CAPÍTULO 2 / TEMA 8 (REVISIÓN)

OPERACIONES | ¿qué aprendimos?

ADICIÓN Y SUSTRACCIÓN

La adición consiste en combinar, agrupar o sumar números; la sustracción, en cambio, consiste en quitar o restar números a un grupo. Siempre que queramos resolver cualquiera de estas operaciones, debemos considerar el valor posicional de cada una de las cifras de los números. Por otro lado, la adición cumple con ciertas propiedades como la asociativa y la conmutativa que no se pueden aplicar a la sustracción.

Un ejemplo de la adición por reagrupación es la suma de dinero. Si tienes $ 1.324 y luego te dan $ 3.984, tienes en total  $ 1.324 + $ 3.984 = $ 5.318.

Multiplicación

La multiplicación es una operación matemática que consiste en sumar varias veces un mismo número. Los factores son los números que se multiplican o suman reiteradas veces y el producto es el resultado de la multiplicación. La multiplicación sin reagrupación es un método que consiste en multiplicar las unidades, las decenas y las centenas de 2 factores entre sí cuando ninguno de los productos formados supera la decena, mientras que la multiplicación con reagrupación es un procedimiento que podemos utilizar cuando algún producto entre dos cifras es igual o mayor a 10.

La multiplicación por reagrupación es útil en muchas situaciones cotidianas, como saber la cantidad de butacas que hay en el cine. Si cuentas las que hay en una fila (6) y las multiplicas por la cantidad de filas (3) tienes que 6 x 3 = 18. Así que hay 18 butacas.

División

La división es la operación opuesta a la multiplicación. Sus elementos son el dividendo, el divisor, el cociente y el resto. El dividendo es la cantidad que se quiere repartir; el divisor indica entre cuántas partes se reparte; el cociente es la cantidad que le corresponde a cada parte y también es el resultado de la división; y el resto representa lo que no se puede repartir. Cuando el resto es igual a cero (0) decimos que la división es exacta.

El cociente de una división también puede ser un número decimal, por ejemplo, si deseamos repartir 3 naranjas entre 6 personas, cada una tendrá 0,5 = 1/2, es decir, cada una tendrá media naranja.

OPERACIONES CON NÚMEROS DECIMALES

Para la adición y sustracción de números decimales procedemos igual que en el caso de los números naturales, pues debemos colocar cada elemento uno sobre otro según su valor posicional, al final nos aseguramos de que la coma esté en la misma columna. En el caso de las multiplicaciones, realizamos la operación tal y como si fuera una de números naturales, luego le colocamos al producto final la coma de acuerdo a los decimales de los factores.

Si sube la temperatura corporal un grado más allá de los 36,6° de la imagen, la persona tiene fiebre. ¿Cuál es la temperatura a la que puede tener fiebre? El cálculo es 36,6° + 1° = 37,6°. Este es un ejemplo de adición de decimales.

OPERACIONES COMBINADAS

Las operaciones combinadas son aquellas que agrupan diversos cálculos en una sola expresión. Cuando no hay paréntesis debemos seguir un orden de resolución: primero las multiplicaciones y divisiones, luego las sumas y restas. Si la operación combinada tiene paréntesis tenemos que realizar primero los cálculos que están dentro de ellos, es decir, estos tienen prioridad sobre otros.

Los paréntesis son de gran importancia si deseamos realizar operaciones en una calculadora, pues indican que son prioritarias sobre las demás.

MÍNIMO COMÚN MÚLTIPLO Y MÁXIMO COMÚN DIVISOR

El mínimo común múltiplo (mcm) y el máximo común divisor (mcd) son operaciones que nos ayudan a simplificar cálculos más complejos. El mcm es el mínimo múltiplo que tienen en común dos o más números y el mcd es el divisor mayor que tienen en común dos o más números. Ambos pueden ser calculados por comparación de múltiplos y divisores o por descomposición de su números en factores primos.

La descomposición en factores primos consiste en dividir cada número entre su divisor mínimo para representar un número como producto de sus números primos. Algunos números primos están en esta imagen.

CONVERSIONES DE MEDIDAS

Algunas magnitudes que podemos medir son la longitud, la masa, el volumen y el tiempo. Cada una de ellas tiene una unidad básica de medida pero no son las únicas. Para medir longitudes podemos usar unidades como el metro, el kilómetro o el centímetro; para medir masas usamos unidades como el gramo, el kilogramo o el miligramo; para medir el volumen usamos unidades como el centímetro cúbico o el metro cúbico; y para medir el tiempo usamos unidades como los segundos, los minutos, las horas, los días o los años.

Hay mariposas que solo viven 1 día. Si convertimos esta unidad, también podemos decir que hay mariposas que viven 24 horas.

CAPÍTULO 2 / TEMA 3

DIVISIÓN

La división es la operación inversa a la multiplicación. Mientras que en la multiplicación buscamos unir cantidades en grupos iguales, en la división buscamos separarlas en grupos iguales. Las divisiones pueden ser de dos tipos: exactas o inexactas. Hoy aprenderás las reglas necesarias para poder resolverlas.

la división y sus elementos

La división es una operación matemática que consiste en repartir una cantidad en partes iguales. Sus elementos son los siguientes:

  • Dividendo: es el número que se va dividir o repartir.
  • Divisor: es el número por el que se divide.
  • Cociente: es el resultado de la división.
  • Resto: es lo que sobra del dividiendo. No se puede dividir debido a que es un número más pequeño que el divisor.
Todo número tiene sus múltiplos, de la misma manera, también tiene sus divisores. Estos son números que lo dividen de forma exacta, es decir, los divisores de un número son los que dividen a este y el resultado de esa división es un número exacto. En forma general, dado un número b, si la división a/b es exacta, donde el resto c es cero, entonces se dice que b es divisor de a.

división exacta

La división exacta es aquella cuyo resto es igual a 0.

– Por ejemplo:

Carlos tiene 20 manzanas y las desea repartir entre 5 personas: Marta, Carla, Lucía, Pedro y Francisco. ¿Cuántas manzanas le corresponden a cada uno?

Como la división es la operación inversa a la multiplicación, podemos preguntarnos ¿qué número multiplicado por 5 da como producto el número 20?

5 × ? = 20

5 × 4 = 20

El factor desconocido será igual al cociente exacto de la división. En este caso es 4, porque ya sabemos que 5 × 4 = 20. Por lo tanto, toda división será exacta cuando el dividendo sea igual al producto entre el divisor y el cociente:

dividendo = divisor × cociente

Podemos comprobar esta relación  si realizamos la división:

Por lo tanto, Carlos puede repartir exactamente las 20 manzanas entre 5 personas si a cada una le da 4 manzanas.

división inexacta

La división inexacta es aquella cuyo resto es diferente de 0.

– Por ejemplo:

La maestra quiere repartir 23 lápices entre 4 niños: Lucas, Juan, Carlos y Luis. ¿Cuántos lápices le corresponden a cada uno?

A diferencia de las divisiones exactas, en las inexactas no hay números naturales que multiplicados por el divisor nos den por resultado el dividendo. Pues, 4 × 5 = 20, y su producto es menor al dividendo (23); en cambio, 4 × 6 = 24, y su producto es mayor al dividendo (23). Entonces, consideramos la opción más cercana e inferior al dividendo, es decir, 5; y lo que falte para llegar al dividendo será el resto.

dividendo = divisor × cociente + resto

Comprobamos la relación al realizar la división:

Por lo tanto, la maestra puede dar 5 lápices a cada niño y le sobrarán 3 lápices.

¿Sabías qué?
El signo de división también se puede representar con dos puntos (:). De esta forma, “36 : 9” se lee “36 entre 9”.

¿cómo resolver una división?

1. Observa las dos primeras cifras del dividendo. Si son mayores que el divisor, comienza por ellas.

2. Busca un número que multiplicado por 12 sea igual a 43 o cercano e inferior a él. En este caso: 12 × 3 = 36. Este producto lo restamos a la primeras dos cifras del dividendo: 43 − 36 = 7.

3. Baja la siguiente cifra del dividendo.

4. Repite el proceso anterior. Busca un número que multiplicado por 12 resulte 72 o se acerque a 72. En este caso: 12 × 6 = 72. Luego restamos este producto al 72 obtenido de la resta.

Esta división es exacta porque el resto es igual a cero (0) y podemos comprobarla si al multiplicar el cociente (36) por el divisor (12) el resultado es igual al dividendo (432): 12 × 36 = 432.

Entonces, 432 ÷ 12 = 36 porque 12 × 36 = 432.

 

– Otro ejemplo:

1. Observa las dos primeras cifras del dividendo, como son menores que el divisor (47 < 64), toma hasta la tercera para iniciar la división.

2. Busca un número que multiplicado por 64 sea igual o cercano a 476.

Como el resto es menor que divisor (28 < 64), queda así. Podemos comprobar esta división si multiplicamos el cociente (7) por el divisor (64) y le sumamos el resto (28). Si el resultado es igual al dividendo, la división está correcta.

64 × 7 + 28 = 476

Entonces, 476 ÷ 64 = 7 y resto = 28.

Fracciones: una división sin resolver

Las divisiones sin resolver se conocen como fracciones. Las fraccione representan una parte de un todo y se caracterizan por tener un numerador y un denominador separados por una raya fraccionaria. El denominador es un número que indica en cuantas partes se divide la unidad, y el numerador es el número que señala cuántas de esas partes se han de tomar.

división entre 10, 100 y 1.000

Las divisiones por la unidad seguida de cero son muy sencillas, solo debes desplazar una coma a la izquierda tantos lugares como ceros acompañen a la unidad. De faltar lugares, añadimos ceros.

– Ejemplo:

  • 1.789 ÷ 10 = 178,9 → Movemos una coma un lugar a la izquierda.
  • 1.789 ÷ 100 = 17,89 → Movemos una coma dos lugares a la izquierda.
  • 1.789 ÷ 1.000 = 1,789 → Movemos una coma tres lugares a la izquierda.

– Otros ejemplos:

275 489 70 6 1.652 3.698
÷ 10 27,5 48,9 7 0,6 165,3 369,8
÷ 100 2,75 4,89 0,7 0,06 16,52 36,98
÷ 1.000 0,275 0,489 0,07 0,006 1,652 3,698

 

Los grados centígrados que miden la temperatura son un ejemplo de división entre 10. Si tienes 1 grado y lo divides entre 10 el cálculo es 1 ÷ 10 = 0,1. Los termómetros muestran las mediciones por medio de sumas sucesivas de 0,1 grados. Por ejemplo 36,6; 36,7; 36,8; y así sucesivamente.

 

¡A practicar!

1. Resuelve la siguientes divisiones.

  • 27 ÷ 3 
    Solución
    27 ÷ 3 = 9
  • 100 ÷ 9 
    Solución
    100 ÷ 9 = 11 y resto = 1
  • 1.934 ÷ 23 
    Solución
    1.934 ÷ 23 = 84 y resto = 2
  • 2.487 ÷ 16
    Solución
    2.487 ÷16 = 155 y resto = 7
  • 3.432 ÷ 52
    Solución
    3.432 ÷ 52 = 66
  • 61.712 ÷ 76
    Solución
    61.712 ÷ 76 = 812

 

2. Resuleve la siguientes divisiones por la unidad seguida de cero.

  • 254 ÷ 10 
    Solución
    254 ÷ 10 = 25,4
  • 27 ÷ 10 
    Solución
    27 ÷ 10 = 2,7
  • 2 ÷ 10 
    Solución
    2 ÷ 10 = 0,2
  • 333 ÷ 100 
    Solución
    333 ÷ 100 = 3,33
  • 25 ÷ 1.000 
    Solución
    25 ÷ 1.000 = 0,025
  • 999 ÷ 1.000 = 
    Solución
    999 ÷ 1.000 = 0,999
  • 8.000 ÷ 1.000 = 
    Solución
    8.000 ÷ 1.000 = 8
RECURSOS PARA DOCENTES

Artículo “Propiedades de la división”

Con este artículo podrás estudiar las propiedades adicionales de la división y realizar ejercicios complementarios.

VER