La recta numérica es un gráfico en el que podemos representar cualquier número que pertenezca al conjunto de los números reales (). Tiene intervalos que señalan las unidades y siempre tienen la misma distancia entre un número y su consecutivo. Por otra parte, los distintos tipos de relaciones que existen entre los números se pueden mostrar por medio de los símbolos “<” y “>” que significan “menor que” y “mayor que” respectivamente.
ORDEN DE NÚMEROS NATURALES Y DECIMALES
Para ubicar los números naturales en la recta numérica ubicamos el 0 en una posición arbitraria y luego colocamos el resto de los números naturales en intervalos regulares. Si deseamos comparar números naturales usamos los símbolos < y > o la recta numérica, pues todo número que esté más a la derecha en la recta siempre será el mayor. Para ubicar números decimales en la recta numérica, debemos agregar subdivisiones entre los números enteros. Cuando queremos compararlos, primero tomamos en cuenta la parte entera y luego comparamos las cifras decimales de izquierda a derecha.
ORDEN DE FRACCIONES
Las fracciones también tiene un lugar en la recta numérica, para esto tenemos que considerar si la fracción es propia o impropia. De ser propia dividimos a la unidad en tantos segmentos como indique el denominador y contamos tantos segmentos como indique el numerador, luego marcamos la fracción. Si la fracción es impropia, tenemos que convertirla primero en un número mixto, en este caso, seguimos el procedimiento anterior pero a partir de la parte entera que tenga el número mixto.
PROPORCIONALIDAD
La proporcionalidad es una relación que existe entre dos magnitudes que podemos medir, y puede ser directa o inversa. Dos cantidades son directamente proporcionales si cuando una aumenta la otra aumenta o si cuando una disminuye la otra también lo hace. Por otro lado, al convertir medidas lo hacemos por medio de una regla de tres, un método muy útil para saber un valor desconocido entre 2 relaciones.
RELACIONES DE TIEMPO
El tiempo es quizás la magnitud más usada y medida diariamente. Sus unidades son variadas y van desde las menores a un día, como los segundos, los minutos y las horas; hasta las que sobrepasan al día como los meses, años y décadas. Si usamos una regla de tres podemos convertir una unidad a otra sin dificultad. También podemos hacer cálculos de suma y resta con el tiempo, esto nos ayuda a saber cuando empezó un partido de fútbol o qué hora salió un tren, por ejemplo.
El tiempo es una magnitud que nos ayuda a medir la duración de un evento. Gracias al tiempo podemos ordenar sucesos y establecer un pasado, un presente y un futuro. Todas sus unidades de medidas pueden convertirse entre ellas. Aprender sus cálculos básicos permite saber, por ejemplo, en qué momento tenemos que hacer una tarea.
UNIDADES DE Tiempo: equivalencias y conversiones
Todo lo que realizamos consume tiempo: sabemos que el recreo dura 10 minutos, que un partido de fútbol dura 90 minutos o que el día tiene 24 horas. Es una variable tan importante, que en todo el mundo se utilizan las mismas unidades para medir el tiempo, a diferencia de otras magnitudes, como la distancia o el volumen. A algunas de sus unidades más importantes puedes verlas en esta tabla, junto a sus equivalencias:
Unidades de tiempo y sus equivalencia
Menores a un día
1 día = 24 horas
1 hora = 60 minutos
1 minuto = 60 segundos
Mayores a un día
1 semana = 7 días
1 mes = 30 o 31 días
1 año = 365 días = 12 meses
Conversión de unidades de tiempo
Podemos hacer conversiones entre dos o más unidades de tiempo por medio de una regla de tres: método en el que establecemos relaciones, multiplicamos en forma diagonal y luego dividimos por la unidad restante.
– Ejemplo 1:
¿Cuánto días hay en 96 horas?
En 96 horas hay 4 días.
– Ejemplo 2:
¿Cuántos meses hay en 20 años?
En 20 años hay 240 meses.
– Ejemplo 3:
¿Cuántas horas tiene una semana?
Una semana (7 días) tiene 168 horas.
Otras unidades de tiempo
Para las medidas de tiempo más grandes, las equivalencias más prácticas son:
1 lustro = 5 años
1 década = 10 años
1 siglo = 100 años
1 milenio = 1.000 años
¿Sabías qué?
Hay una unidad de tiempo mucho menor que el segundo: el microsegundo. Su símbolo es µs y es igual a una millonésima parte de un segundo, es decir, 10−6 s.
el reloj
El reloj es una instrumento para medir el tiempo, gracias a él sabemos las horas, los minutos y los segundos de un día. Pueden ser digitales o analógicos.
Este es un reloj analógico e indica que son “las 6 y 15 minutos”.
Este es un reloj digital e indica que son “las 10 y 20 minutos de la mañana”.
Abreviaturas am y pm
La abreviatura am significa que la hora leída corresponde a antes del mediodía.
La abreviatura pm significa que la hora leída corresponde a después del mediodía.
Sistema horario de 24 horas
Los relojes analógcos tienen un sistema de 12 horas, por lo que necesitan hacer dos ciclos completos para cubrir un día. En cambio, los relojes digitales pueden tener, además de un sistema de 12 horas, un sistema de 24 horas que se caracteriza por dividir al día en las 24 horas totales que lo conforman, por lo que no utiliza las abreviaturas am y pm.
La siguiente tabla muestra la relación entre ambos formatos:
Formato 24 horas
Formato 12 horas
00:00 h
12:00 am
01:00 h
01:00 am
02:00 h
02:00 am
03:00 h
03:00 am
04:00 h
04:00 am
05:00 h
05:00 am
06:00 h
06:00 am
07:00 h
07:00 am
08:00 h
08:00 am
09:00 h
09:00 am
10:00 h
10:00 am
11:00 h
11:00 am
12:00 h
12:00 pm
13:00 h
01:00 pm
14:00 h
02:00 pm
15:00 h
03:00 pm
16:00 h
04:00 pm
17:00 h
05:00 pm
18:00 h
06:00 pm
19:00 h
07:00 pm
20:00 h
08:00 pm
21:00 h
09:00 pm
22:00 h
10:00 pm
23:00 h
11:00 pm
operaciones con unidades de tiempo
Suma
Los pasos a seguir para sumar horas y minutos son los siguientes:
Sumamos los minutos y luego las horas.
Si los minutos son 60, colocamos 00 en la columna de los minutos y sumamos 1 hora en la columnas de las horas.
Si los minutos son más de 60, restamos 60 a ese resultado y sumamos 1 hora en la columnas de las horas.
Escribimos la hora final.
– Ejemplo 1:
¿Cuánto es 2:36 + 5:15?
Así que:
2 h y 36 min + 5 h y 15 min = 7 h y 51 min
También podemos representarlo de esta manera:
02:36 + 05:15 = 07:51
– Ejemplo 2:
Marta salió de su casa a las 3: 45 pm y luego de 2 horas y 15 minutos llegó a la casa de su abuela, ¿a qué hora llegó?
Datos
Hora de salida: 3 h y 45 min
Duración del recorrido: 2 h y 15 min
Analiza
Tenemos que sumar la hora de salida con el tiempo que duró en el recorrido para saber la hora de llegada. Para esto sumamos primero los minutos y luego las horas.
Calcula
Primero sumamos los minutos: 45 min + 15 min = 60 min. Como 60 min son iguales a 1 h, escribimos 00 y sumamos 1 hora a la columna de las horas.
Luego sumamos las horas: 1 h + 3 h + 2 h = 6 h.
Responde
Marta llegó a las 6 pm en punto.
– Ejemplo 3:
Carla entró a un examen a las 8:50 am y tardó 2 horas y 39 minutos en hacerlo, ¿a qué hora salió del examen?
Datos
Hora de entrada: 8 h y 50 min
Duración en el examen: 2 h y 39 min
Analiza
Si sumamos la hora de entrada con el tiempo que duró en el examen tendremos la hora de salida del examen. Primero sumamos los minutos y luego las horas.
Calcula
Sumamos los minutos: 50 + 39 = 89. Pero ya sabemos que 60 minutos forman una hora, así que tenemos que “sacar” 60 min de 89 min, es decir, 89 − 60 = 29.
Escribimos 29 min en la columna de los minutos y sumamos 1 h en la columna de las horas.
Luego sumamos las horas: 1 h + 8 h + 2 h = 11 h.
Responde
Carla salió a las 11:29 am.
Resta
Los pasos a seguir para restar horas y minutos son los siguientes:
Restamos los minutos.
Si el minuendo es menor que el sustraendo, sumamos 60 minutos (que es igual a 1 hora) a ese minuendo. Luego restamos una hora de la columna de las horas.
Restamos las horas.
Escribimos el resultado.
– Ejemplo 1:
¿Cuánto es 4:11 – 2:47?
Lo primero que debemos hacer es colocar una hora sobre otra.
Como 11 es menor que 47 y no lo puede restar, tomamos “prestado” 60 minutos (1 hora) de la columna de las horas, es decir, sumamos a 11 min + 60 min = 71 min. Luego restamos esa hora de la columna de las horas: 4 h − 1 h = 3 h.
Ahora sí podemos hacer la resta de minutos: 71 min − 47 min = 24 min.
Después restamos las horas: 3 h − 2 h = 1 h.
Entonces:
4 h y 11 min − 2 h y 47 min = 1 h y 24 min
También lo podemos escribir así:
4:11 − 2:47 = 1:24
– Ejemplo 2:
Después de 45 min, un tren llegó a las 16 h y 15 min, ¿a qué hora salió el tren?
Datos
Duración de recorrido: 45 min
Hora de llegada: 16 h y 15 min
Analiza
Hay que restar el tiempo recorrido a la hora de llegada para saber la hora exacta de salida.
Calcula
Como 15 es menor que 45, tomamos prestado 60 minutos (1 hora) de la columna de las horas. Por lo tanto: 15 min + 60 min = 75 min. Al prestar 1 hora, tenemos que restarla de la columna de las horas, así que: 16 h − 1 h = 15 h. Luego hacemos la resta de minutos y horas.
Responde
El tren salió a las 15:30.
– Ejemplo 3:
Francisco tomó el bus para visitar a sus primos en otra ciudad. El bus salió a las 8:30 am y llegó a las 10:45 am ¿cuánto duró el viaje?
Datos
Hora de salida: 8 h y 30 min
Hora de llegada: 10 h y 45 min
Analiza
Si restamos la hora de salida a la hora de llegada tendremos la diferencia de tiempo entre ambas. Restamos primero los minutos y luego las horas.
Calcula
Responde
El viaje duró 2 h y 15 min.
¡A practicar!
1. Resuelve las operaciones de tiempo:
8:45 + 2:45
Solución
8:45 + 2:45 = 11:30
4:25 − 3:42
Solución
4:25 − 3:42 = 00:43
10:20 + 6:15
Solución
10:20 + 6:15 = 16:35
8:23 − 5:15
Solución
8:23 − 5:15 = 3:08
1:50 + 9:38
Solución
1:50 + 9:38 = 11:28
12:12 − 6:30
Solución
12:12 − 6:30 = 5:42
2. Responde:
¿Cuántas horas hay en 5 días?
Solución
120 horas.
¿Cuántos días hay en 1 década?
Solución
3.650 días.
¿Cuántos segundos hay en 2 horas?
Solución
7.200 segundos.
¿Cuántos meses hay en 2 lustros?
Solución
240 meses.
¿Cuántas décadas hay en 3 siglos?
Solución
30 décadas.
RECURSOS PARA DOCENTES
Artículo “Operaciones en el sistema sexagesimal”
Este artículo explica la forma de realizar operaciones con unidades de tiempo en el sistema sexagesimal.
¿SABES QUÉ HORA ES?, ¿QUÉ DÍA ES HOY?, ¿EN QUÉ MES ESTAMOS? RESPONDER TODAS ESTAS PREGUNTAS REQUIERE EL USO DE UNIDADES DE TIEMPO COMO LAS HORAS, LOS DÍAS O LOS MESES. EXISTEN DIFERENTES INSTRUMENTOS QUE PODEMOS UTILIZAR SI QUEREMOS MEDIR PERÍODOS DE TIEMPO CORTOS O LARGOS. LA MAYORÍA YA LOS CONOCES, SON LOS RELOJES Y CALENDARIOS.
unidades de tiempo
PARA MEDIR EL TIEMPO UTILIZAMOS DIFERENTES UNIDADES SEGÚN SU DURACIÓN.
UNIDADES MENORES A UN DÍA
ESTAS UNIDADES SE MIDEN CON UN RELOJ O CRONÓMETRO. SON LAS SIGUIENTES:
HORA
MINUTO
SEGUNDO
UNIDADES MAYORES A UN DÍA
ESTAS UNIDADES SE MIDEN CON UN CALENDARIO. SON LAS SIGUIENTES:
EL RELOJ SIRVE PARA MEDIR TIEMPOS MENORES A UN DÍA: NOS INDICA LAS HORA, LOS MINUTOS Y LOS SEGUNDOS.
EN LA ACTUALIDAD ES COMÚN USAR RELOJES ANALÓGICOS Y RELOJES DIGITALES.
RELOJ ANALÓGICO
RELOJ DIGITAL
MUESTRAN LA HORA EN UN CÍRCULO NUMERADO DEL 1 AL 12; TIENEN TRES AGUJAS O MANECILLAS QUE SEÑALAN LA HORA, LOS MINUTOS Y LOS SEGUNDOS.
MUESTRAN LA HORA Y LOS MINUTOS MEDIANTE NÚMEROS SEPARADOS POR DOS PUNTOS. A LA IZQUIERDA DE LOS DOS PUNTOS OBSERVAMOS LA HORA Y A LA DERECHA LOS MINUTOS.
EL RELOJ ANALÓGICO
ESTE TIPO DE RELOJ ES MUY USADO EN LAS CASAS Y ESCUELAS. SU SISTEMA ES MUY SIMPLE:
TRES AGUJAS GIRAN EN UN CÍRCULOS MARCADO DEL 1 AL 12.
CUANDO LA AGUJA CORTA SEÑALA UN NÚMERO, ESE NÚMERO ES LA HORA.
CUANDO LA AGUJA LARGA Y GRUESA SEÑALA UN NÚMERO, TENEMOS QUE REPETIR ESE NÚMERO 5 VECES PARA SABER LOS MINUTOS, ES DECIR, CADA NÚMERO SON CINCO MÁS MINUTOS MÁS QUE EL ANTERIOR.
OBSERVA:
CUANDO LA AGUJA LARGA ESTÁ EN EL NÚMERO 12 DECIMOS LA HORA SEGUIDA DE LA FRASE “… EN PUNTO”. POR EJEMPLO, EN EL RELOJ DE LA IMAGEN SON LAS 6 EN PUNTO.
CUANDO LA AGUJA LARGA ESTÁ EN EL NÚMERO 12 SIGNIFICA QUE HAN PASADO 30 MINUTOS O LA MITAD DE UNA HORA, POR ESO DECIMOS LA HORA SEGUIDA DE LA FRASE “… Y MEDIA”. POR EJEMPLO, EN EL RELOJ DE LA IMAGEN SON LAS 9 Y MEDIA.
¿SABÍAS QUÉ?
LA AGUJA MÁS LARGA Y FINA SEÑALA LOS SEGUNDOS. CADA RAYA ENTRE LOS NÚMEROS DEL RELOJ REPRESENTA 1 SEGUNDO.
¡ES TU TURNO!
¿QUÉ HORA ES?
SOLUCIÓN
SON LAS 2 Y MEDIA.
SOLUCIÓN
SON LAS 4 EN PUNTO.
el calendario
UN CALENDARIO NOS PERMITE MEDIR Y GRAFICAR EL PASO DEL TIEMPO EN UNIDADES IGUALES O MAYORES A UN DÍA. POR LO GENERAL REPRESENTA UN AÑO Y ORGANIZA LOS 12 MESES DE ESTE. CADA MES INCLUYE LAS SEMANAS QUE LOS COMPONEN Y LOS DÍAS CON SUS NÚMEROS.
CALENDARIO 2020
ESTE ES EL CALENDARIO DEL AÑO 2020. EN ÉL PUEDES VER LOS DOCE MESES DEL AÑOS Y LOS DÍAS DE CADA SEMANA REPRESENTADOS POR SUS INICIACIONES: D (DOMINGO), L (LUNES), M (MARTES), M (MIÉRCOLES), J (JUEVES), V (VIERNES) Y S (SÁBADO).
¿SABÍAS QUÉ?
LOS PRIMEROS CALENDARIOS TENÍAN SOLAMENTE 10 MESES. LOS ÚLTIMOS DOS MESES EN INCLUIRSE FUERON ENERO Y FEBRERO.
elementos naturales que señalan el tiempo
CUANDO VEMOS EL SOL EN EL CIELO, AUNQUE ESTÉ SEMIOCULTO POR UNA NUBE Y TODO ESTÁ CLARO, SABEMOS QUE ES ES DE DÍA.
CUANDO EL CIELO SE PONE OSCURO Y PODEMOS VER LA LUNA, SABEMOS QUE ES DE NOCHE.
EL SOL Y LA LUNA SON DOS ELEMENTOS NATURALES QUE NOS AYUDAN A RECONOCER EL PASO DEL TIEMPO.
¿CÓMO SE PRODUCE LA NOCHE?
SABEMOS QUE ES DE NOCHE CUANDO EL CIELO ESTÁ OSCURO Y PODEMOS VER LA LUNA Y LAS ESTRELLAS. ESTO SUCEDE PORQUE LA PARTE DEL PLANETA EN LA QUE VIVIMOS NO RECIBE EN FORMA DIRECTA LA LUZ DEL SOL.
ACONTECIMIENTOS TEMPORALES
OBSERVA EL SIGUIENTE CUADRO CON LOS DÍAS DE LA SEMANA:
HOY ES MIÉRCOLES.
AYER FUE MARTES.
MAÑANA SERÁ JUEVES.
¡A PRACTICAR!
1. ESCRIBE SI ES DE DÍA O NOCHE SEGÚN CORRESPONDA.
SOLUCIÓN
ES DE DÍA.
SOLUCIÓN
ES DE NOCHE.
2. OBSERVA LA SIGUIENTE HOJA DE CALENDARIO Y RESPONDE:
¿A QUÉ AÑO CORRESPONDE ESTA HOJA DE CALENDARIO?
SOLUCIÓN
2020
¿A QUÉ MES CORRESPONDE ESTA HOJA DE CALENDARIO?
SOLUCIÓN
JULIO
¿QUÉ DÍA DE LA SEMANA ES HOY?
SOLUCIÓN
MIÉRCOLES
¿QUÉ NÚMERO DE DÍA ES HOY?
SOLUCIÓN
8
¿QUÉ DÍA FUE AYER?
SOLUCIÓN
MARTES
¿QUÉ DÍA SERÁ MAÑANA?
SOLUCIÓN
JUEVES
RECURSOS PARA DOCENTES
Artículo “Medidas de tiempo”
Con este recurso podrás profundizar sobre las unidades de tiempo y sus cálculos.