CAPÍTULO 4 / TEMA 3

Propiedades de la potencia

Cada vez que necesitamos hacer una multiplicación del mismo número repetidas veces, recurrimos a la potenciación. Esta operación, así como muchas otras, cumple con ciertas propiedades. ¿Cuál es la manera correcta de aplicarlas?, ¿cuáles son los beneficios? A continuación, aprenderás cuáles son y sus aplicaciones prácticas.

La potencia o potenciación es una operación matemática que consiste en multiplicar varias veces un mismo número. Consta de una base, que es el número que se multiplica, y de un exponente, que es el número que señala la cantidad de veces que se multiplica la base por sí misma. Es decir, la potenciación no es más que una multiplicación abreviada.

principales propiedades de la potencia

Las propiedades de potenciación tienen una gran cantidad de aplicaciones, pero también tienen ciertas restricciones y es importante conocerlas para no cometer errores en su resolución. Entonces, siempre que apliquemos las propiedades será a las operaciones de multiplicación y división, nunca será a las operaciones de suma y resta.

En verde están las operaciones a las que aplicaremos las propiedades de potenciación, y en rojo, las operaciones a las que no podremos aplicarlas nunca.

En la siguiente tabla podrás observar las propiedades de la potenciación:

Propiedades de la potenciación
Producto de potencia de igual base a· a= a(m + n)
Cociente de potencia de igual base a/ a= a(m − n)
Potencia de potencia (am)= an · m
Producto de potencias con bases diferentes y exponentes iguales a· bn = (a · b)n
Cociente de potencias con bases diferentes y exponentes iguales a/ b= (a / b)n
Exponente negativo a−n = 1 / an

¿Sabías qué?
Cuando el exponente es negativo, mientras mayor sea su valor más pequeño será el resultado.

Notación científica

La notación científica es una forma de expresar cantidades muy grandes o muy pequeñas que le ha permitido a los científicos simplificar sus cálculos. Es conocida también como notación o patrón exponencial porque emplea potencias de base 10 dentro de su expresión. Las potencias de base 10 son iguales a la unidad seguida de tantos ceros como indique el exponente. Un ejemplo de notación científica lo vemos en las masas de los objetos astronómicos, por ejemplo, la masa de la Luna es de aproximadamente 735 × 1020 kg.

Ejemplos prácticos

Aplicación a la suma y resta

La aplicación de las propiedades corresponde a varias operaciones matemáticas pero no a la suma y la resta. Sin embargo, eso no significa que no pueda aplicarse a ejercicios donde existan muchos términos que se suman o se restan. Cuando esto sucede, se aplican las propiedades solo a los términos por separado.

Producto de una potencia de igual base

Cuando existe una multiplicación entre dos potencias con igual base, el resultado final será la misma base elevada a la suma de los exponente de potencias que se multiplicaron. Por ejemplo:

  • 5· 52 = 5(3 + 2) = 55
  • 4· 40 = 4(2 + 0) = 42
  • 68 · 62 · 63 = 6(8 + 2 + 3) = 613

Cociente de una potencia de igual base

Cuando dividimos dos potencias con igual base el procedimiento es similar al de la multiplicación, con la diferencia de que aquí restamos los exponentes de las potencias. Por ejemplo:

  • 53 / 52 = 5(3 − 2) = 51
  • 42 / 40 = 4(2 − 0) = 42

Potencia de una potencia

Cuando tenemos una base elevada a un exponente n, y esta a su vez está elevada a otro exponente m, el resultado final lo obtenemos al multiplicar ambos exponentes (n · m). Por ejemplo:

  • (42)4 = 42 · 4 = 48
  • (33)3 = 33 · 3 = 39

Producto de potencias con bases diferentes y exponentes iguales

Si multiplicamos dos potencias con igual exponente y bases distintas, el resultado será igual a mantener el exponente y solo multiplicar las bases. Por ejemplo:

  • 53 · 43 = (5 · 4)3
  • 32 · 22 = (3 · 2)2

Cociente de potencias con bases diferentes y exponentes iguales

De igual manera que en el caso anterior, el resultado será el cociente de las bases elevadas al exponente. Por ejemplo:

  • 53 43 = (5/4)3
  • 32 / 22 = (3/2)2

Exponente negativo

Cuando el exponente es negativo, la potencia será igual a la inversa de su base y el mismo exponente con signo positivo. Por ejemplo:

  • (2)2 = (1/2)2 = 1/22 = 1/4
  • (1/2)−1 = 2
Los átomos son las unidades básicas de toda la materia. En conjunto crean las moléculas y son microscópicos. Para poder medir las distancias entre ellos se usa una unidad de longitud llamada angstrom (Å = 1 x 10−10 metros). El exponente igual a −10 nos indica que el valor en metros es equivalente a 0,0000000001 m.

Potencia de decimales y fracciones

Cuando las bases son decimales o fracciones, las propiedades se mantienen sin distinción. Por ejemplo:

  • (0,1)2 = (0,1) · (0,1) = 0,01

Observa que 0,1 = 1 · 10−1 , y aquí se puede aplicar la propiedad de potencia de potencia. 

  • (0,1)2 = (1 · 10(−1))2 = 10(−1) · 2 = 102 = 0,01

De la misma manera, si sabemos que 0,1 = 1/10:

  • (0,1)2 = (1/10)2 = 1/102 = 1/100 = 0,01

Cualquiera sea la expresión que se elija para resolver la operación se debe llegar al mismo resultado.

¡A practicar!

Aplica la propiedad correspondiente en cada caso:

  • 34 · 3· 33

Solución
34 · 31 · 33 = 3(4 + 1 + 3) = 38 = 6.561
  • 62 / 62

Solución
62 / 62 = 6(2 − 2) = 60 = 1
  • (7−1)−3

Solución
(7−1)−3 = 7(−1) · (−3) = 73 = 343
  • 63 · 83

Solución
63 · 83 = (6 · 8)3 = 483 = 110.592
  • (−1/2)−2

Solución
(−1/2)−2 = (−2)2 = (−2) · (−2) = 4 
  • 83 / 43

Solución
83 / 43 = (8/4)3 = 23 = 8
RECURSOS PARA DOCENTES

Artículo “Ejercicios de propiedades de la potencia”

En el artículo podrá reforzar las propiedades de potenciación vistas a partir de ejemplos y ejercicios. También se explica la importancia de la correcta aplicación de las propiedades en cada término al sumar o restar.

VER

CAPÍTULO 4 / TEMA 2

rADICALES

Seguramente ya conoces qué es la potenciación, pero ¿sabías que hay otro tipo de operación muy relacionada con ella? Esta es la radicación y consiste en encontrar un número que al multiplicarse por sí mismo tenga como producto otro número determinado. La radicación es la operación inversa a la potenciación. Hoy aprenderás qué es y cómo calcularla.

¿Qué es la radicación?

Es una operación en la que hallamos raíces de orden n de un determinado número. La raíz n-ésima de un número a es igual a un número b que elevado a la n resulta en a.

\boldsymbol{\sqrt[n]{a} = b\; \; \Leftrightarrow \; \; b^{n}=a}

Ejemplo:

\boldsymbol{\sqrt[3]{8} = 2}\; \; porque\; \; \boldsymbol{ 2^{3}= 2\times 2\times 2 = 8}

\boldsymbol{\sqrt[3]{27} = 3}\; \; porque\; \; \boldsymbol{ 3^{3} = 3\times 3\times 3 =27}

Como ves, la radicación y la potenciación tienen mucho en común, incluso en sus elementos. De modo que también podemos expresar a un radical como una potencia de exponente fraccionario.

\boldsymbol{\sqrt[n]{a^{x}} = a^{\frac{x}{n}}}

Ejemplo:

\boldsymbol{\sqrt[3]{8} = 8^{\frac{1}{3}}}

\boldsymbol{\sqrt[3]{27} = 27^{\frac{1}{3}}}

Relación entre potenciación y radicación

Existe una gran relación complementaria entre la potenciación y la radicación, y la podemos observar con la semejanza que existe entre los elementos que la componen.

  • Al exponente de la potencia se lo llama índice de radical.
  • Al resultado denominado potencia se lo llama raíz.
  • A la base de la potencia se la llama radicando.

Elementos de los radicales

Al igual que en la potenciación, aquí existen 3 elementos a definir que son los que componen la radicación:

  • Índice (n): orden de la raíz que se aplica al radicando. Indica cuántas veces multiplicamos un número por sí mismo para obtener el radicando.
  • Radicando (a): número sometido a la raíz del orden determinado por el índice.
  • Raíz (b): resultado de la radicación, el cual elevado al orden de la raíz da como resultado el radicando.

¿Sabías qué?
Si el radicando es un número negativo, y el índice es par, no podrá aplicarse la operación de radicación porque el resultado no pertenecerá a los reales.

Raíces cuadradas y cúbicas

De la misma manera que en la potenciación, cuando el índice de la raíz es n = 2 y n = 3 merece una distinción. Por lo tanto, a estos los vamos a denominar como raíz cuadrada y cúbica, respectivamente.

La raíz cuadrada es aquella cuyo índice es 2. No es necesario escribir el índice de la raíces cuadradas. Por ejemplo:

\boldsymbol{\sqrt[2]{9}=\sqrt{9}}     Se lee “raíz cuadrada de nueve”.

La raíz cúbica es aquella cuyo índice es 3. Por ejemplo:

\boldsymbol{\sqrt[3]{8}}     Se lee “raíz cúbica de 8”.

Para encontrar la solución de un radical se debe pensar: ¿qué número habrá que elevar al índice n para que el resultado sea el valor del radicando? Ese número será el resultado denominado como raíz. Por ejemplo, para resolver √9 se debe pensar: ¿qué número debo elevar al cuadrado (n = 2) para que el resultado sea 9?. La respuesta es 3.

Solución de raíces

La solución de una raíz depende principalmente del radicando y del índice de la raíz. En algunas ocasiones puede tener una o dos soluciones y, en otros casos, puede que no tenga solución.

  • Radicando mayor que cero con n par.

Hay dos soluciones: una positiva y una negativa.

\boldsymbol{\sqrt{4}=\pm 2}\; \; porque \; \; \boldsymbol{(-2)^{2}=4\; \; y\; \; 2^{2}=4}

  • Radicando mayor que cero con n impar.

Hay una solución positiva.

\boldsymbol{\sqrt[3]{125}=5}\; \; porque \; \; \boldsymbol{5^{3}=5\times 5\times 5=125}

  • Radicando menor que cero con n par.

No tiene solución dentro de los números reales.

\boldsymbol{\sqrt{-9}=}no \; existe \; en\; \mathbb{R}

  • Radicando menor que cero con n impar.

Hay una sola negativa.

\boldsymbol{\sqrt[3]{-64} = -4} \; \; porque\; \; \boldsymbol{(-4)^{3}= -4\times -4\times -4 = -64}

[/su_note]

– Ejemplos de raíces:

\boldsymbol{\sqrt{4} = 2}

\boldsymbol{\sqrt{9} = 3}

\boldsymbol{\sqrt[3]{1}=1}

\boldsymbol{\sqrt[3]{27}=3}

\boldsymbol{\sqrt[4]{16}=2}

¿Sabías qué?
Cuando el índice de potencia es una fracción se puede expresar como un radical. Por ejemplo: 91/3 3√9

¡A practicar!

¿Cuál es el resultado de los siguientes ejercicios?

  • \boldsymbol{\sqrt{25}}

Solución

\boldsymbol{\sqrt{25}=5}\; \; porque \; \; \boldsymbol{5^{2}= 5\times 5 = 25}

  • \boldsymbol{\sqrt[3]{64}}

Solución

\boldsymbol{\sqrt[3]{64}= 4}\; \; porque \; \; \boldsymbol{4^{3}=4\times 4\times 4=64}

  • \boldsymbol{\sqrt[5]{-32}}

Solución

\boldsymbol{\sqrt[5]{-32}=-2} \; \; porque\; \; \boldsymbol{(-2)^{5}=-2\times -2\times -2\times -2\times -2=-32}

La radicación es la operación opuesta a la potenciación y consiste en hallar raíces de orden n de un determinado número. Consta de tres elementos llamados índice, radicando y raíz. El símbolo usado para mostrar esta operación se lo conoce como raíz o radical y el primero en utilizarlo fue el matemático Christoph Rudolff en 1525.

Raíces exactas e inexactas

La raíz cuadrada exacta es aquella que tiene como radicando un cuadrado perfecto, mientras que la raíz cuadrada inexacta es la que no tiene como radicando un cuadrado perfecto.

Cuadrados perfectos

Un cuadrado perfecto resulta de multiplicar un número por sí mismo dos veces. Estos números los podemos ordenar en un cuadrado, por ejemplo, 9 es un cuadrado perfecto porque lo podemos escribir como 3 x 3 y lo ordenamos como:

En esta tabla verás la relación de los diez primeros cuadrados perfectos con sus raíces:

Cuadrado perfecto Raíz cuadrada exacta
1^{2}=1 \sqrt{1}=1
2^{2}=4 \sqrt{4}=2
3^{2}=9 \sqrt{9}=3
4^{2}=16 \sqrt{16}=4
5^{2}=25 \sqrt{25}=5
6^{2}=36 \sqrt{36}=6
7^{2}=49 \sqrt{49}=7
8^{2}=64 \sqrt{64}=8
9^{2}=81 \sqrt{81}=9
10^{2}=100 \sqrt{100}=10

Pero no todos los números tienen raíces cuadradas exactas. En esos casos, calculamos la raíz cuadrada entera y luego contamos el resto. Por ejemplo, 55 no tiene raíz cuadrada exacta porque 72 = 49 y 82 = 64.

Por aproximación o tanteo, decimos que la raíz cuadrada entera de 55 es 7 y el resto lo obtenemos por la resta 55 − 49 = 6.

Entonces, \sqrt{55} = 5\; \; y\; resto \; 6.

¡A practicar!

1. ¿Qué tipo de raíz dará como resultado cada uno de los siguientes ejercicios?

  • \sqrt{121}

Solución
Raíz exacta.
  • \sqrt{13}

Solución
Raíz inexacta.
  • \sqrt{125}

Solución
Raíz inexacta.
  • \sqrt{70}

Solución
Raíz inexacta

2. Completa.

  • 5^{2}=\underline{\: \: \: \: \: \: }\Leftrightarrow \sqrt{25}=\underline{\: \: \: \: \: \: }
Solución

5^{2}=\boldsymbol{25}\Leftrightarrow \sqrt{25}=\boldsymbol{5}

  • 10^{2}=\underline{\: \: \: \: \: \: }\Leftrightarrow \sqrt{100}=\underline{\: \: \: \: \: \: }
Solución

10^{2}=\boldsymbol{100}\Leftrightarrow \sqrt{100}=\boldsymbol{10}

  • 12^{2}=\underline{\: \: \: \: \: \: }\Leftrightarrow \sqrt{144}=\underline{\: \: \: \: \: \: }
Solución

12^{2}=\boldsymbol{144}\Leftrightarrow \sqrt{144}=\boldsymbol{12}

  • 13^{2}=\underline{\: \: \: \: \: \: }\Leftrightarrow \sqrt{169}=\underline{\: \: \: \: \: \: }
Solución

13^{2}=\boldsymbol{169}\Leftrightarrow \sqrt{169}=\boldsymbol{13}

3. Resuelve las siguientes raíces cuadradas.

  • \sqrt{400}
Solución

\sqrt{400}=\boldsymbol{20}

  • \sqrt{70}
Solución

\sqrt{70}= \boldsymbol{8} \; y \; resto\; \boldsymbol{6}

  • \sqrt{625}
Solución

\sqrt{625}=\boldsymbol{25}

  • \sqrt{17}
Solución

\sqrt{17}= \boldsymbol{4}\; y\; resto \; \boldsymbol{1}

  • \sqrt{81}
Solución

\sqrt{81}=\boldsymbol{9}

RECURSOS PARA DOCENTES

Artículo “La radicación”

En es artículo encontrará los aspectos inherentes a la radicación y encontrará una introducción a las propiedades de radicación y potenciación.

VER

Artículo “Cálculo de una raíz cuadrada”

Este recurso le permitirá profundizar sobre las raíces cuadradas y cómo calcularla paso a paso sin calculadora.

VER

CAPÍTULO 4 / TEMA 1

Potencia

La potencia, también llamada potenciación, es una operación matemática que implica multiplicar varias veces un mismo número. Como todo cálculo matemático, tiene sus partes y propiedades. A continuación, aprenderás cuáles son sus características y cómo resolver problemas de este tipo.

¿Qué es la potencia?

La potencia es una multiplicación abreviada. Esta operación consiste en multiplicar un número llamado base la cantidad de veces que indique otro número llamado exponente. Los exponentes los colocamos como superíndice de un número.

Donde:

a: base

n: exponente

¿Sabías qué?

La radicación es la operación inversa a la potenciación.

Elementos de la potencia

Toda potencia está formada por dos elementos:

  • La base: es el factor que será multiplicado n cantidad de veces.
  • El exponente: es el número de veces que se multiplica la base por sí misma.

Cálculo de la potencia de un número

Para calcular la potencia de un número debemos tener conocimientos sobre la multiplicación, ya que el proceso consiste en aplicar esta operación de forma repetitiva.

– Ejemplo:

53 = 5 · 5 · 5 = 125

Como el exponente es 3, multiplicamos la base tres veces por sí misma.

– Otros ejemplos:

  • 23 = 2 · 2 · 2 = 8
  • 32 = 3 · 3 = 9
  • 64 = 6 · 6 · 6 · 6 = 1.296

Casos especiales

Cuando el exponente es 1, el resultado será igual a la base.

  • 81 = 8
  • 121 = 12

Cuando el exponente es 0, el resultado siempre será 1.

  • 30 = 1
  • 250 = 1

Cuando la base es 0, el resultado siempre sera 0.

  • 05 = 0
  • 08 = 0
Cuando el exponente es igual a dos (2), decimos que un número está elevado al cuadrado. Esto lo vemos en ecuaciones matemáticas como la del teorema de Pitágoras. Este teorema explica la relación entre los catetos y la hipotenusa de un triángulo rectángulo. Así, si la hipotenusa mide “c”, y la medida de los catetos es “a” y “b”, se verifica que c2 = a2 + b2.

 

Potencia base 10

Cuando la base es igual a 10 solo se deben añadir tantos ceros como indique el exponente. Por ejemplo:

  • 104 = 10.000
  • 102 = 100
  • 101 = 10

Lectura de potencias

Existen dos formas válidas de leer potencias:

1. Nombrar el número de la base seguido de la expresión “elevado a“. Luego nombrar el número del exponente.

  • 65 se lee “seis elevado a cinco”.
  • 28 se lee “dos elevado a ocho”.

2. Nombrar el número de la base seguido de de la expresión “a la“. Luego nombrar el número de exponente como un número ordinal femenino.

  • 65 se lee “seis a la quinta”.
  • 28 se lee “dos a la octava”.

Cuadrados y cubos

Las potencias tienen una estrecha relación con el cálculo del área y el volumen de figuras geométricas. Gracias a esto, cuando el exponente es 2, la potencia se llama cuadrado; y cuando el exponente es 3, la potencia se llama cubo.

Por ejemplo, si un cuadrado está formado por tres cuadros más pequeños por cada lado, basta con hacer este cálculo de 32 que se lee “tres al cuadrado”:

32 = 3 · 3 = 9

En cambio, si tenemos un cubo compuesto por tres cubos más pequeños en sus tres dimensiones: alto, ancho y profundidad, calcularemos 33 que se lee “tres al cubo”:

33 = 3 · 3 · 3 = 27

Entonces, un cubo de Rubik está formado por 27 cubos más pequeños.

Bases negativas

Cuando la base es negativa, el resultado puede variar de estas formas:

  • Si el exponente es un número impar, el resultado será negativo.
  • Si el exponente es un número par, el resultado será positivo.

– Ejemplo:

  • (−2)3 =(−2) · (−2) · (−2) = −8
  • (−2)2 = (−2) · (−2) = 4

¡A practicar!

¿Qué signo tendrá el resultado de las siguientes operaciones?

  • (−15)13
    Solución
    Negativo porque 13 es impar.
  • (14)20
    Solución
    Positivo porque 20 es par.
  • (−5)4
    Solución
    Positivo porque 4 es par.

Usos de la potencia

Las aplicaciones de la potenciación son de amplio rango en diversas profesiones. Los astrónomos emplean la potencia de base 10 para representar medidas muy grandes, como la distancia de la Tierra al Sol. También las usan los oceanógrafos y geólogos para escribir el valor de grandes extensiones de tierra o agua, por ejemplo, el volumen del océano Atlántico es 3,54 · 108 km3.

Además de expresar cantidades muy grandes, las potencias funcionan para representar números muy pequeños. La diferencia en esto casos es que la potencia tiene un exponente negativo, por ejemplo, un virus puede llegar a medir 2 · 10−8 cm, y la masa de un electrón es de 9,1 · 10−31 kg.

Uno de los tipos de potencias más usadas son las potencias de base 10 porque sirven para expresar cantidades muy grandes de manera sencilla. Estas potencias son iguales a la unidad seguida de tantos ceros como indique el exponente. Por ejemplo, la masa del planeta Tierra es de aproximadamente 6 x 1024 kg, es decir, 6 seguido de 24 ceros.

¡A practicar!

1. Expresa en forma de potencia los siguientes productos:

  • 8 · 8 · 8 · 8 =
    Solución
    8 · 8 · 8 · 8 = 84
  • 3 · 3 =
    Solución
    3 · 3 = 32
  • 10 · 10 · 10 · 10 · 10 · 10 =
    Solución
    10 · 10 · 10 · 10 · 10 · 10 = 106
  • 5 · 5 · 5 · 5 =
    Solución
    5 · 5 · 5 · 5 = 54
  • 7 · 7 · 7 =
    Solución
    7 · 7 · 7 = 73
  • 15 · 15 · 15 · 15 · 15 · 15 =
    Solución
    15 · 15 · 15 · 15 · 15 · 15 = 156

 

2. ¿Cuál es el resultado de las siguientes operaciones?

  • 92
    Solución
    92 = 9 · 9 = 81
  • (−5)3
    Solución
    (−5)3 = (−5) · (−5) · (−5) = −125 
  • 105
    Solución
    105 = 10 · 10 · 10 · 10 · 10 = 100.000
  • (−18)4
    Solución
    (−18)4 = (−18) · (−18) · (−18) · (−18) = 104.976
  • (−6)8
    Solución
    (−6)8 = (−6) · (−6) · (−6) · (−6) · (−6) · (−6) · (−6) · (−6) = 1.679.616 
  • 109
    Solución
    109 = 10 · 10 · 10 · 10 · 10 · 10 · 10 · 10 · 10 · 10 = 1.000.000.000 

RECURSOS PARA DOCENTES

Artículo “Potenciación y radicación”

Este artículo te permitirá tener más contenido sobre las potencias y la radicación, operación inversa a la potenciación.

VER

Artículo “Ejercicios de potenciación

Con este recurso podrás profundizar sobre qué es la potenciación y encontrarás una lista de ejercicios para reforzar lo aprendido.

VER