CAPÍTULO 2 / TEMA 3

Mínimo común múltiplo Y Máximo común divisor

Todo número natural se puede descomponer con la multiplicación de sus factores o números primos. La utilidad para descomponerlos de esta manera es que nos permitirá calcular el mínimo común múltiplo y el máximo común divisor de dos o más números. Y con ellos resolver diversos problemas.

mínimo común múltiplo Y Máximo común divisor

El mínimo común múltiplo (mcm), también conocido como múltiplo común menor de dos o más números naturales, es el menor múltiplo común de ambos números que sea distinto de cero.

El máximo común divisor (mcd), también conocido como divisor común mayor entre dos o más números naturales, es el mayor divisor entre ambos, es decir, el mayor número por el que son divisibles dos o más números.

CÁLCULO DEL Mínimo común múltiplo

Para calcular el mcm entre dos o más números podemos seguir los siguientes pasos:

  1. Descomponer los números en sus factores primos.
  2. Escribir los números como la multiplicación de sus factores primos.
  3. Escribir en en la parte inferior el mcm que será igual al producto de todos los factores comunes y no comunes de los números a la mayor potencia. Es decir, si entre los números a los que se le realizó la descomposición se observa un factor que se repite pero con exponente diferente, se considera el que tiene el mayor exponente.
  4. Resolver el producto del mcm.

Por ejemplo:

-Hallar el mcm entre 40 y 60.

Lo primero es descomponer los dos números en factores primos y expresar dicha descomposición en forma de multiplicación:

Luego se eligen los factores comunes y no comunes. En el caso del 2, está en ambas expresiones con diferente exponente, en este caso se considera el 23 porque es mayor. De esta forma, el mcm de ambos números es:

mcm (40, 60) = 2· 3 · 5

Al resolver el producto obtenido el resultado es:

mcm (40, 60) = 2· 3 · 5 = 2 · 2 · 2 ·3 · 5 = 120

De esta forma, el mínimo común múltiplo entre 40 y 60 es 120.

CÁLCULO DEL Máximo común divisor

Para calcular el mcd entre dos o más números se pueden seguir los siguientes pasos:

  1. Descomponer los números en sus factores primos.
  2. Escribir los números como la multiplicación de sus factores primos.
  3. Escribir en la parte inferior el mcd que será igual al producto de los factores que tienen en común a la menor potencia. Es decir, si se repite un factor se considera el que tiene la menor potencia.
  4. Resolver el producto del mcd.

Por ejemplo:

-Hallar el mcd entre 56 y 48.

Primero se descomponen ambos números en sus factores primos:

Luego se seleccionan únicamente los factores que tienen en común. En este caso, el factor en común entre ambos números es el 2 que se encuentra expresado en diferente potencia: 23 y 24. Para calcular el mcd se toma únicamente la menor potencia, en este caso sería 23. De esta manera, el mcd queda expresado de la siguiente manera:

mcd (56, 48) = 23

Al resolver la potencia se obtiene el resultado:

mcd (56, 48) = 8

De esta manera, el mcd entre 56 y 48 es el número 8.

¿Sabías qué?
Calculamos el máximo común divisor porque si calculamos el mínimo común divisor entre dos números siempre sería 1, porque el 1 es divisor de todos los números.

El mcd de los números de Fibonacci

Los números de la secuencia de Fibonacci son: 1, 1, 2, 3, 5, 8, 13, 21, 34, 89 y siguen hasta el infinito. Esta secuencia consiste en sumar los dos números anteriores para hallar el siguiente número. Por ejemplo, 1 + 1 = 2, 2 + 1 = 3, 2 + 3 = 5, y así sucesivamente hasta el infinito.

Lo curioso de estos números es que si calculamos el máximo común divisor de dos números de Fibonacci obtenemos otro número de la secuencia de Fibonacci. Por ejemplo, el mcd (3, 21) = 3.

VER INFOGRAFÍA

problemas de aplicación

Para resolver problemas de mcm y mcd hay que tener en cuenta los datos del problema y la pregunta que nos hace, en ella estará la clave para saber si el problema se resuelve con mcm y mcd. Veremos unos ejemplos donde se tenga que aplicar alguno de los dos cálculos:

1. En una ciudad, el reloj de la catedral indica la hora a través de campanadas que suenan cada 3 horas, y el reloj de la torre de la plaza lo hace cada 8 horas. ¿Cada cuántas horas ambos relojes sonarán al mismo tiempo?

Los datos del problema indican que el reloj de la catedral suena cada 3 horas y el de la municipalidad cada 8 horas. Al descomponer ambos números se obtiene:

En este caso, se trata de un problema de mínimo común múltiplo, y se debe calcular el mismo entre ambos números para determinar cada cuántas horas sonarán al mismo tiempo los relojes.

mcm (3, 8) = 3 · 23

mcm (3, 8) = 24

De esta manera, se determinó que los relojes suenan al mismo tiempo cada 24 horas.

2. En la tienda de Jorge hay una caja con 12 naranjas y otra con 18 peras. Jorge quiere distribuir las frutas en cajas más pequeñas de forma que todas las cajas tengan la misma cantidad de fruta. Cada caja solo puede tener peras o naranjas y las cajas deben ser lo más grande posible. ¿Cuántas frutas debe haber en cada caja?

Los datos del problema son cajas de 12 naranjas y 18 peras. Al descomponer dichos números en factores primos se obtiene:

En este problema debemos separar o dividir las frutas en diferentes cajas, por lo tanto se resuelve a través del mcd.

mcd (12, 18) = 2 · 3

mcd (12, 18) = 6

De esta manera, se determinó que en cada caja debe haber 6 frutas.

¡A practicar!

  1. Calcula el mínimo común múltiplo entre los siguientes números.

a) 30, 60 y 90 

SOLUCIÓN

mcm (30,60,90) = 23 . 32 . 5 = 180 

b) 15, 30, 20 y 40 

SOLUCIÓN

mcm (15,30,20,40) = 23 . 3 . 5 = 120

2. Calcula el máximo común divisor entre los siguientes números.

a) 18, 26 y 40 

SOLUCIÓN

mcd (18,26,40) = 2

b) 54, 60, 80 y 100 

SOLUCIÓN

mcd (54,60,80,100) = 2

3. Marcos tiene una cuerda de 120 metros y otra de 96 metros. Desea cortarlas de modo que todos los trozos sean iguales pero lo más largos posible. ¿Cuánto medirá cada trozo de cuerda? 

SOLUCIÓN

mcd (120,96) = 23 . 3 = 24

Cada trozo medirá 24 metros.

4. Un jardinero riega el césped de un parque cada 5 días y lo corta cada 8 días. ¿Cada cuántos días coincidirán sus funciones de riego y de corte del césped? 

SOLUCIÓN

mcm (5,8) = 23 . 5 = 40

Las funciones de riego y corte de césped coincidirán cada 40 días.

5. Una tienda compra memorias USB de diferentes colores. Para Navidad hizo un pedido de 84 memorias rojas, 196 azules y 252 verdes. Para guardar la mercancía de forma organizada, exigió que le enviaran las memorias en cajas iguales, sin mezclar los colores y con el mayor número posible de memorias. ¿Cuántas memorias habrá en cada caja? 

SOLUCIÓN

mcd (84,196,252) = 22 . 7 = 4 . 7 = 28

En cada caja habrá 28 memorias.

6. Adrián es un deportista de alto rendimiento que practica después del colegio. Cada 3 días recorre un trayecto en bicicleta por la ciudad, cada 4 días juega fútbol y cada 12 días juega al hockey. ¿Cuántos días pasarán para que realice las tres actividades en el mismo día? 

SOLUCIÓN

mcm (3,4,12) = 22 . 3 = 4 . 3 = 12

Pasarán 12 días para que haga las tres actividades el mismo día.

RECURSOS PARA DOCENTES

Artículo “Factorización de números”

Este recurso permite profundizar el tema de la factorización de números y el cálculo del mcm y el mcd.

VER

Artículo “Mínimo común múltiplo y Máximo común divisor”

Este recurso proporciona situaciones problemáticas en las que se aplica el cálculo del mcm y el mcd.

VER

CAPÍTULO 2 / TEMA 6

MÍnimo común múltiplo y máximo común divisor

La multiplicación y la división son operaciones básicas relacionadas directamente con dos conceptos: múltiplos y divisores. Ambos términos señalan la cantidad de veces que un número está contenido dentro de otro y la cantidad de veces que un número puede dividir a otro. Gracias a ellos podemos calcular múltiplos y divisores comunes en dos o más números y así poder simplificar operaciones más complejas.

múltiplos y divisores

El múltiplo de un número natural se obtiene al multiplicar ese número por otro número natural, por ejemplo:

  • 4 × 1 = 4
  • 4 × 2 = 8
  • 4 × 3 = 12
  • 4 × 4 = 16
  • 4 × 5 = 20
  • 4 × 6 = 24
  • 4 × 7 = 28
  • 4 × 8 = 32
  • 4 × 9 = 36

Los números marcados en rojo son múltiplos de 4. Estos números resultan de la multiplicación del número 4 por números naturales. Como los números naturales son infinitos, los múltiplos de un número también lo son, así que los múltiplos de 4 y de cualquier número continúan hasta el infinito.

Por otro lado, un divisor es todo número que al dividir a otro resulta en una división exacta, por ejemplo:

  • 12 ÷ 1 = 12
  • 12 ÷ 2 = 6
  • 12 ÷ 3 = 4
  • 12 ÷ 4 = 3
  • 12 ÷ 5 = 2 y resto = 2
  • 12 ÷ 6 = 2
  • 12 ÷ 7 = 1 y resto = 5
  • 12 ÷ 8 = 1 y resto = 4
  • 12 ÷ 9 = 1 y resto = 3

Los números marcados en rojo son divisores de 12 porque su división tiene un cociente entero con resto igual a cero, es decir, son divisiones exactas.

¡Es tu turno!

Escribe los múltiplos y divisores de 25.

Solución

Múltiplos: 25, 50, 75, 100,…

  • 25 × 1 = 25
  • 25 × 2 = 50
  • 25 × 3 = 75
  • 25 × 4 = 100

Divisores: 1, 5, 25

  • 25 ÷ 1 = 25
  • 25 ÷ 5 = 5
  • 25 ÷ 25 = 1
Los múltiplos y los divisores no son conceptos aislados, de hecho, están muy relacionados entre sí. Si un número a es múltiplo de otro número b, este último es divisor del primero. Por ejemplo, el número 6 es múltiplo de 2 porque 2 × 3 = 6, pero al mismo tiempo, 2 es divisor de 6, porque 6 ÷ 2 = 3. ¿Puedes buscar esta relación en otros números? ¡Inténtalo!

Mínimo común múltiplo

Entre dos o más números, el mínimo común múltiplo o mcm es el menor múltiplo que tienen dichos números en común. Por ejemplo, observa los múltiplos de 4 y 5:

Múltiplos de 4 → 4, 8, 12, 16, 20, 24, 28, 28, 32, 36, 40, …

Múltiplos de 5 → 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, …

Tanto el número 4 como el número 5 tienen al 20 y el 40 como múltiplos. Como 20 es el menor de ellos, decimos que el mínimo común múltiplo entre 4 y 5 es 20 y lo representamos de la siguiente forma:

mcm (4, 5) = 20

 

– Otro ejemplo:

¿Cuál es el mcm entre 12 y 18?

Múltiplos de 12 → 12, 24, 36, 48, 60, 72, 84, 96, …

Múltiplos de 18 → 18, 36, 54, 72, 90, 108, 126, …

Así que:

mcm (12, 18) = 36

¿Sabías qué?
Al mínimo común múltiplo también se lo conoce como múltiplo común menor.
El mcm se utiliza en operaciones con fracciones, especialmente en la simplificación de resultados. Por ejemplo, al sumar y restar fracciones es más sencillo calcular el mcm de los denominadores, el cual será el denominador final. Luego calcula las fracciones equivalentes de cada elemento del problema para hacer un cálculo con fracciones homogéneas.

Mcm por descomposición

Hay una forma en la que no es necesario calcular varios múltiplos, consiste en descomponer cada número en sus factores primos, para luego multiplicar a los factores comunes y no comunes con su mayor exponente. Ejemplo:

– Calcula el mcm entre 15 y 36.

1. Descomponemos cada números en sus factores primos:

2. Identificamos el factor común en los dos números y seleccionamos el de mayor exponente. En este caso el factor común de mayor exponente es el 32.

3. Luego multiplicamos por el factor no común. En este caso los factores no comunes son el 22 y el 5. Así que el mínimo común múltiplo entre 15 y 36 se escribe así:

mcm (15, 36) = 32 × 22 × 5 = 180

Los mínimos divisores y los números primos

Los mínimos divisores que calculamos reciben el nombre de “números primos”. Estos números se caracterizan por ser divisibles entre sí mismos y entre 1. Por ejemplo, el 5 solo se divide entre 5 y entre 1. Lo mismo ocurre con el 2, con el 3, con el 7… De hecho los números primos son infinitos y hay ocasiones en las que los matemáticos anuncian el descubrimiento de nuevos números primos.

Máximo común divisor

Entre dos o más números, el máximo común divisor o mcd es el divisor común mayor entre todos los divisores. Por ejemplo, observa los divisores de 32 y 40:

Divisores de 32 → 1, 2, 4, 8, 16, 32

Divisores de 40 → 1, 2, 4, 5, 8, 10, 20, 40

Los números 32 y 40 tienen varios divisores en común: 1, 2, 4 y 8. Como el 8 es el mayor de todos, decimos que el máximo común divisor entre 32 y 40 es 8. Lo escribimos de la siguiente manera:

mcd (32, 40) = 8

– Otro ejemplo:

¿Cuál es el mcd entre 35 y 49?

Divisores de 35 → 1, 5, 7, 35

Divisores de 49 → 1, 7, 49

Así que:

mcd (35, 49) = 7

¿Sabías qué?
El máximo común divisor también es conocido como “divisor común mayor”.

Mcd por descomposición

Otra forma para calcular el mcd es por medio de la factorización o descomposición en factores primos. Luego de esto, multiplicamos solo los factores comunes con su menor exponente. Por ejemplo:

– Calcular el mcd entre 30 y 20.

1. Factorizamos cada número.

2. Multiplicamos los factores comunes con su menor exponente. Los factores no comunes no se consideran para este cálculo. Entonces, el mcd entre 30 y 20 se escribe así:

mcd (30, 20) = 2 × 5 = 10

El mcd en la historia

El estudio del mcd se remonta a la antigua Grecia con Euclides, quien fue un líder de un grupo de matemáticos que vivió en los siglos IV y III a. C. En su obra Elementos, él describió un método para calcular el máximo común divisor de un número por medio del algoritmo de Euclides.

¡A practicar!

1. ¿Cuáles son los divisores de los siguientes números?

  • 56
Solución
1, 2, 4, 8, 7, 14, 28 y 56.
  • 28
Solución
1, 2, 4, 7, 14 y 28.
  • 74
Solución
1, 2, 37 y 74.

 

2. ¿Cuáles son los primeros seis múltiplos de estos números?

  • 34
Solución
34, 68, 102, 136 y 170.
  • 23
Solución
23, 46, 69, 92, 115 y 138.
  • 50
Solución
50, 100, 150, 200, 250 y 300.

 

3. ¿Cuál es el mcm de los siguientes números?

  • 60 y 38.
Solución
mcm (60, 38) = 420
  • 10 y 25.
Solución
mcm (10, 25) = 50
  • 8 y 12.
Solución
mcm (8, 12) = 24

 

4. ¿Cuál es el mcd de los siguientes números?

  • 50 y 80.
Solución
mcd (50, 80) = 10
  • 16 y 72.
Solución
mcd (16, 72) = 8
  • 60 y 75
Solución
mcd (60, 75) = 15

 

RECURSOS PARA DOCENTES

Artículo “Mínimo común múltiplo y máximo común divisor”

Con este recurso podrás poner en práctica los aprendido en este artículo, ya que cuenta con problemas que puedes resolver por medio de mcm y mcd.

VER

Artículo “Mínimo común múltiplo (mcm)”

En esta animación podrás trabajar con tus alumnos una aplicación directa del mcm.

VER

Tabla comparativa “Múltiplos y divisores”

Con este recurso podrás profundizar la información sobre las propiedades de los múltiplos y los divisores.

VER

CAPÍTULO 2 / TEMA 8 (REVISIÓN)

OPERACIONES | ¿qué aprendimos?

ADICIÓN Y SUSTRACCIÓN

La adición consiste en combinar, agrupar o sumar números; la sustracción, en cambio, consiste en quitar o restar números a un grupo. Siempre que queramos resolver cualquiera de estas operaciones, debemos considerar el valor posicional de cada una de las cifras de los números. Por otro lado, la adición cumple con ciertas propiedades como la asociativa y la conmutativa que no se pueden aplicar a la sustracción.

Un ejemplo de la adición por reagrupación es la suma de dinero. Si tienes $ 1.324 y luego te dan $ 3.984, tienes en total  $ 1.324 + $ 3.984 = $ 5.318.

Multiplicación

La multiplicación es una operación matemática que consiste en sumar varias veces un mismo número. Los factores son los números que se multiplican o suman reiteradas veces y el producto es el resultado de la multiplicación. La multiplicación sin reagrupación es un método que consiste en multiplicar las unidades, las decenas y las centenas de 2 factores entre sí cuando ninguno de los productos formados supera la decena, mientras que la multiplicación con reagrupación es un procedimiento que podemos utilizar cuando algún producto entre dos cifras es igual o mayor a 10.

La multiplicación por reagrupación es útil en muchas situaciones cotidianas, como saber la cantidad de butacas que hay en el cine. Si cuentas las que hay en una fila (6) y las multiplicas por la cantidad de filas (3) tienes que 6 x 3 = 18. Así que hay 18 butacas.

División

La división es la operación opuesta a la multiplicación. Sus elementos son el dividendo, el divisor, el cociente y el resto. El dividendo es la cantidad que se quiere repartir; el divisor indica entre cuántas partes se reparte; el cociente es la cantidad que le corresponde a cada parte y también es el resultado de la división; y el resto representa lo que no se puede repartir. Cuando el resto es igual a cero (0) decimos que la división es exacta.

El cociente de una división también puede ser un número decimal, por ejemplo, si deseamos repartir 3 naranjas entre 6 personas, cada una tendrá 0,5 = 1/2, es decir, cada una tendrá media naranja.

OPERACIONES CON NÚMEROS DECIMALES

Para la adición y sustracción de números decimales procedemos igual que en el caso de los números naturales, pues debemos colocar cada elemento uno sobre otro según su valor posicional, al final nos aseguramos de que la coma esté en la misma columna. En el caso de las multiplicaciones, realizamos la operación tal y como si fuera una de números naturales, luego le colocamos al producto final la coma de acuerdo a los decimales de los factores.

Si sube la temperatura corporal un grado más allá de los 36,6° de la imagen, la persona tiene fiebre. ¿Cuál es la temperatura a la que puede tener fiebre? El cálculo es 36,6° + 1° = 37,6°. Este es un ejemplo de adición de decimales.

OPERACIONES COMBINADAS

Las operaciones combinadas son aquellas que agrupan diversos cálculos en una sola expresión. Cuando no hay paréntesis debemos seguir un orden de resolución: primero las multiplicaciones y divisiones, luego las sumas y restas. Si la operación combinada tiene paréntesis tenemos que realizar primero los cálculos que están dentro de ellos, es decir, estos tienen prioridad sobre otros.

Los paréntesis son de gran importancia si deseamos realizar operaciones en una calculadora, pues indican que son prioritarias sobre las demás.

MÍNIMO COMÚN MÚLTIPLO Y MÁXIMO COMÚN DIVISOR

El mínimo común múltiplo (mcm) y el máximo común divisor (mcd) son operaciones que nos ayudan a simplificar cálculos más complejos. El mcm es el mínimo múltiplo que tienen en común dos o más números y el mcd es el divisor mayor que tienen en común dos o más números. Ambos pueden ser calculados por comparación de múltiplos y divisores o por descomposición de su números en factores primos.

La descomposición en factores primos consiste en dividir cada número entre su divisor mínimo para representar un número como producto de sus números primos. Algunos números primos están en esta imagen.

CONVERSIONES DE MEDIDAS

Algunas magnitudes que podemos medir son la longitud, la masa, el volumen y el tiempo. Cada una de ellas tiene una unidad básica de medida pero no son las únicas. Para medir longitudes podemos usar unidades como el metro, el kilómetro o el centímetro; para medir masas usamos unidades como el gramo, el kilogramo o el miligramo; para medir el volumen usamos unidades como el centímetro cúbico o el metro cúbico; y para medir el tiempo usamos unidades como los segundos, los minutos, las horas, los días o los años.

Hay mariposas que solo viven 1 día. Si convertimos esta unidad, también podemos decir que hay mariposas que viven 24 horas.