CAPÍTULO 6 / TEMA 1

sISTEMA INTERNACIONAL DE UNIDADES

Desde el peso de una pelota hasta el tamaño de una estrella, los seres humanos han necesitado medir a través de unidades aplicables en magnitudes específicas como la longitud, el área o el volumen. En la actualidad, se emplea el Sistema Internacional de Unidades, que busca la uniformidad en las mediciones y que es adoptado en casi todos los países.

¿POR QUÉ MEDIMOS LAS COSAS?

Desde tiempos antiguos, el ser humano necesitó medir las raciones que tenía, el tamaño de un terreno o el peso de un animal. Esa realidad aún existe, solo que actualmente el ser humano emplea unidades de medida usadas para medir muchas más magnitudes como el tamaño de una bacteria o la velocidad del sonido.

Hoy en día el Sistema Internacional de Unidades cuenta con siete unidades básicas: el metro para medir la longitud, el kilogramo para medir la masa, el segundo para medir el tiempo, el amperio para medir la intensidad de la corriente eléctrica, el kelvin para medir la temperatura, el mol para medir la cantidad de sustancia, y la candela para medir la intensidad luminosa.

Cuando se quiere comparar y dimensionar objetos o cantidades, se debe recurrir a un equipo de medición. Un equipo de medición es una herramienta que nos brinda la información de una determinada magnitud. Sin embargo, para lograr la consistencia de los resultados se debe prestar especial atención a las unidades utilizadas. Algunos ejemplos de equipos de medición son:

Magnitud Equipo de medición usado
Tiempo Cronómetro
Longitud Regla graduada
Masa Balanza
Temperatura Termómetro
Ángulo Transportador

VER INFOGRAFÍA

Aplicación correcta de unidades

Para poder comparar dos valores pertenecientes a una misma magnitud física, ambos deben encontrarse en el mismo sistema de medición, es decir, poseer las mismas unidades de medición. Aunque numéricamente pueden ser iguales, cada unidad representa una proporción diferente de la magnitud que representa. Es por ello que, al momento de resolver un ejercicio con diferentes unidades de medida, se sugiere comenzar con la transformación de todas las unidades en una sola.

¿Qué unidad usar?

Imaginemos que se necesita calcular el volumen del siguiente cubo, cuyas longitudes de sus lados se encuentran expresadas en metros y en centímetros.

Si el ejercicio no lo especifica, el volumen se puede expresar en cualquiera de las dos medidas. Lo importante es aplicar las fórmulas usando una sola unidad:

V = L^{3} = \left (0,5\, m \right )^{3}=0,125\, m^{3}

V = L^{3} = \left (50\, cm \right )^{3}=125.000\, cm^{3}

Observa que 0,125 m3 representa el mismo volumen que 125.000 cm3.

Es por ello que el empleo de las unidades es importante porque nos permite entender la proporción de la cantidad medida. Imaginemos que un comentarista de fórmula 1 dice “la velocidad del auto es de 100”. Es una oración ambigua porque no especifica la unidad de medición. Pueden ser kilómetros por hora, metros por segundo, etc.

En el Sistema Internacional de Unidades también existen unidades derivadas que se usan para medir magnitudes físicas que dependen de las unidades básicas de medición, es decir, se pueden expresar matemáticamente en términos de magnitudes físicas básicas. Por ejemplo, el área es una unidad derivada porque se expresa en m2. La velocidad es otra unidad derivada y se expresa como m/s.

UNIDADES DE MEDICIÓN

Una unidad de medida es una cantidad o proporción estandarizada de una magnitud física que se ha definido y adoptado a través de una ley o por convención. En el pasado se usaban incontables unidades de medición que en la mayoría de los casos no contaban con coherencia. Por esta razón, apareció el Sistema Internacional de Unidades que busca una mayor homogeneidad en los procesos de medición. Las unidades de medición básicas de este sistema son:

Magnitud física Símbolo Nombre
Masa kg Kilogramo
Longitud m Metro
Tiempo s Segundo
Temperatura K Kelvin
Corriente eléctrica A Amperio
Cantidad de sustancia mol Mol
Intensidad luminosa cd Candela

El Sistema Internacional de Unidades nos ofrece las unidades básicas y la combinación de estas en unidades derivadas para lograr mediciones de variables más complejas.

¿Sabías qué?
El Newton (N) es una unidad derivada usada para medir la fuerza donde 1 N = 1 kg.m/s2

tipos de unidades

El Sistema Internacional de Unidades define las unidades básicas necesarias para medir cualquier objeto y en otros casos emplea potencias, productos y cocientes de unidades básicas para expresar otras magnitudes conocidas como unidades derivadas. En la siguiente tabla podrás encontrar las unidades derivadas más conocidas:

Medida Unidad Denominación
Velocidad m/s “metro por segundo”
Aceleración m/s2 “metro por segundo cuadrado”
Fuerza N = kg ·m/s2 Newton
Área m2 “metros cuadrados”
Volumen m3 “metros cúbicos”

¡A practicar!

1. Determinar si las siguientes mediciones pertenecen al Sistema Internacional de Unidades.

a) Una velocidad de 110 km/h.

RESPUESTAS
No pertenece al Sistema Internacional de Unidades porque la velocidad debería estar expresada en m/s para que fuera considerada dentro del Sistema Internacional de unidades.

b) La temperatura de 30 °C.

RESPUESTAS
No pertenece porque la unidad de medida del Sistema Internacional de Unidades es el kelvin (K).

c) Un volumen de 100 m3.

RESPUESTAS
Sí pertenece porque su unidad es una potencia del metro que es una unidad básica.

RECURSOS PARA DOCENTES

Artículo “Sistema Internacional de Unidades”

El artículo explica cómo y por qué se formó el Sistema Internacional de Unidades. También explica sus unidades básicas y el uso de este sistema a nivel mundial

VER

CAPÍTULO 4 / TEMA 5

RELACIONES DE TIEMPO

El tiempo es una magnitud que nos ayuda a medir la duración de un evento. Gracias al tiempo podemos ordenar sucesos y establecer un pasado, un presente y un futuro. Todas sus unidades de medidas pueden convertirse entre ellas. Aprender sus cálculos básicos permite saber, por ejemplo, en qué momento tenemos que hacer una tarea.

El tiempo es una de las magnitudes más utilizamos cotidianamente, por eso es normal que veas un reloj en todas las casa, escuelas y comercios. Las unidades menores a un día son las horas, minutos y segundo, y para medirlas usamos el reloj o un cronómetro; en cambio, las unidades mayores a un día, como los meses y los años, son medidas con un calendario.

UNIDADES DE Tiempo: equivalencias y conversiones

Todo lo que realizamos consume tiempo: sabemos que el recreo dura 10 minutos, que un partido de fútbol dura 90 minutos o que el día tiene 24 horas. Es una variable tan importante, que en todo el mundo se utilizan las mismas unidades para medir el tiempo, a diferencia de otras magnitudes, como la distancia o el volumen. A algunas de sus unidades más importantes puedes verlas en esta tabla, junto a sus equivalencias:

Unidades de tiempo y sus equivalencia
Menores a un día

 

1 día = 24 horas

1 hora = 60 minutos

1 minuto = 60 segundos

Mayores a un día

 

1 semana = 7 días

1 mes = 30 o 31 días

1 año = 365 días = 12 meses

Conversión de unidades de tiempo

Podemos hacer conversiones entre dos o más unidades de tiempo por medio de una regla de tres: método en el que establecemos relaciones, multiplicamos en forma diagonal y luego dividimos por la unidad restante.

– Ejemplo 1:

¿Cuánto días hay en 96 horas?

En 96 horas hay 4 días.


– Ejemplo 2:

¿Cuántos meses hay en 20 años?

En 20 años hay 240 meses.


– Ejemplo 3:

¿Cuántas horas tiene una semana?

Una semana (7 días) tiene 168 horas.

Otras unidades de tiempo

Para las medidas de tiempo más grandes, las equivalencias más prácticas son:

  • 1 lustro = 5 años
  • 1 década = 10 años
  • 1 siglo = 100 años
  • 1 milenio = 1.000 años

¿Sabías qué?
Hay una unidad de tiempo mucho menor que  el segundo: el microsegundo. Su símbolo es µs y es igual a una millonésima parte de un segundo, es decir, 10−6 s.
En un calendario o agenda representamos todos los días del mes. Son útiles para planificar las actividades a realizar cada día; incluso, algunas agendas dividen cada día en horas, de manera que podamos organizar aún mejor nuestro tiempo. También son útiles para conocer las fechas de cada mes y los días feriados que hay en cada uno de ellos.

el reloj

El reloj es una instrumento para medir el tiempo, gracias a él sabemos las horas, los minutos y los segundos de un día. Pueden ser digitales o analógicos.

Este es un reloj analógico e indica que son “las 6 y 15 minutos”.

 Este es un reloj digital e indica que son “las 10 y 20 minutos de la mañana”.

Abreviaturas am y pm

  • La abreviatura am significa que la hora leída corresponde a antes del mediodía.
  • La abreviatura pm significa que la hora leída corresponde a después del mediodía.

Sistema horario de 24 horas

Los relojes analógcos tienen un sistema de 12 horas, por lo que necesitan hacer dos ciclos completos para cubrir un día. En cambio, los relojes digitales pueden tener, además de un sistema de 12 horas, un sistema de 24 horas que se caracteriza por dividir al día en las 24 horas totales que lo conforman, por lo que no utiliza las abreviaturas am y pm.

La siguiente tabla muestra la relación entre ambos formatos:

Formato 24 horas Formato 12 horas
00:00 h 12:00 am
01:00 h 01:00 am
02:00 h 02:00 am
03:00 h 03:00 am
04:00 h 04:00 am
05:00 h 05:00 am
06:00 h 06:00 am
07:00 h 07:00 am
08:00 h 08:00 am
09:00 h 09:00 am
10:00 h 10:00 am
11:00 h 11:00 am
12:00 h 12:00 pm
13:00 h 01:00 pm
14:00 h 02:00 pm
15:00 h 03:00 pm
16:00 h 04:00 pm
17:00 h 05:00 pm
18:00 h 06:00 pm
19:00 h 07:00 pm
20:00 h 08:00 pm
21:00 h 09:00 pm
22:00 h 10:00 pm
23:00 h 11:00 pm

operaciones con unidades de tiempo

Suma

Los pasos a seguir para sumar horas y minutos son los siguientes:

  1. Sumamos los minutos y luego las horas.
  2. Si los minutos son 60, colocamos 00 en la columna de los minutos y sumamos 1 hora en la columnas de las horas.
  3. Si los minutos son más de 60, restamos 60 a ese resultado y sumamos 1 hora en la columnas de las horas.
  4. Escribimos la hora final.

– Ejemplo 1:

¿Cuánto es 2:36 + 5:15?

Así que:

2 h y 36 min + 5 h y 15 min = 7 h y 51 min

También podemos representarlo de esta manera:

02:36 + 05:15 = 07:51


– Ejemplo 2:

Marta salió de su casa a las 3: 45 pm y luego de 2 horas y 15 minutos llegó a la casa de su abuela, ¿a qué hora llegó?

  • Datos

Hora de salida: 3 h y 45 min

Duración del recorrido: 2 h y 15 min

  • Analiza

Tenemos que sumar la hora de salida con el tiempo que duró en el recorrido para saber la hora de llegada. Para esto sumamos primero los minutos y luego las horas.

  • Calcula

Primero sumamos los minutos: 45 min + 15 min = 60 min. Como 60 min son iguales a 1 h, escribimos 00 y sumamos 1 hora a la columna de las horas.

Luego sumamos las horas: 1 h + 3 h + 2 h = 6 h.

  • Responde

Marta llegó a las 6 pm en punto.


– Ejemplo 3:

Carla entró a un examen a las 8:50 am y tardó 2 horas y 39 minutos en hacerlo, ¿a qué hora salió del examen?

  • Datos

Hora de entrada: 8 h y 50 min

Duración en el examen: 2 h y 39 min

  • Analiza

Si sumamos la hora de entrada con el tiempo que duró en el examen tendremos la hora de salida del examen. Primero sumamos los minutos y luego las horas.

  • Calcula

Sumamos los minutos: 50 + 39 = 89. Pero ya sabemos que 60 minutos forman una hora, así que tenemos que “sacar” 60 min de 89 min, es decir, 89 − 60 = 29.

Escribimos 29 min en la columna de los minutos y sumamos 1 h en la columna de las horas.

Luego sumamos las horas: 1 h + 8 h + 2 h = 11 h.

  • Responde

Carla salió a las 11:29 am.

Una de las primeras formas de medir el tiempo fue por medio de un reloj solar. Este funciona gracias a la sombra que genera el Sol durante el día sobre un estilo ubicado encima de una superficie. El movimiento diurno del Sol hace que la sombra cambie de dirección y de este modo se podía saber con bastante precisión la hora del día.

Resta

Los pasos a seguir para restar horas y minutos son los siguientes:

  1. Restamos los minutos.
  2. Si el minuendo es menor que el sustraendo, sumamos 60 minutos (que es igual a 1 hora) a ese minuendo. Luego restamos una hora de la columna de las horas.
  3. Restamos las horas.
  4. Escribimos el resultado.

– Ejemplo 1:

¿Cuánto es 4:11 – 2:47?

Lo primero que debemos hacer es colocar una hora sobre otra.

Como 11 es menor que 47 y no lo puede restar, tomamos “prestado” 60 minutos (1 hora) de la columna de las horas, es decir, sumamos a 11 min + 60 min = 71 min. Luego restamos esa hora de la columna de las horas: 4 h − 1 h = 3 h.

Ahora sí podemos hacer la resta de minutos: 71 min − 47 min = 24 min.

Después restamos las horas: 3 h − 2 h = 1 h.

Entonces:

4 h y 11 min − 2 h y 47 min = 1 h y 24 min

También lo podemos escribir así:

4:11 − 2:47 = 1:24


– Ejemplo 2:

Después de 45 min, un tren llegó a las 16 h y 15 min, ¿a qué hora salió el tren?

  • Datos

Duración de recorrido: 45 min

Hora de llegada: 16 h y 15 min

  • Analiza

Hay que restar el tiempo recorrido a la hora de llegada para saber la hora exacta de salida.

  • Calcula

Como 15 es menor que 45, tomamos prestado 60 minutos (1 hora) de la columna de las horas. Por lo tanto: 15 min + 60 min = 75 min. Al prestar 1 hora, tenemos que restarla de la columna de las horas, así que: 16 h − 1 h = 15 h. Luego hacemos la resta de minutos y horas.

  • Responde

El tren salió a las 15:30.


– Ejemplo 3:

Francisco tomó el bus para visitar a sus primos en otra ciudad. El bus salió a las 8:30 am y llegó a las 10:45 am ¿cuánto duró el viaje?

  • Datos

Hora de salida: 8 h y 30 min

Hora de llegada: 10 h y 45 min

  • Analiza

Si restamos la hora de salida a la hora de llegada tendremos la diferencia de tiempo entre ambas. Restamos primero los minutos y luego las horas.

  • Calcula

  • Responde

El viaje duró 2 h y 15 min.

¡A practicar!

1. Resuelve las operaciones de tiempo:

  • 8:45 + 2:45
Solución
8:45 + 2:45 = 11:30
  • 4:25 − 3:42
Solución
4:25 − 3:42 = 00:43
  • 10:20 + 6:15
Solución
10:20 + 6:15 = 16:35
  • 8:23 − 5:15
Solución
8:23 − 5:15 = 3:08
  • 1:50 + 9:38
Solución
1:50 + 9:38 = 11:28
  • 12:12 − 6:30
Solución
12:12 − 6:30 = 5:42

 

2. Responde:

  • ¿Cuántas horas hay en 5 días?
Solución
120 horas.
  • ¿Cuántos días hay en 1 década?
Solución
3.650 días.
  • ¿Cuántos segundos hay en 2 horas?
Solución
7.200 segundos.
  • ¿Cuántos meses hay en 2 lustros?
Solución
240 meses.
  • ¿Cuántas décadas hay en 3 siglos?
Solución
30 décadas.
RECURSOS PARA DOCENTES

Artículo “Operaciones en el sistema sexagesimal”

Este artículo explica la forma de realizar operaciones con unidades de tiempo en el sistema sexagesimal.

VER

Artículo “Medidas de tiempo”

Con este recurso podrás ampliar la información sobre cómo hacer operaciones de suma y resta con las medidas de tiempo.

VER