a los antígenos directamente en la superficie del virus o bacteria invasora. Solo pueden conectarse a antígenos virales en el exterior de las células infectadas.
Función de protección Contra las bacterias y virus que ingresan al torrente sanguíneo. Contra los patógenos como hongos y virus que ingresan al cuerpo.
Esperanza de vida Corta. Larga.
Anticuerpos de superficie Presentes. Ausentes.
Secreción Secretan anticuerpos. Secretan linfocinas.
Constitución 20 %. 80 %.
Función específica Relacionados con la respuesta inmune humoral. Relacionados con la respuesta inmune mediada por células.
¿Qué forman? Células plasmáticas y células de memoria. Células asesinas, auxiliares y supresoras.
Movimiento al sitio de infección No se mueven al sitio de la infección. Se mueven al sitio de la infección.
¿Actúan sobre las células cancerosas? No. Sí.
Superficie celular Rugosa, presenta microvellosidades. Lisa, no presenta microvellosidades.

 

CAPÍTULO 13 / TEMA 5

Los tornados

Los tornados son uno de los fenómenos más violentos de la naturaleza. Están formados por una gran columna giratoria de aire, con vientos que alcanzan hasta 480 km/h. Los tornados pueden destruir casas, grandes edificios, desarraigar árboles y lanzar vehículos a cientos de metros.

VER INFOGRAFÍA

¿CÓMO SE FORMAN LOS TORNADOS?

Antes de que se desarrollen las tormentas eléctricas se genera un cambio en la dirección del viento por el aumento en la velocidad y en la altura que crea un efecto de giro horizontal invisible en la atmósfera inferior.

  1. Los tornados comienzan cuando los rayos solares calientan la superficie de la Tierra. A medida que el aire cálido y menos pesado comienza a elevarse, se encuentra con el aire más frío y pesado sobre él.
  2. El aire en movimiento más rápido comienza a girar sobre el viento más lento. A medida que avanza, aumenta su ritmo y crece.
  3. En esta etapa se forma una especie de cilindro que gira y rueda horizontalmente. A medida que los vientos se acumulan, el aire cálido más fuerte impulsa los vientos giratorios verticalmente hacia arriba, lo que causa una corriente ascendente.
  4. Con el aumento del aire caliente, el aire giratorio encuentra más corriente ascendente, por lo que gira más rápido hacia arriba y gana más impulso.
  5. Los vientos que giran crean un vórtice y la corriente de aire tiene suficiente energía para alimentarse.
  6. El tornado está completamente formado y se mueve en la dirección de los vientos de la tormenta.

¿Cuándo suelen ocurrir los tornados?

Los tornados pueden formarse en cualquier época del año, pero la temporada típica se extiende desde marzo hasta agosto. Es más probable que ocurran entre las 3 de la tarde y las 9 de la noche.

ESCALA DE FUJITA

La escala de Fujita se utiliza para asignar a un tornado una calificación basada en la velocidad estimada del viento y los daños relacionados.

Cuando se examina el daño relacionado con el tornado, se compara con una lista de indicadores y grados de daño que ayudan a estimar mejor el rango de velocidades del viento que el tornado probablemente produjo.

F0 — Ligero: vienen como vientos fuertes y causan poco daño a los techos que están deteriorados. Estos vientos pueden desplazar objetos livianos como botes de basura. Los tornados en esta categoría ocurren con mucha frecuencia y representan aproximadamente el 60 % del número total de tornados en el año.

F1: Moderado: representan aproximadamente el 28 % del número total de tornados. Causan daños menores al paisaje, árboles jóvenes, techos de edificios y ventanas rotas. Pueden desplazar objetos más pesados.

F2: Considerable: representan aproximadamente el 9 % del número total. Rompen ramas de árboles, causan daños considerables a la propiedad como resultado de los desechos en el aire. Pueden mover y desplazar un cobertizo de jardín con cimientos débiles.

Trombas marinas

Las trombas marinas son tornados débiles que se forman sobre el agua tibia. Las trombas son más comunes a lo largo de la costa del Golfo. Ocasionalmente se mueven tierra adentro y se convierten en tornados que causan graves daños.

F3— Grave: pueden arrancar árboles de raíz y romper paredes de edificios. Pueden volar techos y causar daños graves. Representan aproximadamente el 3 % del número total de tornados.

Han ocurrido algunos tornados muy devastadores que han arrasado con muchas casas, escuelas y estructuras a lo largo de su camino.

F4—Devastador: son bastante destructivos, ya que los autos pequeños son volcados y desplazados. Destruyen casas, arrancan los árboles de raíz y los destruyen, elevan escombros pesados ​​y devastan cualquier cosa a su paso. Constituyen alrededor del 1 %.

F5 — Impresionante: representan menos del 1 % en número. Son tan poderosos que aplanan casi cualquier estructura en su camino. Los árboles maduros se quedan sin ramas, otros son desarraigados y arrastrados por el viento, y los automóviles son arrastrados y desplazados significativamente.

Pasillo de los tornados

El tornado más devastador que ocurrió en América del Sur se originó el 10 de enero de 1973, a 105 km al norte de la ciudad de Santa Fe en Argentina y fue nombrado Tornado de San Justo. Debido al grado de daño que causó fue considerado un F5.

LUGARES DE RIESGO DE TORNADOS

El país con mayor ocurrencia de tornados durante el año es Estados Unidos. Todos los estados tienen algún riesgo de daños, pero Arkansas, Iowa, Kansas, Luisiana, Minnesota, Nebraska, Dakota del Norte, Ohio, Oklahoma, Dakota del Sur y Texas tienen el mayor riesgo.

Los tornados ocurren en muchas partes del mundo, por ejemplo Australia, Europa, África, Asia y América del Sur. Incluso Nueva Zelanda cuenta con al menos 20 tornados cada año. Dos de las concentraciones más altas de tornados fuera de los Estados Unidos son Argentina y Bangladesh.

¿Sabías qué?
Cada año hay un promedio de 1.200 tornados que golpean varias partes de Estados Unidos.

MEDIDAS DE PREVENCIÓN Y SEGURIDAD FRENTE A LOS TORNADOS

Antes de un tornado:

  • Tener en cuenta los lugares más seguros o áreas de refugio a los que se puede ir antes de las visita de un tornado.
  • Tomar algunos artículos de primeros auxilios, almacenar agua y algunos suministros de emergencia en caso de que haya tiempo suficiente.
  • Intentar mantenerse en contacto con la estación meteorológica local y fijarse si hay nubes oscuras y tormentas eléctricas.
  • Tener en cuenta el clima de la ciudad y las acciones sugeridas que se pueden hacer para mantenerse a salvo.
Los tornados son difíciles de predecir. La mayoría de las veces solo se cuenta con unos minutos de advertencia.

Durante un tornado:

  • Moverse rápidamente al sótano de su hogar o área designada en caso de encontrase en un lugar público.
  • Si se está conduciendo un vehículo, se debe dirigir al edificio resistente más cercano y ponerse a cubierto. Si no hay ninguno alrededor, se debe quedar en el automóvil, usar el cinturón de seguridad y cubrirse la cabeza con los brazos o una almohada.
Nunca se debe intentar mirar por la ventana o salir, ya que puede haber escombros voladores.

Después de un tornado:

  • Usar prendas de seguridad al caminar o trabajar a través de los escombros, ya que podría haber vidrios rotos y otros productos químicos peligrosos.
  • No tocar las líneas eléctricas y los objetos en los charcos de agua.
  • Mantener registros, notas, fotos de artículos rotos, en caso de que la compañía de seguros los necesite.
Los objetos voladores causan la mayoría de las lesiones y muertes durante los tornados.
RECURSOS PARA DOCENTES

Artículo “Cambios terrestres”

En este recurso se explican los fenómenos y fuerzas tanto internas como externas que actúan sobre la faz de la Tierra.

VER

Video “Los tornados”

Este recurso audiovisual explica cómo se forman los tornados.

VER

Video “Catástrofes naturales”

Este recurso audiovisual describe las diferentes catástrofes que ocurren en nuestro planeta y sus posibles consecuencias.

VER

CAPÍTULO 13 / TEMA 4

Los huracanes

Los huracanes son sistemas de tormentas masivas que se forman sobre las cálidas aguas del océano y se mueven hacia la tierra. Las posibles amenazas de huracanes incluyen poderosos vientos, fuertes lluvias, inundaciones costeras e interiores, tornados y deslizamientos de tierra.

¿QUÉ SON LOS HURACANES?

Los huracanes son grandes tormentas tropicales rotatorias con vientos superiores a 119 kilómetros por hora. Por lo general, se forman entre el 1 de junio y el 30 de noviembre en el océano Atlántico, pero también pueden desarrollarse en otros océanos. Son conocidos como tifones en el Pacífico occidental y como ciclones en el océano Índico.

ANATOMÍA DE UN HURACÁN 

  • Ojo: ubicado en el centro del huracán, es un área de muy baja presión de aire, relativamente tranquila y sin nubes.
La parte más peligrosa de la tormenta está en el borde del ojo llamado la pared del ojo.
  • Pared del ojo: alrededor del exterior del ojo hay una pared formada por nubes muy pesadas. Esta es la parte más peligrosa del huracán y donde se encuentran los vientos de mayor velocidad.
¿Sabías qué?
Los vientos en la pared del ojo pueden alcanzar velocidades de 250 kilómetros por hora.
  • Bandas de lluvia: grandes bandas espirales que pueden arrojar lluvias masivas, que causan inundaciones cuando el huracán toca tierra.
  • Diámetro: el diámetro del huracán se mide de un lado a otro. Los huracanes pueden tener un diámetro de más de 965 kilómetros.
  • Altura: las nubes de tormenta que impulsan los huracanes pueden llegar a ser muy altas. Un poderoso huracán puede alcanzar 15 kilómetros en la atmósfera.
Escala Saffir-Simpson

Los científicos clasifican la fuerza de un huracán mediante un sistema desarrollado en la década de 1970, llamado escala Saffir-Simpson. Se compone de cinco categorías basadas en la fuerza del viento, donde 1 es el más débil y 5 es el más fuerte.

¿CÓMO SE FORMAN LOS HURACANES?

  1. Un factor clave es el agua cálida del océano. El agua tibia induce la evaporación, lo que provoca que más vapor de agua se eleve desde la superficie del océano a la atmósfera.
  2. Los huracanes comienzan sobre el océano como tormentas tropicales provocadas por una perturbación en la atmósfera. Una vez que se activa la tormenta, la rotación de la Tierra hace que el aire cálido y húmedo en la superficie del océano se eleve en un patrón en espiral.
  3. Debajo de esta masa de aire ascendente se forma un área de baja presión. A medida que el aire húmedo sube, libera calor, se enfría y se condensa en bandas ventosas de nubes y tormentas eléctricas. La base de baja presión actúa como una aspiradora que succiona más aire cálido y húmedo hacia la espiral.
  4. Para que una tormenta gane suficiente energía para convertirse en huracán, la temperatura de las aguas superficiales debe elevarse por encima de los 26 °C. Cuanto más caliente es el agua, más energía alimenta el huracán y más fuerte se vuelve.
  5. La energía liberada a medida que el aire sube y se condensa sostiene el huracán a medida que se mueve sobre el océano. Una vez que un huracán toca tierra, su energía disminuye y el huracán se debilita.
¿Sabías qué?
Los huracanes giran en sentido antihorario en el hemisferio norte y en sentido horario en el hemisferio sur, esto se debe a la rotación de la Tierra. Esto se denomina efecto Coriolis.

CATEGORÍAS

Los ciclones tropicales se clasifican según la velocidad (medida en mph) de los vientos sostenidos.

Depresión tropical: 38 mph o menos.

Tormenta tropical: 39 a 73 mph.

Huracán:

  • Categoría 1 – 74 a 95 mph.
  • Categoría 2 – 96 a 110 mph.
  • Categoría 3 – 111 a 129 mph.
  • Categoría 4 – 130 a 156 mph.
  • Categoría 5 – 157 o más mph.
¿Cómo afectan los huracanes al medioambiente?

  • Los vientos pueden desarraigar los árboles y las marejadas ciclónicas pueden llevar agua salada a los ríos interiores, lo que causaría un gran daño a las plantas y los animales que no pueden tolerar altos niveles de salinidad.
  • Las mareas altas pueden eliminar fácilmente los nidos sensibles de tortugas marinas y aves a lo largo de las costas.
  • La acción violenta de las olas causa la muerte de muchos peces.
  • La caída de la presión del aire como resultado de un huracán a menudo desorienta a los manatíes y los delfines.
  • Mientras que algunas aves detectan el cambio de presión y escapan antes de las tormentas, otras pueden quedar atrapadas en el ojo de un huracán.
  • Algunos animales se benefician de los huracanes. Estos incluyen a los carroñeros que aprovechan las nuevas fuentes de alimentos después de las tormentas y las plantas que usan el viento para esparcir sus semillas.

NOMBRES DE LOS HURACANES

Los huracanes, ciclones y tifones son el mismo fenómeno. Tienen diferentes nombres de acuerdo al lugar donde se desarrollan. En América del Norte y el Caribe se los llama huracanes, en el océano Índico se los conoce como ciclones, y en el sudeste asiático como tifones.

Los huracanes en el Atlántico se nombran según una lista propuesta por la Organización Meteorológica Mundial, donde se encuentran los nombres por orden alfabético según la fecha en que aparecen. Por lo que la primera tormenta del año siempre tendrá un nombre que comience con la letra A. Hay seis listas de nombres y cada año se usa una nueva lista.

LUGARES DE RIESGO DE HURACANES

Los ciclones tropicales ocurren sobre el océano en áreas cercanas al Ecuador. Esto se debe a que hay mucha agua cálida en estas áreas para permitir que se formen las tormentas. Existen siete áreas principales en el mundo que tienden a producir ciclones tropicales:

  1. Atlántico Norte (norte del océano Atlántico, golfo de México y mar Caribe).
  2. Pacífico Noreste.
  3. Pacífico Noroeste (costa de Asia y sur de del mar de China).
  4. Índico Norte (bahía de Bengala y mar de Arabia).
  5. Índico Sudoeste (costa africana).
  6. Índico Sudeste-Australiano.
  7. Australiano-Pacífico sudoeste.
Huracán Katrina

Este huracán conmocionó al mundo después de golpear la costa del golfo de Estados Unidos el 29 de agosto de 2005. Katrina fue el tercer huracán más poderoso que tocó tierra o se encontró con una masa de tierra en los Estados Unidos.

MEDIDAS DE PREVENCIÓN Y SEGURIDAD FRENTE A LOS HURACANES

Antes:

  • Conocer el riesgo de huracanes en su área.
  • Registrarse en el sistema de advertencia de su comunidad.
  • Estar atento a las señales de advertencia.
  • Hacer planes de evacuación o refugio según su ubicación
  • Reunir los suministros necesarios durante al menos tres días. Tener en cuenta las necesidades específicas de cada persona, incluidos los medicamentos. No olvidar las necesidades de las mascotas.
  • Guardar los documentos importantes en un lugar seguro o crear copias digitales protegidas con contraseña.

Durante:

  • Evacuar el lugar en cuanto las autoridades lo indiquen. No manejar alrededor de barricadas.
  • Refugiarse durante los fuertes vientos en una habitación o pasillo pequeño y sin ventanas.
  • En caso de quedar atrapado en un edificio por inundación, ir al nivel más alto.
  • Escuchar la información e instrucciones de emergencia.
  • No caminar, nadar o manejar a través de aguas de inundación.
  • Mantenerse alejado de los puentes sobre aguas rápidas.
¿Sabías qué?
Tan sólo 15 centímetros de agua en movimiento rápido pueden derribar a una persona y 30 centímetros pueden barrer su vehículo.

Después:

  • Escuchar a las autoridades para obtener información e instrucciones especiales.
  • Tener cuidado durante la limpieza. Usar ropa protectora y trabajar con otra persona.
  • No tocar equipos eléctricos.
  • Evitar transitar en aguas de inundación, pueden contener escombros peligrosos.
  • Ahorrar las llamadas telefónicas para emergencias. Usar mensajes de texto o redes sociales para comunicarse con familiares y amigos.
  • Documentar cualquier daño a la propiedad con fotografías.
RECURSOS PARA DOCENTES

Artículo “Cambios terrestres”

Este recurso cuenta con la explicación de los fenómenos y fuerzas tanto internas como externas que actúan sobre la faz de la Tierra, ya sea en la estructura o en la composición de algunas de sus partes.

VER

Infografía “Huracán Katrina”

Con este material podrás conocer los aspectos más importantes de una de las peores catástrofes de la historia.

VER

Video “Catástrofes naturales”

Este video ilustra las diferentes catástrofes que ocurren en nuestro planeta y sus posibles consecuencias.

VER

CAPÍTULO 6 / TEMA 4

PLANTAS DEL PASADO

HACE MILLONES DE AÑOS, LAS PRIMERAS PLANTAS TERRESTRES ABANDONARON LAS AGUAS PREHISTÓRICAS, LANZARON SUS RAÍCES A TRAVÉS DEL SUELO Y ACABARON DOMINANDO TIERRA FIRME. ESTAS PRIMERAS PLANTAS ERAN MUY PARECIDAS A LAS ALGAS QUE PODEMOS ENCONTRAR EN EL MAR HOY EN DÍA, ¡VAMOS A CONOCERLAS!

¿CÓMO SE ORIGINARON LAS PLANTAS?

LAS PLANTAS SON UNOS DE LOS SERES VIVOS MÁS IMPORTANTES QUE HABITAN NUESTRO PLANETA, SIN ELLAS, PRÁCTICAMENTE LA VIDA NO EXISTIRÍA TAL COMO LA CONOCEMOS, YA QUE GRACIAS A ELLAS OBTENEMOS EL OXÍGENO PARA PODER RESPIRAR.

¡CONOZCAMOS LAS PLANTAS!

MARCA CON UNA X LOS NOMBRES DE LAS PLANTAS QUE CONOCES.

(  ) ROSA

(  ) ORQUÍDEA

(  ) ROBLE

(  ) GIRASOL

(  ) MARGARITA

(  ) PINO

(  ) HELECHO

EL ORIGEN DE LAS PLANTAS ESTÁ MUY RELACIONADO CON EL ORIGEN DE LA PRIMERA CÉLULA EUCARIOTA (NOMBRE QUE SE LE DA A LAS CÉLULAS MÁS EVOLUCIONADAS) CAPAZ DE REALIZAR LA FOTOSÍNTESIS. CONOZCAMOS CÓMO FUE:

¡RECUERDA!

LA FOTOSÍNTESIS ES EL MECANISMO MEDIANTE EL CUAL LAS PLANTAS OBTIENEN EL ALIMENTO QUE NECESITAN Y ADEMÁS LIBERAN OXÍGENO AL AMBIENTE.

.

1.- LA PRIMERA CÉLULA CAPAZ DE REALIZAR LA FOTOSÍNTESIS SE ORIGINÓ HACE 2.700 MILLONES DE AÑOS, LOS CIENTÍFICOS CREEN QUE LAS CONOCIDAS ALGAS VERDE AZULES O CIANOBACTERIAS SON LOS ANTEPASADOS DE LAS PLANTAS ACTUALES.

LAS CIANOBACTERIAS SON LAS ÚNICAS BACTERIAS CAPACES DE REALIZAR FOTOSÍNTESIS.

2.- SE CREE QUE LAS CIANOBACTERIAS SE UNIERON A OTRAS CÉLULAS QUE NO REALIZABAN FOTOSÍNTESIS, Y DE ESTA FUSIÓN NACIÓ EL PRIMER SER VIVO FOTOSINTÉTICO.

BACTERIAS QUE REALIZAN FOTOSÍNTESIS

AUNQUE MAYORMENTE LOS SERES VIVOS QUE REALIZAN FOTOSÍNTESIS SON LAS PLANTAS, EXISTE UN GRUPO DE BACTERIAS PRIMITIVAS CAPACES DE HACERLO, ÉSTAS SON LAS CIANOBACTERIAS, ORGANISMOS MICROSCÓPICOS QUE VIVEN EN LAS AGUAS.

3.- DESPUÉS DE ESTA FUSIÓN, LOS CIENTÍFICOS CONSIDERAN QUE LA CIANOBACTERIA PASÓ A CONVERTIRSE EN UN ÓRGANO DE LOS OTROS SERES VIVOS A LOS QUE SE UNIERON: EL CLOROPLASTO. ASÍ COMO NOSOTROS TENEMOS ÓRGANOS QUE CUMPLEN FUNCIONES DISTINTAS, LAS CÉLULAS TAMBIÉN LOS TIENEN, POR SUPUESTO TIENEN NOMBRES DISTINTOS Y SON MICROSCÓPICOS, EL CLOROPLASTO ES UNO DE ELLOS, ES EL ÓRGANO DE LA CÉLULA VEGETAL QUE LE PERMITE REALIZAR LA FOTOSÍNTESIS.

DEL MAR A LA TIERRA FIRME

VARIOS ESTUDIOS SUGIRIEREN QUE LAS PLANTAS TERRESTRES SURGIERON DE UN TIPO DE ALGAS CONOCIDAS COMO LAS ALGAS VERDES, LAS CUALES EN ALGÚN MOMENTO EN EL PALEOZOICO VIVIERON EN LAS ORILLAS DE LAS LAGUNAS O MARES Y EVOLUCIONARON HASTA PODER SOBREVIVIR EN TIERRA FIRME.

EN EL PLANETA TIERRA HAY CERCA DE 10 MIL ESPECIES DE ALGAS VERDES.

PRIMERO CUBRÍAN ROCAS CERCANAS A LAGOS Y RÍOS, PERO CON EL PASAR DE LOS AÑOS, ALGUNAS COMENZARON A SUBSISTIR MUCHO MÁS ALEJADAS DE ESTAS ZONAS Y DESARROLLARON PARTES IMPRESCINDIBLES, COMO LAS RAÍCES Y LAS HOJAS.

¿CUÁLES SON LAS PARTES DE LAS PLANTAS?

VISUALIZA LA IMAGEN Y ESCRIBE EL NOMBRE CORRECTO DE CADA UNA DE ESTAS PARTES DE LAS PLANTAS.

___________________________
___________________________
___________________________

UN GRUPO DE ESTOS SERES VIVOS REDUJERON SU TAMAÑO Y PERMANECEN HASTA LA ACTUALIDAD ADHERIDOS A ROCAS EN LUGARES HÚMEDOS, ÉSTOS SON CONOCIDOS COMO MUSGOS. OTRO GRUPO EVOLUCIONÓ HASTA ADQUIRIR TAMAÑO MUCHO MÁS GRANDE Y HABITAR EN OTRO TIPO DE LUGARES.

EL PRIMER GRUPO QUE SE ADAPTÓ COMPLETAMENTE A LA VIDA TERRESTRE FUE EL DE LOS HELECHOS, LUEGO LAS HIERBAS Y POSTERIORMENTE SURGIERON ÁRBOLES DE MAYOR TAMAÑO.

UNOS TRESCIENTOS MILLONES DE AÑOS MÁS TARDE SURGIERON LAS PLANTAS CON SEMILLA.

¡ESCRIBE EL NOMBRE CORRECTO!

ESCRIBE LOS NOMBRES CORRECTOS DE ESTAS PLANTAS

___________________________
___________________________
___________________________
___________________________

IMPORTANCIA DE LAS PLANTAS EN LA TIERRA PRIMITIVA Y LA ACTUALIDAD

EN LOS INICIOS DE NUESTRO PLANETA, LA TIERRA NO POSEÍA UNA ATMÓSFERA RICA EN OXÍGENO, SIN EMBARGO, CON LA LLEGADA DE LOS PRIMEROS ORGANISMOS CAPACES DE REALIZAR LA FOTOSÍNTESIS COMENZÓ A PERMITIR QUE HAYA OXIGENO EN LA ATMÓSFERA. ESTO AYUDÓ A QUE MILLONES DE AÑOS DESPUÉS HUBIERA UNA SEGUNDA ATMÓSFERA RICA EN OXÍGENO QUE PERMITIÓ LA VIDA DE ORGANISMOS MÁS EVOLUCIONADOS.

ASÍ COMO EN EL PASADO, EN LA ACTUALIDAD LAS PLANTAS JUEGAN UN PAPEL MUY IMPORTANTE PARA QUE SE PUEDA DESARROLLAR LA VIDA EN LA TIERRA:

1.- PROPORCIONAN EL OXIGENO NECESARIO PARA RESPIRAR.

2.- SON COMO UN FILTRO, REDUCEN EL DIÓXIDO DE CARBONO EN LA ATMÓSFERA.

3.- AYUDAN A MANTENER LA TEMPERATURA DE NUESTRO PLANETA Y LE PROPORCIONAN SOMBRA A LOS SERES VIVOS.

4.- SIRVE DE ALIMENTO PARA OTROS SERES VIVOS: LOS HERBÍVOROS.

5.- DE ELLAS, LOS SERES HUMANOS PODEMOS OBTENER MEDICINAS, ALIMENTOS, MADERA Y OTROS RECURSOS IMPORTANTES.

¿CÓMO CUIDAR LAS PLANTAS?

ESCRIBE UN PÁRRAFO SOBRE CÓMO PUEDES AYUDAR A CUIDAR LAS PLANTAS.

________________________________________________________________________________________

________________________________________________________________________________________

________________________________________________________________________________________

________________________________________________________________________________________

________________________________________________________________________________________.

RECURSOS PARA DOCENTES

Artículo “Las plantas y sus partes”

Este artículo contiene información detallada sobre las partes de las plantas.

VER

Artículo “Reino vegetal”

Este artículo incluye información sobre todos los organismos pertenecientes al reino de las plantas.

VER

 

 

 

Montañas, valles y mesetas

La erosión es el proceso geológico en el que los materiales de tierra son desgastados y transportados por fuerzas naturales como el viento o el agua. A través de este proceso, se forman varias estructuras geográficas, como por ejemplo, las montañas, los valles y las mesetas.

Montañas Valles Mesetas
Definición Es una elevación natural de la superficie de la Tierra. Está representada por un relieve elevado con respecto al nivel del mar. Es una zona plana entre dos montañas o colinas, usualmente con un río que lo atraviesa. Es una planicie elevada con una pendiente pronunciada en al menos uno de sus lados.
Formación Ocurre mediante un proceso denominado orogénesis y poco después su transformación es dada por factores externos como la erosión y movimientos tectónicos. Ocurre mediante la erosión que es producida por una corriente de agua o por movimientos tectónicos. Su formación puede ocurrir debido a la erosión, fuerzas tectónicas o por la emersión de una meseta submarina.
Vegetación Varia con respecto a la altura y la zona. Varia de acuerdo a la ubicación, las condiciones climáticas y la cantidad de agua en este. Poca vegetación, matas y arbustos  reducidos.
Altitud Entre 1.500 y 2.500 msnm. Variable, menor que las montañas y las mesetas. Un poco más de 500 msnm.

 

 

 

 

Rayo, trueno y relámpago

Las tormentas eléctricas son fenómenos meteorológicos que producen rayos, relámpagos y truenos. Estos términos generalmente son utilizados sin distinción para mencionar descargas eléctricas, sin embargo, designan distintos fenómenos. El rayo se produce por una descarga eléctrica que genera una luz llamada relámpago y posteriormente un trueno.  

Rayo Relámpago Trueno
Tipo de fenómeno Eléctrico Lumínico Sonoro
Fenómeno
meteorológico que lo genera
Lluvias y tormentas eléctricas. Lluvias y tormentas eléctricas. Lluvias y tormentas eléctricas.
Formación  Ocurre cuando una región de una nube adquiere un exceso de carga eléctrica, ya sea positiva o negativa, que es suficiente para romper la resistencia del aire y producir una descarga eléctrica. La descarga eléctrica producida por el rayo genera una emisión de luz conocida como relámpago. Es un sonido que ocurre como consecuencia del calentamiento por encima de los 28.000 °C que genera un rayo en el aire.
Velocidad a la que viaja Aproximadamente

200.000 km/h.

300.000 km/s 1234,8 Km/h
Contacto con la superficie  No No

 

El suelo, un recurso que debemos cuidar

El suelo es un recurso natural de gran importancia para el desarrollo de la vida. Significa una fuente de alimento para las plantas, cultivos, animales e incluso para el hombre que se sirve de ellos para satisfacer sus necesidades.

Composición del suelo

El suelo es la capa más superficial de la corteza terrestre está formado por una mezcla de materia mineral, materia orgánica, agua y aire.

Materia mineral

Está constituida por los componentes inorgánicos del suelo: arcilla, limos, arena, piedras, gravas, etc.
Los tipos de minerales presentes en el suelo dependen fundamentalmente del tipo de roca del que se ha formado el suelo. Los suelos arcillosos no drenan ni se desecan fácilmente y tienen buenas reservas de nutrientes para las plantas; en tanto, los limosos son bajos en nutrientes.

Materia orgánica o humus

La materia orgánica del suelo está formada por animales y plantas muertos. Al unirse con la arcilla, forma un material muy absorbente, con gran capacidad de retención de agua y nutrientes.

Agua

Todos los organismos del suelo y las plantas necesitan agua para vivir. Cuando un suelo presenta escasez de este recurso, las plantas dejan de crecer y se marchitan. A su vez, un exceso de agua desplazará el aire del suelo e impedirá la respiración de las raíces y la absorción de nutrientes.

Aire

El aire del suelo es esencial para la respiración de las raíces. Se localiza en los poros entre los agregados de varias partículas minerales.

Formación

Podemos sintetizar las etapas de formación del suelo en cuatro puntos:

1. Meteorización
La roca madre, material de lecho rocoso, comienza a disgregarse por la acción de los factores ambientales y por el crecimiento de raíces que rompen la superficie de la roca. Este proceso se denomina meteorización.

2. Crecimiento de las plantas
Continúa la meteorización y aparece una capa de arena. Crecen algunas plantas, que al ir descomponiéndose, se mezclan con la arena formando un mantillo.

3. Suelo maduro
La vegetación prolifera a medida que el suelo se va enriqueciendo con los restos de las plantas. Aumenta el grosor de la capa del mantillo. En el nivel más profundo quedan las rocas intactas.

Clasificación

Ciertas características como la humedad, la temperatura y la presencia de los seres vivos influyen en las propiedades del suelo y, por consiguiente, en su clasificación.

Si nos detenemos a observar la textura del suelo podemos notar que existen partículas de diferentes tamaños como: arena, arcilla y limo. De acuerdo a su composición, un suelo tendrá textura arenosa, arcillosa o limosa, según tenga mayor o menor proporción de alguno de estos compuestos.

En relación al grado de compactación, las raíces y el agua tienen mayor o menor capacidad de atravesarlo. Esta propiedad se define como porosidad y hace referencia al espacio de suelo que no está ocupado por los sólidos. Un suelo poroso permite una mayor circulación de agua y la posibilidad que se desarrollen más especies vegetales.

Los suelos también pueden clasificarse de acuerdo a la presencia de materia orgánica. Se denominan suelos no desarrollados aquellos que están formados por arena y roca, sin materia orgánica.

Por el contrario, los suelos desarrollados, poseen materia orgánica y son ricos en humus, es decir, en materia orgánica parcialmente descompuesta. Tienen un alto nivel de fertilidad y presentan gran variedad de formas de vida que contribuyen a su enriquecimiento.

¿Qué es la lombricultura?

La lombricultura es la crianza de lombrices de tierra, ellas son las encargadas de procesar en su tubo digestivo restos de la huerta. Al cabo de aproximadamente un año su materia fecal se convierte en un abono llamado humus de lombriz. Es un producto orgánico de textura granulosa, húmedo, que no fermenta ni presenta olor, no tiene adulteraciones de ningún tipo, ni mezclas con otros abonos no orgánicos.

Este abono realiza en el suelo una acción biodinámica que permite la recuperación de sustancias nutritivas contenidas en el propio suelo y elimina los elementos contaminantes. Con esta mejora se aumenta la producción agrícola en pequeña escala.

En las zonas de cultivo, el humus se agota por la sucesión de cosechas, para suplir esta carencia y restaurar el equilibrio orgánico se añade humus de lombriz al suelo.

Otra tarea importante que llevan a cabo las lombrices en la tierra es la de remover. De este modo, reparten la materia orgánica y los nutrientes facilitando la entrada de aire y el drenaje.

Capas del suelo

El suelo tiene varias capas u horizontes.

Horizonte 0: Está conformado por materia orgánica como hojas.

Horizonte A: Es la capa más superficial, rica en humus y sustancias minerales.

Horizonte B: Es la capa donde se acumulan los materiales lavados del horizonte A que llegan por procesos de infiltración. Predominan las partículas minerales y los componentes orgánicos procedentes de restos de plantas y materiales en descomposición.

Horizonte C: Es la roca madre sin alterar. Está constituido por rocas de gran tamaño.

Un gran problema: la erosión

La erosión es el proceso que rompe y arrastra las rocas y el suelo. Se pueden distinguir dos fases: desprendimiento de partículas individuales de la masa del suelo y transporte de las mismas por la acción de las precipitaciones y el viento.

La principal consecuencia de la erosión es la reducción de la fertilidad del suelo porque provoca la pérdida de minerales y materia orgánica, y contamina aguas superficiales.

La capa de vegetación del suelo protege a la tierra de la erosión. Cuando ésta desaparece, ya sea por causas naturales como por la acción del hombre, el riesgo de erosión se incrementa. Sin vegetación, la tierra queda expuesta directamente a las precipitaciones y puede deslizarse por las pendientes y las corrientes de agua. El agua de lluvia se acumula en estas áreas y este flujo concentrado empieza a arrastrar el suelo.

Generalmente, el suelo arrastrado llega a los arroyos y ríos. Se genera allí un exceso de sedimento que destruye el hábitat de ese ecosistema acuático.

Las principales causas que conducen a la erosión son:

Cultivo intensivo

Con el crecimiento de la población se ha incrementado la demanda de alimentos, por lo que ha sido necesario aumentar el uso de los suelos para la agricultura. Como consecuencia, el suelo no consigue recuperar sus nutrientes entre cosecha y cosecha.

Esta situación provoca una disminución de la productividad agrícola, inseguridad alimentaria, daños a recursos y ecosistemas básicos, y la pérdida de biodiversidad debido a cambios en los hábitat tanto a nivel de las especies como a nivel genético.

Desertización

El sobrepastoreo que puede realizar el ganado también significa un riesgo para la fertilidad del suelo. En estos casos la vegetación desaparece y queda expuesta a la erosión del viento lo que genera pérdida de la capa fértil de la tierra.

Una de las consecuencias principales del uso intensivo del suelo, tanto para el cultivo como para el pastoreo, es la compactación debido al tráfico animal o de las maquinarias. La compactación puede ser definida como el aumento en la densidad o la disminución de la porosidad del suelo. En estas condiciones las raíces de las plantas carecen de lugar para desarrollarse y el rendimiento agrícola baja considerablemente.

Deforestación

La deforestación es la tala de árboles a gran escala que realiza el hombre con fines económicos. Una de las consecuencias es la desaparición de sumideros de dióxido de carbono, esto es perjudicial para el medio ambiente porque éste pierde la capacidad para absorber dióxido de carbono y convertirlo en oxígeno. De este modo se genera el famoso “efecto invernadero” contribuyendo al calentamiento global.

Contaminación por deshechos

Hay diversas fuentes de contaminación como basurales o desechos industriales que significan una gran amenaza para los seres vivos. En las grandes ciudades los basurales suelen estar a pocos kilómetros de las viviendas, esto conlleva a que aquellas personas estén expuestas a las consecuencias de la descomposición de los residuos.

La basura y los desechos materiales orgánicos e inorgánicos que se arrojan en la naturaleza, modifican sus condiciones y provocan cambios que pueden ir desde la erosión hasta la extinción de las especies. Algunos suelos fértiles se pueden volver pobres para el cultivo de ciertas plantas debido a la acumulación excesiva de sustancias químicas provenientes de los pesticidas y otros productos de desecho absorbidos por el suelo.

Características del sistema Tierra-Luna

La Tierra es el único planeta cuyo nombre en inglés no se deriva de la mitología griega o romana. El nombre deriva del inglés antiguo y germánico, hay, por supuesto, cientos de otros nombres para el planeta en otros idiomas.

La Tierra, como los demás planetas, recorre desde hace millones de años su órbita alrededor del Sol, y lo seguirá haciendo durante otros miles de millones de años sin cambios notables. Es el Sol, con un volumen 1.000 veces mayor que todos los planetas juntos, quien la retiene y regula, además, el sistema solar. Si existiese otra estrella cercana, es decir, si el Sol perteneciese a un sistema binario, o si los planetas tuviesen masas mucho mayores, las órbitas de sus componentes sufrirían variaciones continuas. En ningún planeta habría posibilidad de vida porque pasaría demasiado cerca o demasiado lejos de su estrella y, por tanto, no existiría una sucesión regular de las estaciones.

¿Sabías qué...?
La Luna es el cuerpo celeste más fácil de ubicar en el cielo y es el único sitio, más allá de la Tierra el cual el hombre ha sido capaz de pisar.

La Luna está dotada también de un movimiento de rotación y otro de traslación alrededor de la Tierra (que se cumplen en tiempos iguales); por consiguiente, las posiciones relativas de la Tierra y la Luna respecto al Sol varían periódicamente. Ello explica que la Luna presente a la Tierra siempre la misma cara y las fases lunares.

La superficie lunar, explorada por varias misiones del programa Apolo, y cartografiada con todo detalle por la sonda estadounidense Clementine, presenta un aspecto caracterizado por una gran cantidad de accidentes geográficos.

No es del todo exacto afirmar que la Luna gira alrededor de la Tierra. Ambas giran alrededor del punto de equilibrio del sistema Tierra-Luna, o sea el centro de gravedad o centro de masa. Y como la Tierra es 81 veces mayor que la Luna, este centro está situado a 1.600 km por debajo de la superficie terrestre, del lado más próximo a la Luna. De esto se deduce que no es la Tierra la que sigue una verdadera órbita elíptica alrededor del Sol, sino que es el centro de gravedad del sistema el que lo hace, mientras que la Tierra oscila ligeramente de un lado a otro.

Fases de la Luna.

¿Por qué la Tierra no se cae?

La fuerza de la gravedad es la responsable de que los gases que componen la atmósfera no escapen al espacio y de que la Tierra permanezca estable en su órbita, relacionándose con el resto de cuerpos del universo y manteniendo unidas a los miles de millones de estrellas que pueblan la galaxia. La fuerza de la gravedad del Sol es casi 28 veces el valor de la gravedad terrestre y es la que mantiene en sus órbitas a todos los planetas y demás cuerpos que integran el sistema solar.

Color y luminosidad

Una característica de los planetas es reflejar una parte de la luz solar incidente (el porcentaje de luz reflejada se llama albedo y es un dato físico importante para todos los cuerpos del sistema solar, pues facilita el conocimiento de características como la dimensión y el material que recubre su superficie). La Tierra tiene un albedo de 0,40, o sea que refleja al espacio un 40 % de la luz solar que recibe; ello se debe a que los océanos, los casquetes polares y la capa de nubes actúan como espejos.

Heng Zhang

El astrónomo y geofísico chino Heng Zhang (78-139 d.C.), reconocido como el inventor del primer sismógrafo, fue asimismo el astrónomo oficial de la corte china. Descubrió y registró que la luz emitida por la Luna era, en realidad, luz procedente del Sol reflejada por la superficie de ésta.

El albedo terrestre está sujeto a variaciones estacionales porque la Tierra difunde más luz entre marzo y junio, y entre octubre y noviembre que entre julio y septiembre. El color de la Tierra también varía, es más azulado en los períodos que refleja más luz. En cuanto a las relaciones entre la Tierra y la Luna, la primera se ve desde la Luna 100 veces más luminosa que la Luna llena vista desde la Tierra.

Dimensiones

La distancia media entre la Tierra y la Luna es de 384.403 km. Esta distancia puede alcanzar 406.697 km en el apogeo, cuando la velocidad orbital de la Luna es de 3.474 km/h, o bien reducirse a 356.410 km en el perigeo, cuando la velocidad orbital es de 3.959 km/h. Mientras que la Tierra tiene como diámetro ecuatorial 12.756 km y como diámetro polar 12.713 km, con un achatamiento polar de 1/298, la Luna tiene un diámetro de 3.476 km y forma casi esférica. La Tierra tiene una masa de 5,98 x 1024 Kg y una densidad media de 5,52 veces la del agua, frente a 3,36 veces la densidad de la Luna, que posee también una masa mucho más baja: 1/81 de la terrestre. De la masa y las dimensiones se deduce la fuerza de gravedad en la superficie de ambos cuerpos, y también puede calcularse el peso de un objeto sobre la Luna, que es, un 1/6 de su peso sobre la Tierra.

Eclipses de Sol y de Luna

Durante su trayectoria alrededor del Sol, la Luna se encuentra periódicamente situada entre el Sol y la Tierra.

Las diferentes fases de un eclipse de Sol total, en este caso el acaecido el 11 de julio de 1991, permiten apreciar la secuencia de desaparición y reaparición del disco solar tras la silueta de la Luna, que en la fase central del fenómeno cubre por completo al astro rey.

El interés científico del eclipse de Sol depende de que la Luna oculte al Sol por completo (eclipse total); en el brevísimo período que puede durar el eclipse total, desde pocos segundos hasta un máximo de 7,30 minutos, se puede ver la parte más externa del Sol, la cromosfera, con las protuberancias, y la tenue corona con sus penachos. Debido a que la sombra de la Luna llega con dificultad a alcanzar la Tierra, la zona de sombra sobre la superficie terrestre no es superior a 275 km. Alrededor de esta zona el eclipse es parcial, o sea que se ve el disco del Sol parcialmente, no pudiéndose observar la corona ni la cromosfera.

Existe eclipse anular cuando el disco lunar no es lo suficientemente grande como para ocultar por completo al Sol. Esto se debe a que las distancias de la Luna a la Tierra y de la Tierra al Sol no son constantes, dado que las órbitas lunar y terrestre no son exactamente circulares. El disco negro de la Luna aparece entonces rodeado de un sutil anillo brillante, cuya luminosidad es suficiente para impedir la visión de la cromosfera y de la corona.

Los eclipses totales de Sol (y de Luna) se reproducen en el mismo orden después de un período de 18 años y 11 días, denominado saros (igual a 223 lunaciones), pero no en los mismos lugares. Por ejemplo: el 20 de julio de 1963 se observó un eclipse total en Canadá, y el 31 de julio de 1981 otro en Siberia (Rusia). El 11 de agosto de 1999 pudo verse un eclipse total de sol desde Gran Bretaña hasta la India. El 29 de marzo de 2006 tuvo lugar un eclipse solar total que comenzó a manifestarse al noreste del Brasil y acabó en la frontera noreste de Mongolia.

Eclipse lunar

Los eclipses de Luna se producen cuando ésta penetra en el cono de sombra de la Tierra, lo que sucede sólo durante la Luna llena. Contrariamente a los eclipses de Sol, los de Luna son visibles en todos los lugares de la Tierra donde pueda observarse la Luna por encima del horizonte. El cono de sombra está rodeado de un cono de penumbra, que intercepta una parte de la luz solar. Los eclipses de Luna pueden ser también totales o parciales. El eclipse es total si la Luna penetra completamente en el cono de sombra, y parcial si penetra sólo en parte; por último, el eclipse de penumbra se produce cuando la Luna penetra sólo en el cono de penumbra. En un año se observan de dos a cinco eclipses de Luna.

La Tierra y la Luna: su formación

El análisis radiactivo de las rocas superficiales de la Tierra indica una edad de por lo menos 3.500 millones de años. La corteza terrestre se solidificó lentamente, debido a la gran cantidad de potasio radiactivo que generaba calor en el interior. El Sol, cuya edad se estima en 5.000 millones de años, había nacido ya, aun cuando era invisible por estar oculto en el interior de la primitiva nebulosa de materia estelar, particularmente densa sobre el plano de la eclíptica. En efecto, la nube bloqueaba todas las radiaciones solares a escasa distancia del Sol. A causa de la temperatura excesivamente baja (quizá -260 °C), los gases de agua, el amoníaco, el nitrógeno, el dióxido de carbono, el monóxido de carbono y el metano formaron, junto con el polvo, la nieve y el hielo, unos cuerpos que serían los planetas. Debió de ser una tempestad permanente, en cuyo seno se formaron masas cada vez más grandes, que se rompían y agregaban de nuevo.

La Tierra pudo nacer así, o sea, por acumulaciones sucesivas y, a medida que aumentaba de masa, atraía a otros cuerpos menores. El calor generado, además de disolver los hielos y producir vapor, eliminó las sustancias más ligeras y volátiles, dejando sólo las más pétreas y metálicas.

En realidad, sobre el origen de la Luna hay muchas dudas. Según H. C. Urey, se formó también en frío, por acumulación de pequeños cuerpos. Fred Whipple sostiene que esto quizá sucedió cuando la Tierra empezó a perder el anillo que la rodeaba (similar al que todavía hoy circunda a Saturno). El núcleo de la Luna comenzó a calentarse poco a poco a causa de la presencia de elementos radiactivos; sin embargo, es probable que no se calentase lo suficiente como para producir un núcleo de hierro, como ocurrió en el caso de la Tierra.

Pequeños cuerpos siguieron cayendo sobre la Luna durante centenares de miles de años, y provocaron cráteres. Mientras, el calor interior aumentaba y fundía las capas más próximas a la superficie. En este período crítico, las grandes depresiones lunares que ahora se denominan mares, los valles y las grietas se inundaron de lava. Ese período fue breve, así como fueron también rápidos la expansión y el enfriamiento sucesivos, que produjeron tensiones, hundimientos, relieves y formaciones de diverso tipo. La acción de los volcanes es evidente en diversas regiones de la Luna, pero muchos cráteres, y especialmente los mayores, fueron producidos por impactos de meteoritos, como sucedió también en la Tierra; sin embargo, en el caso de esta última las fuerzas geológicas han rellenado, erosionado y destruido los cráteres, excepto algunos de los más recientes. Los picos centrales de muchos cráteres lunares, más bajos que los bordes de los cráteres mismos, se formaron en el período durante el cual la Luna estaba parcialmente fundida; el meteoro que originó el cráter rompió el centro de la superficie, de la cual brotó la lava que creó estas montañas. También los mares fueron producidos, siempre en el mismo período, por el impacto de grandes meteoros que, al romper la costra, provocaron intensas expulsiones e inundaciones de lava.

Cuenca sedimentaria

Una cuenca sedimentaria es una depresión en la corteza de la Tierra formada por la actividad tectónica de placas en la que se acumulan sedimentos. Muchas de las cuencas contienen sistemas extensivos de acuíferos con múltiples capas de sedimentos permeables establecidos en el pasado.

Una cuenca sedimentaria se caracteriza por:

  • Un relleno de sedimento distintivo.
  • Ciclos de deposiciones simples o múltiples.
  • Marco tectónico distintivo y arquitectura que define el tipo de cuenca.
  • Una o varias fases de la tectónica y/o termogénica.
  • Uno o más episodios tectono-sedimentarios que definen la historia de la cuenca.
  • Secuencias estratigráficas relacionadas con episodios tectónicos.
  • Historia geológica distintiva indicada por ciclos de sedimentación.
Las cuencas sedimentarias son regiones de la corteza terrestre dominadas por subsidencia.

El estudio de las cuencas sedimentarias requiere necesariamente un enfoque multidisciplinario que involucre la colaboración de geólogos con geofísicos, geoquímicos, paleontólogos y en aplicaciones industriales, la de ingenieros.

Tipos de cuencas sedimentarias

Podemos dividir las cuencas sedimentarias en tres tipos principales según su configuración de tectónica de placas:

¿Sabías qué...?
Las rocas sedimentarias son importantes porque funcionan como registradores del clima pasado, del nivel del mar y del cambio ambiental; además, son los depósitos más grandes de petróleo y gas.

Cuencas tipo Rift

Se forman en los límites de la placa extensional, por ejemplo, en los márgenes continentales.

 

Las cuencas tipo Rift son depresiones entre fallas normales.

Numerosas cuencas de Rift no marinas de diversa geografía y edad geológica comparten una arquitectura estratigráfica notablemente similar conocida como estratigrafía tripartita; esta sección comienza con depósitos fluviales anchos a lo largo de la cuenca atravesados por una sucesión lacustre ascendente relativamente abrupta, superpuesta por una sucesión lacustre y fluvial gradual, hacia arriba y hacia abajo.

Cuencas tipo Foreland

Se forman en los límites de la placa de compresión frente a los cinturones de empuje. Estas cuencas tienen forma de cuña en sección transversal, con una profundidad que disminuye gradualmente desde el cinturón de montaña hacia el cratón adyacente.

Como ejemplos de este tipo de cuencas están las cuencas alpinas del sur de Europa que se generaron como resultado de la colisión de las placas europea y africana.

Muchos grandes yacimientos de petróleo y gas se encuentran en este tipo de cuenca.

Cuencas de deslizamiento

El tercer tipo de cuenca se forma en los ajustes de falla de deslizamiento. Su origen geológico deriva de un bloque de separación, por ejemplo entre dos fallas de transformación, que disminuye significativamente.

Varios lugares en la Falla de San Andrés o la Falla de Anatolia pertenecen a este tipo de cuenca.

Las cuencas de desplazamiento son fuentes de hidrocarburos que dependen del ambiente de deposición, heterogeneidad de sedimentos, subsidencia e historia térmica.

Formación de las cuencas

Actualmente se reconoce que el principal mecanismo de formación de la cuenca es la carga de sedimentos. El desplazamiento del agua por las rocas clásicas terrígenas, como las areniscas, representa una carga sobre la superficie de la corteza que se doblará o flexionará hacia abajo por su peso. Los depósitos bioquímicos, como los de las calizas, tendrán un efecto similar.

El espesor del sedimento que se puede acumular debido a la carga depende de la densidad, pero es aproximadamente 2,5 veces la profundidad del agua que está disponible.

Los sedimentos en cuencas profundas se acumulan y esta observación sugiere que factores distintos de la carga de sedimentos son los responsables de la formación de la cuenca.

 

Cada tipo de cuenca sedimentaria presenta diferentes hundimientos tectónicos y curvas de elevación.

En contraste con las cuencas de Rift, las cuencas de tipo Foreland se caracterizan por una subsidencia lenta temprana y una subsidencia rápida más adelante.

Avances tecnológicos

El modelado de la cuenca ha avanzado significativamente desde estos primeros modelos “geométricos” para la acumulación de sedimentos. Hoy en día hay una amplia gama de modelos avanzados disponibles para construir la estratigrafía de las cuencas sedimentarias. La ventaja de estos modelos es que incorporan los controles primarios del hundimiento de la cuenca, como la carga de sedimentos.

La carga de sedimentos es también un importante control en las cuencas de deslizamiento. Estas cuencas están asociadas con tasas mucho más altas de subsidencia tectónica que las cuencas tipo Rift o tipo Foreland. Se encuentran en marcos de transformación, donde el hundimiento diferencial forma una “cuenca trasera” en el lado del continente y una depresión en el lado del océano y en zonas de fractura. Sin embargo, las cuencas de deslizamiento más profundas son las cuencas separadas que se forman entre fallas de deslizamiento superpuestas.