CAPÍTULO 4 / TEMA 4

PROPORCIONALIDAD

Si compramos una gaseosa a $ 2, 2 gaseosas costarán $ 4 y 3 gaseosas costarán $ 6. Esto se llama proporcionalidad porque las dos magnitudes, precio y cantidad, tiene una relación directa entre sí. Esta relación sirve para hacer conversiones de unidades de medida. ¡Aprendamos a resolver problemas de proporcionalidad!

¿QUÉ ES LA PROPORCIONALIDAD?

La proporcionalidad es una relación que existe entre las magnitudes que podemos medir, como el tiempo, la longitud, la superficie o el peso.

Las proporciones son mucho más comunes de lo que pensamos. Las utilizamos al calcular la cantidad de ingredientes para hacer una torta, cuando convertimos unidades de medida o cuando vamos al cine con nuestros amigos y deseamos saber cuál es el costo total de las entradas.

Muchas de las cantidades que utilizamos cotidianamente están relacionadas entre sí. Por ejemplo, siempre que vamos a un kiosco, sabemos que mientras más productos compremos, más dinero tendremos que pagar. Eso es porque “la cantidad de productos que compramos” y “la cantidad que debemos pagar” tienen una relación directamente proporcional.

¿Sabías qué?
Existen dos tipos de proporcionalidad: la proporcionalidad directa y la proporcionalidad inversa.

PROPORCIONALIDAD DIRECTA

Cuando dos magnitudes están relacionadas mediante una proporcionalidad directa se comportan de tal manera que:

  • Cuando una cantidad aumenta, la otra también aumenta.
  • Cuando una cantidad disminuye, la otra también disminuye.

Si esto sucede, se dice que las cantidades son “directamente proporcionales”.

– Ejemplo:

Si una camiseta cuesta $ 3, ¿cuánto cuestan 2 camisetas?, ¿y 3 camisetas?

Cantidad de dinero $ 3 $ 6 $ 9
Cantidad de camisetas 1 2 3

Observa que al aumentar la cantidad de camisetas también aumenta la cantidad de dinero, por eso, ambas son directamente proporcionales.

Siempre que dos magnitudes sean directamente proporcionales el cociente entre ellas será constante. A esta relación la podemos escribir y comprobar por medio de una fracción:

\frac{{\color{Blue} 3}}{{\color{Red} 1}}=\boldsymbol{3}

\frac{{\color{Blue} 6}}{{\color{Red} 2}}=\boldsymbol{3}

\frac{{\color{Blue} 9}}{{\color{Red} 3}}=\boldsymbol{3}

Los numeradores en azul representan la cantidad de dinero y los denominadores en rojo representan la cantidad de camiseta. Todos los cocientes son iguales, es decir, la proporción es constante.

Razón de proporcionalidad

Si dividimos entre sí las magnitudes que aumentan o disminuyen, obtendremos como resultado un número llamado razón de proporcionalidad, y si dividimos ambas cantidades luego de que aumenten o disminuyan, también obtendremos como resultado al mismo número. Por lo tanto, dos magnitudes son directamente proporcionales si:

magnitud 1 ÷ magnitud 2 = razón de proporcionalidad

¿cómo resolver problemas de PROPORCIONALIDAD DIRECTA?

Un método para resolver problemas de proporcionalidad es la regla de tres. Esta se utiliza para hallar el cuarto término de una proporción cuando ya conoces tres valores.

– Ejemplo 1:

En cada paquete de chicles hay 8 chicles. ¿Cuántos chicles hay en 4 paquetes?

1. Escribimos la primera relación, que es la que tiene los dos valores conocidos:

 

2. Luego escribimos la segunda relación. En esta solo conocemos un valor y al desconocido lo representamos con la letra equis (x).

En conjunto, estas relaciones se leen así: “si un paquete de chicles tiene ocho chicles, ¿cuántos chicles tienen cuatro paquetes de chicles?”.

Observa que colocamos una magnitud debajo de otra magnitud: paquetes de chicles debajo de paquetes de chicles y cantidad de chicles debajo de cantidad de chicles. La “x” es una valor que desconocemos, pero la magnitud buscada es “cantidad de chicles”.

 

3. Multiplicamos en diagonal y luego dividimos por el valor que quede solo.

 

4. Resolvemos las operaciones.

Nota que las magnitudes que son iguales tanto en el numerador como en el denominador se tachan y queda la magnitud deseada: cantidad de chicles.

 

5. Damos respuesta a la interrogante.

En 4 paquetes de chicles hay 32 chicles.

Dos magnitudes directamente proporcionales son la cantidad de kilómetros recorridos en un automóvil y la cantidad de combustible gastado. Cuando una de estas cantidades se modifica, la otra lo hace de igual manera; pues si recorremos 110 kilómetros gastaremos 10 litros de combustible, pero si recorremos 330 kilómetros gastaremos 30 litros.

– Ejemplo 2:

Para pintar 6 edificios son necesarios 80 galones de pintura, ¿cuántos galones de pintura son necesarios para pintar 18 edificios?

  • Relaciones

  • Reflexión

Este problema de proporcionalidad se resuelve al multiplicar en forma diagonal las relaciones antes mostradas, y después al dividir entre 6. No debemos olvidar tachar las magnitudes iguales en el numerador y en el denominador.

  • Operaciones

  • Respuesta

Para pintar 18 edificios se necesitan 240 galones de pintura.


– Ejemplo 3:

Si 10 lápices cuestan $ 5, ¿cuánto costarán 70 lápices?

  • Relaciones

  • Reflexión

Hay que resolver la regla de tres, para esto multiplicamos en forma diagonal: 70 × 5 y luego dividimos este resultado entre 10. Tachamos las unidades repetidas en los numeradores y denominadores.

  • Operaciones

  • Respuesta

70 lápices costarán $ 35.


¿Sabías qué?
En la cocina también utilizamos la proporcionalidad. Si tenemos una receta que indica las cantidades para 1 persona, pero queremos hacer la receta para 5 personas, debemos multiplicar a todas las cantidades por 5.

USOS DE LA PROPORCIONALIDAD DE LA CONVERSIÓN DE MEDIDAS

La proporcionalidad nos puede ser útil a la hora de convertir unidades de medidas. Por ejemplo, cuando conocemos la longitud de un objeto en centímetros y queremos conocerla en metros, o cuando conocemos nuestro peso en kilogramos pero queremos conocerlo en gramos.

La conversión de unidades de medida es usada en múltiples oficios. Los costureros y diseñadores utilizan a menudo la cinta métrica: una cinta flexible con marcas que muestran los metros y los centímetros. Esta es de gran utilidad para medir grandes o pequeñas longitudes de tela. También es usada por arquitectos y médicos.

Equivalencias de interés

Masa

Unidad principal: gramo (g)

 

1 g = 1.000 mg

1 g = 100 cg

1 g = 10 dg

1 g = 0,1 dag

1 g = 0,01 hg

1 g = 0,001 kg

Longitud

Unidad principal: metro (m)

 

1 m = 1.000 mm

1 m = 100 cm

1 m = 10 dm

1 m = 0,1 dam

1 m = 0,01 hm

1 m = 0,001 km

Capacidad

Unidad principal: litro (L)

 

1 L = 1.000 mL

1 L = 100 cL

1 L = 10 dL

1 L = 0,1 daL

1 L = 0,01 hL

1 L = 0,001 kL

– Ejemplo 1:

Convierte 1,90 m a cm.

Ya sabemos que 1 metro = 100 centímetros, por lo tanto, esta es nuestra primera relación para la regla de tres. Luego resolvemos:

1,90 m equivalen a 190 cm.


– Ejemplo 2:

Convierte 5.600 ml a L.

5.600 mL equivalen a 5,6 L.


– Ejemplo 3:

Convierte 8,96 km a m.

9,96 km equivalen a 8.960 m.


¡A practicar!

1. Resuelve estos problemas de proporcionalidad por medio de reglas de tres.

a) Un automóvil recorre 200 km en 4 horas, ¿cuánto tiempo tardará en recorrer 500 km si la velocidad es constante?

Solución
Tardará 10 horas.

b) José compró 25 servilletas por $ 5, ¿cuántas servilletas podrá comprar con $ 30?

Solución
José podrá comprar 150 servilletas.

c) Si 60 segundos son iguales a 1 minuto, ¿cuántos minutos hay en 2.160 segundos?

Solución
Hay 36 minutos.

d) 8 obreros realizaron una obra de 200 m, ¿cuántos metros de obras pueden hacer 10 obreros?

Solución
Pueden hacer 250 metros.

 

2. Realiza las siguientes conversiones de unidades de medida.

a) 0,69 g a mg.

Solución
690 mg.

b) 5.896 mg a g.

Solución
5,896 g.

c) 5 kg a g.

Solución
5.000 g.

d) 0,94 L a mL.

Solución
940 mL.

e) 3.216 mL a L.

Solución
3,216 L.

f) 1,5 g a mg.

Solución
15.000 mg.

g) 7.415 g a kg.

Solución
7,415 kg.

h) 0,05 kg a g.

Solución
5.000 g.
RECURSOS PARA DOCENTES

Artículo “Regla de 3 simple y compuesta”

Este artículo trata sobre una herramienta que se utiliza para resolver problemas de proporcionalidad: la regla de 3 simple y compuesta.

VER

CAPÍTULO 4 / TEMA 5

RELACIONES DE TIEMPO

El tiempo es una magnitud que nos ayuda a medir la duración de un evento. Gracias al tiempo podemos ordenar sucesos y establecer un pasado, un presente y un futuro. Todas sus unidades de medidas pueden convertirse entre ellas. Aprender sus cálculos básicos permite saber, por ejemplo, en qué momento tenemos que hacer una tarea.

El tiempo es una de las magnitudes más utilizamos cotidianamente, por eso es normal que veas un reloj en todas las casa, escuelas y comercios. Las unidades menores a un día son las horas, minutos y segundo, y para medirlas usamos el reloj o un cronómetro; en cambio, las unidades mayores a un día, como los meses y los años, son medidas con un calendario.

UNIDADES DE Tiempo: equivalencias y conversiones

Todo lo que realizamos consume tiempo: sabemos que el recreo dura 10 minutos, que un partido de fútbol dura 90 minutos o que el día tiene 24 horas. Es una variable tan importante, que en todo el mundo se utilizan las mismas unidades para medir el tiempo, a diferencia de otras magnitudes, como la distancia o el volumen. A algunas de sus unidades más importantes puedes verlas en esta tabla, junto a sus equivalencias:

Unidades de tiempo y sus equivalencia
Menores a un día

 

1 día = 24 horas

1 hora = 60 minutos

1 minuto = 60 segundos

Mayores a un día

 

1 semana = 7 días

1 mes = 30 o 31 días

1 año = 365 días = 12 meses

Conversión de unidades de tiempo

Podemos hacer conversiones entre dos o más unidades de tiempo por medio de una regla de tres: método en el que establecemos relaciones, multiplicamos en forma diagonal y luego dividimos por la unidad restante.

– Ejemplo 1:

¿Cuánto días hay en 96 horas?

En 96 horas hay 4 días.


– Ejemplo 2:

¿Cuántos meses hay en 20 años?

En 20 años hay 240 meses.


– Ejemplo 3:

¿Cuántas horas tiene una semana?

Una semana (7 días) tiene 168 horas.

Otras unidades de tiempo

Para las medidas de tiempo más grandes, las equivalencias más prácticas son:

  • 1 lustro = 5 años
  • 1 década = 10 años
  • 1 siglo = 100 años
  • 1 milenio = 1.000 años

¿Sabías qué?
Hay una unidad de tiempo mucho menor que  el segundo: el microsegundo. Su símbolo es µs y es igual a una millonésima parte de un segundo, es decir, 10−6 s.
En un calendario o agenda representamos todos los días del mes. Son útiles para planificar las actividades a realizar cada día; incluso, algunas agendas dividen cada día en horas, de manera que podamos organizar aún mejor nuestro tiempo. También son útiles para conocer las fechas de cada mes y los días feriados que hay en cada uno de ellos.

el reloj

El reloj es una instrumento para medir el tiempo, gracias a él sabemos las horas, los minutos y los segundos de un día. Pueden ser digitales o analógicos.

Este es un reloj analógico e indica que son “las 6 y 15 minutos”.

 Este es un reloj digital e indica que son “las 10 y 20 minutos de la mañana”.

Abreviaturas am y pm

  • La abreviatura am significa que la hora leída corresponde a antes del mediodía.
  • La abreviatura pm significa que la hora leída corresponde a después del mediodía.

Sistema horario de 24 horas

Los relojes analógcos tienen un sistema de 12 horas, por lo que necesitan hacer dos ciclos completos para cubrir un día. En cambio, los relojes digitales pueden tener, además de un sistema de 12 horas, un sistema de 24 horas que se caracteriza por dividir al día en las 24 horas totales que lo conforman, por lo que no utiliza las abreviaturas am y pm.

La siguiente tabla muestra la relación entre ambos formatos:

Formato 24 horas Formato 12 horas
00:00 h 12:00 am
01:00 h 01:00 am
02:00 h 02:00 am
03:00 h 03:00 am
04:00 h 04:00 am
05:00 h 05:00 am
06:00 h 06:00 am
07:00 h 07:00 am
08:00 h 08:00 am
09:00 h 09:00 am
10:00 h 10:00 am
11:00 h 11:00 am
12:00 h 12:00 pm
13:00 h 01:00 pm
14:00 h 02:00 pm
15:00 h 03:00 pm
16:00 h 04:00 pm
17:00 h 05:00 pm
18:00 h 06:00 pm
19:00 h 07:00 pm
20:00 h 08:00 pm
21:00 h 09:00 pm
22:00 h 10:00 pm
23:00 h 11:00 pm

operaciones con unidades de tiempo

Suma

Los pasos a seguir para sumar horas y minutos son los siguientes:

  1. Sumamos los minutos y luego las horas.
  2. Si los minutos son 60, colocamos 00 en la columna de los minutos y sumamos 1 hora en la columnas de las horas.
  3. Si los minutos son más de 60, restamos 60 a ese resultado y sumamos 1 hora en la columnas de las horas.
  4. Escribimos la hora final.

– Ejemplo 1:

¿Cuánto es 2:36 + 5:15?

Así que:

2 h y 36 min + 5 h y 15 min = 7 h y 51 min

También podemos representarlo de esta manera:

02:36 + 05:15 = 07:51


– Ejemplo 2:

Marta salió de su casa a las 3: 45 pm y luego de 2 horas y 15 minutos llegó a la casa de su abuela, ¿a qué hora llegó?

  • Datos

Hora de salida: 3 h y 45 min

Duración del recorrido: 2 h y 15 min

  • Analiza

Tenemos que sumar la hora de salida con el tiempo que duró en el recorrido para saber la hora de llegada. Para esto sumamos primero los minutos y luego las horas.

  • Calcula

Primero sumamos los minutos: 45 min + 15 min = 60 min. Como 60 min son iguales a 1 h, escribimos 00 y sumamos 1 hora a la columna de las horas.

Luego sumamos las horas: 1 h + 3 h + 2 h = 6 h.

  • Responde

Marta llegó a las 6 pm en punto.


– Ejemplo 3:

Carla entró a un examen a las 8:50 am y tardó 2 horas y 39 minutos en hacerlo, ¿a qué hora salió del examen?

  • Datos

Hora de entrada: 8 h y 50 min

Duración en el examen: 2 h y 39 min

  • Analiza

Si sumamos la hora de entrada con el tiempo que duró en el examen tendremos la hora de salida del examen. Primero sumamos los minutos y luego las horas.

  • Calcula

Sumamos los minutos: 50 + 39 = 89. Pero ya sabemos que 60 minutos forman una hora, así que tenemos que “sacar” 60 min de 89 min, es decir, 89 − 60 = 29.

Escribimos 29 min en la columna de los minutos y sumamos 1 h en la columna de las horas.

Luego sumamos las horas: 1 h + 8 h + 2 h = 11 h.

  • Responde

Carla salió a las 11:29 am.

Una de las primeras formas de medir el tiempo fue por medio de un reloj solar. Este funciona gracias a la sombra que genera el Sol durante el día sobre un estilo ubicado encima de una superficie. El movimiento diurno del Sol hace que la sombra cambie de dirección y de este modo se podía saber con bastante precisión la hora del día.

Resta

Los pasos a seguir para restar horas y minutos son los siguientes:

  1. Restamos los minutos.
  2. Si el minuendo es menor que el sustraendo, sumamos 60 minutos (que es igual a 1 hora) a ese minuendo. Luego restamos una hora de la columna de las horas.
  3. Restamos las horas.
  4. Escribimos el resultado.

– Ejemplo 1:

¿Cuánto es 4:11 – 2:47?

Lo primero que debemos hacer es colocar una hora sobre otra.

Como 11 es menor que 47 y no lo puede restar, tomamos “prestado” 60 minutos (1 hora) de la columna de las horas, es decir, sumamos a 11 min + 60 min = 71 min. Luego restamos esa hora de la columna de las horas: 4 h − 1 h = 3 h.

Ahora sí podemos hacer la resta de minutos: 71 min − 47 min = 24 min.

Después restamos las horas: 3 h − 2 h = 1 h.

Entonces:

4 h y 11 min − 2 h y 47 min = 1 h y 24 min

También lo podemos escribir así:

4:11 − 2:47 = 1:24


– Ejemplo 2:

Después de 45 min, un tren llegó a las 16 h y 15 min, ¿a qué hora salió el tren?

  • Datos

Duración de recorrido: 45 min

Hora de llegada: 16 h y 15 min

  • Analiza

Hay que restar el tiempo recorrido a la hora de llegada para saber la hora exacta de salida.

  • Calcula

Como 15 es menor que 45, tomamos prestado 60 minutos (1 hora) de la columna de las horas. Por lo tanto: 15 min + 60 min = 75 min. Al prestar 1 hora, tenemos que restarla de la columna de las horas, así que: 16 h − 1 h = 15 h. Luego hacemos la resta de minutos y horas.

  • Responde

El tren salió a las 15:30.


– Ejemplo 3:

Francisco tomó el bus para visitar a sus primos en otra ciudad. El bus salió a las 8:30 am y llegó a las 10:45 am ¿cuánto duró el viaje?

  • Datos

Hora de salida: 8 h y 30 min

Hora de llegada: 10 h y 45 min

  • Analiza

Si restamos la hora de salida a la hora de llegada tendremos la diferencia de tiempo entre ambas. Restamos primero los minutos y luego las horas.

  • Calcula

  • Responde

El viaje duró 2 h y 15 min.

¡A practicar!

1. Resuelve las operaciones de tiempo:

  • 8:45 + 2:45
Solución
8:45 + 2:45 = 11:30
  • 4:25 − 3:42
Solución
4:25 − 3:42 = 00:43
  • 10:20 + 6:15
Solución
10:20 + 6:15 = 16:35
  • 8:23 − 5:15
Solución
8:23 − 5:15 = 3:08
  • 1:50 + 9:38
Solución
1:50 + 9:38 = 11:28
  • 12:12 − 6:30
Solución
12:12 − 6:30 = 5:42

 

2. Responde:

  • ¿Cuántas horas hay en 5 días?
Solución
120 horas.
  • ¿Cuántos días hay en 1 década?
Solución
3.650 días.
  • ¿Cuántos segundos hay en 2 horas?
Solución
7.200 segundos.
  • ¿Cuántos meses hay en 2 lustros?
Solución
240 meses.
  • ¿Cuántas décadas hay en 3 siglos?
Solución
30 décadas.
RECURSOS PARA DOCENTES

Artículo “Operaciones en el sistema sexagesimal”

Este artículo explica la forma de realizar operaciones con unidades de tiempo en el sistema sexagesimal.

VER

Artículo “Medidas de tiempo”

Con este recurso podrás ampliar la información sobre cómo hacer operaciones de suma y resta con las medidas de tiempo.

VER

CAPÍTULO 2 / TEMA 7

Conversiones de medidas

Los números fueron creados para contar y para cuantificar cantidades y medidas. En este sentido, la medición se ha transformado en una de las cuestiones más importantes de las matemáticas en todas sus ramas. Longitud, masa, volumen y tiempo son solo algunas de las magnitudes que podemos medir y que tienen diferentes unidades que podemos usar y convertir.

medidas de longitud

La longitud es una magnitud que nos permite saber la distancia que hay entre dos puntos. Gracias a esta sabemos qué tan largo es una lápiz o qué distancia hay de la casa a la escuela. Si las distancias son cortas, usamos los submúltiplos del metro, pero si son largas usamos los múltiplos; por ejemplo, una carrera de larga distancia puede tener más de 42 kilómetros.

El metro (m) es la unidad principal para medir la longitud. Con el metro podemos medir objetos cotidianos como la altura de un edificio, el largo de una mesa o las dimensiones de un campo de fútbol. Sin embargo, esta unidad no siempre es la más apropiada; por ejemplo, si un carpintero necesita medir la longitud de un tornillo debe utilizar unidades más pequeñas que el metro, pero si una corredor de fórmula 1 quiere saber la distancia que recorrió tiene que usar unidades más grandes que el metro.

Las unidades más pequeñas al metro se llaman submúltiplos y las más grandes se llama múltiplos. Las equivalencias entre estas unidades y el metro son las siguientes:

  • 1 kilómetro = 1.000 metros
  • 1 hectómetro = 100 metros
  • 1 decámetro = 10 metros
  • 1 metro = 1 metros
  • 1 decímetro = 0,1 metros
  • 1 centímetro = 0,01 metros
  • 1 milímetro = 0,001 metros

Si queremos pasar de una unidad mayor a una menor debemos multiplicar por 10 tantas veces como unidades de medida haya de diferencia. Por el contrario, si deseamos pasar de una unidad menor a una mayor debemos dividir por 10 tantas veces como unidades de medida haya de diferencia. Observa este esquema:

– Ejemplo 1:

  • Convierte 7,8 metros a centímetros.

Para llegar de metros a centímetros debemos multiplicar dos veces por 10. Recuerda que 10 × 10 = 100. Entonces, podemos multiplicar por 100.

7,8 × 100 = 780

Por lo tanto,

7,8 cm = 780 m

 

– Ejemplo 2:

  • Convierte 0,85 kilómetros a metros.

Debemos multiplicar tres veces por 10, es decir, 10 × 10 × 10 = 1.000.

0,85 × 1.000 = 850

Por lo tanto,

0,85 km = 850 m

 

– Ejemplo 3:

  • Convierte 690 milímetros a metros.

Tenemos que dividir el número tres veces por 10, lo que es igual a dividir entre 1.000.

690 ÷ 1.000 = 0,69

Así que:

690 mm = 0,69 m

Medidas de masa

La masa es una magnitud física que determina la cantidad de materia que tiene un cuerpo u objeto. La medimos con una balanza por medio de un proceso que se llama “pesaje”, así que cuando decimos que, por ejemplo, compramos medio kilogramo de papas, nos referimos a la cantidad de materia que tiene una determinada cantidad de papa.

El gramo es la unidad de medida de masa, la cual sirve para saber la cantidad de un determinado material. Con el gramo podemos saber la masa de una cuchara, pero si necesitamos saber la masa de una saco de papas tenemos que usar un múltiplo, es decir, una unidad mayor al gramo. Si lo que necesitamos es saber la masa de una hoja, podemos usar unidades más pequeñas que el gramo, es decir, un submúltiplo.

Los múltiplos y los submúltiplos del gramos junto con sus equivalencias son los siguientes:

  • 1 kilogramo = 1.000 gramos
  • 1 hectogramo = 100 gramos
  • 1 decagramo = 10 gramos
  • 1 gramo = 1 gramo
  • 1 decigramo = 0,1 gramos
  • 1 centigramo = 0,01 gramos
  • 1 miligramo = 0,001 gramos

¿Sabías qué?
El prefijo “kilo” significa 1.000, por eso un kilogramo son 1.000 gramos.

Si queremos pasar de una unidad mayor a una menor debemos multiplicar por 10 según la cantidad de espacios entre las unidades que transformaremos. Si vamos a pasar de una unidad menor a una mayor el procedimiento es similar, con la diferencia de que no multiplicamos sino que dividimos. Observa este esquema:

– Ejemplo 1

  • Convierte 9,4 decagramos a centigramos.

Hay tres espacios entre dag y cg, así que multiplicamos por 1.000 porque 1.000 = 10 × 10 × 10.

9,4 × 1.000 = 9.400

9,4 dag = 9.400 cg

– Ejemplo 2

  • Convierte 125 gramos a hectogramos.

Hay dos espacios entre g y hag, así que dividimos dos veces entre 10, lo que es igual a dividir entre 100.

125 ÷ 100 = 1,25

125 g = 1,25 hg

– Ejemplo 3

  • Convierte 10.589 centigramos a kilogramos.

Hay cinco espacios entre cg y kg, por lo tanto dividimos entre 100.000.

10.589 ÷ 100.000 = 0,10589

10.589 cg = 0,10589 kg

La balanza

Para determinar la masa de un cuerpo se usa como medio de comparación la masa definida de otro cuerpo. A esta operación se la denomina pesaje y el instrumento utilizado para ello es uno de los más comunes en cualquier laboratorio: la balanza. Hay muchos tipos de balanzas pero las más usadas son las mecánicas y las electrónicas.

 

VER INFOGRAFÍA

medidas de volumen

El concepto de volumen no debe confundirse con el de capacidad. El volumen corresponde al espacio ocupado por un cuerpo, su unidad de medida en el Sistema Internacional de Unidades es el m3; en cambio, la capacidad es la propiedad que tiene un objeto de contener cierta cantidad de materia, su unidad principal de medida es el litro (L).

Las unidades de volumen miden la cantidad de espacio que ocupa un cuerpo. El metro cúbico (m3) es la unidad de medida de volumen y equivale al espacio ocupado por un cubo que mide 1 m de largo, 1 m de ancho y 1 m de alto.

Las conversiones entre las distintas unidades de volumen se muestran en el siguiente esquema:

El procedimiento para hacer conversiones de unidades es el mismo que en los casos de masa y longitud.

– Ejemplo 1:

  • Convierte 5 centímetros cúbicos a milímetros cúbicos.

5 × 1.000 = 5.000

5 cm3 = 5.000 mm3

– Ejemplo 2:

Convierte 6,2 kilómetros cúbicos a decámetro cúbicos.

6,2 × 1.000.000 = 6.200.000

6,2 km3 = 6.200.000 dam3

 

– Ejemplo 3:

Convierte 79 centímetros cúbicos a metro cúbico.

79 ÷ 100.000 = 0,00079

79 cm3 = 0,00079 m3

¿Sabías qué?
1 litro es igual a 1 dm3 y 1 mililitro es igual a 1 cm3

medidas de tiempo

El tiempo es una magnitud que nos señala la duración de un suceso. Existen varias formas de medir el tiempo, ya sea con un cronómetro, un reloj o un calendario. A diferencia de otras magnitudes, el tiempo puede ser medido con unidades que van de 60 en 60, como los segundos, minutos y horas. También puede ser medido la cantidad de días o años.

Las unidades de tiempo pueden ser menores o mayores, según el período que se quiera medir. Por ejemplo, las unidades de tiempo respecto a un día son:

  • 1 día = 24 horas
  • 1 hora = 60 minutos
  • 1 minutos = 60 segundos

El esquema para hacer conversiones es el siguiente:

Para convertir unidades de tiempo multiplicamos o dividimos por 60 tantas veces como espacios entre unidades hayan.

– Ejemplo 1:

  • Convierte 54.000 segundos a horas.

Como hay dos espacios entre los segundos y las horas, dividimos dos veces entre 60, lo que es igual a dividir entre 3.600.

54.000 ÷ 3.600 = 15

54.000 segundos = 15 horas

– Ejemplo 2:

  • Convierte 120 minutos a horas.

Como solo hay un espacio, dividimos entre 60.

120 ÷ 60 = 2

120 minutos = 2 horas

– Ejemplo 3:

  • Convierte 120 minutos a segundo.

Como solo hay un espacio, multiplicamos por 60.

120 × 60 = 7.200

120 minutos = 7.200 segundos

También hay unidades de tiempo mayores a un día como las siguientes:

  • 1 año = 365 días
  • 1 lustro = 5 años
  • 1 década = 10 años
  • 1 siglo= 100 años
  • 1 milenio = 1.000 años
¡A practicar!

Convierte las siguientes unidades de medida:

  • 0,6 cm a mm.
Solución
0,6 cm = 6 mm.
  • 1,5 m a dm.
Solución
1,5 m = 15 dm.
  • 1,7 m a cm.
Solución
1,7 m = 170 cm.
  • 7,5 kg a g.
Solución
7,5 kg = 7.500 g.
  • 6,9 hg a a dg.
Solución
6,9 hg a = 6.900 dg.
  • 196 dg a a dag.
Solución
196 dg = 1,96 dag.
  • 8 horas a minutos.
Solución
8 horas = 480 minutos.
  • 720 minutos a horas.
Solución
720 minutos = 12 horas.
  • 3 horas a segundos.
Solución
3 horas = 10.800 segundos.
RECURSOS PARA DOCENTES

Artículo “Conversión de unidades de volumen”

En este artículo encontrarás distintos problemas para ejercitar la conversión de unidades de volumen.

VER

Artículo “Conversión de unidades de longitud”

En este artículo hay información complementaria y ejercicios referidos a las unidades de longitud.

VER

CAPÍTULO 3 / TEMA 5

PORCENTAJES

Los porcentajes son expresiones matemáticas que sirven para relacionar dos cantidades. Se emplean en diferentes situaciones como, por ejemplo, los descuentos. Están estrechamente relacionados con los números fraccionales, porque se emplean para representar una fracciones de denominador igual a 100. 

¿qUÉ ES UN PORCENTAJE?

Un porcentaje, al igual que una fracción, es una forma de indicar una parte de un todo. Los porcentajes se utilizan a diario, por ejemplo, en los siguientes casos:

  • El 30 % de los vuelos proviene de Europa.
  • El 40 % de las personas en la fiesta eran hombres y el 60 % eran mujeres.
  • El 60 % de la población mundial tiene acceso a Internet.

Esto quiere decir que:

  • De cada 100 vuelos, 30 proviene de Europa.
  • De cada 100 personas que había en la fiesta, 40 eran hombres y 60 eran mujeres.
  • De cada 100 personas, 60 tienen acceso a Internet.

Como vemos, el número 100 está presente en todos los casos como referencia. Esto sucede porque el porcentaje representa a una fracción decimal cuyo denominador es 100. Entonces, el número que utilizamos para indicar el porcentaje corresponde al numerador, y el denominador es siempre 100:

  • 20 % = 20/100
  • 60 % = 60/100
  • 33 % = 33/100
Un porcentaje, al igual que una fracción, es una forma de indicar una parte de un todo. Los porcentajes representan una fracción decimal cuyo denominador es 100. Se utiliza frecuentemente en la estadística para distinguir a ciertas porciones del total con respecto a otras. Por ejemplo, en esta imagen vemos un gráfico que divide al total en cuatro partes,  la porción más grande representa el 45 %, mientras que las otras representan el 20 %, el 10 % y el 25 % del total.

Símbolo de porcentaje

El símbolo que utilizamos para indicar un porcentaje es “%” y se lee “por ciento“. Podemos observar algunos ejemplos a continuación:

  • 100 % = “cien por ciento”.
  • 80 % = “ochenta por ciento”.
  • 44 % = “cuarenta y cuatro por ciento”.
  • 30 % = “treinta por ciento”.
El símbolo que utilizamos para indicar un porcentaje es %. Cuando un número está acompañado de dicho símbolo se trata de una expresión de este tipo. Por ejemplo, 100 % se lee “cien por ciento”. Los porcentajes también se utilizan en la economía para indicar los aumentos de precios, el crecimiento de las acciones de una empresa y la inflación de un país.

¿Sabías qué?
El agua constituye el 98 % de un melón, el 80 % de un pez y el 70 % de un ser humano.

Cálculo de porcentaje

Para calcular el porcentaje de una cantidad dada se deben seguir los siguientes pasos:

  1. Multiplicar el porcentaje por la cantidad conocida.
  2. Dividir el resultado obtenido entre cien.
  3. Escribir el resultado final.

Por ejemplo:

1. Calcular el 30 % de  60.

Para calcula cuánto es el 30 % de 60 se deben multiplicar ambos números y luego dividir el resultado entre cien de la siguiente forma:

\frac{30\times 60}{100}=\frac{1.800}{100}=18

En este caso el 30 % de 60 es 18.

2. ¿Cuánto es el 20 % de $ 150?

\frac{20\times 150}{100}=\frac{3.000}{100}=30

El 20 % de $ 150 son $ 30.

¿Cómo determinar qué porcentaje se aplicó?

Hay ocasiones en las que necesitamos calcular cuál es el porcentaje aplicado. Esto es muy útil cuando se va a realizar una compra. Por ejemplo, si un pantalón tiene un precio de $ 120 y el descuento es de $ 12, ¿Cuál es el porcentaje de descuento que se le aplicó?

En este caso se debe multiplicar el descuento por 100 y luego dividir el resultado entre el precio del pantalón que es $ 120:

\frac{12\times 100}{120}=\frac{1.200}{120} = 10\, %

El porcentaje de descuento en este caso fue del 10 %, es decir,  $ 12 representa el 10 % de $ 120.

Relación de porcentaje y fracción

Tanto los porcentajes como las fracciones son formas de representar una parte de un todo. Entonces, podemos convertir un porcentaje en una fracción y viceversa.

Convertir fracción a porcentaje

Para convertir cualquier fracción a porcentaje, debemos dividir el numerador con el denominador, y luego multiplicar dicho resultado por cien. Al número obtenido le agregamos siempre el símbolo de porcentaje (%) para indicar que nos referimos a un porcentaje. Por ejemplo, si convertimos 3/5 en porcentaje tenemos que:

Convertir porcentaje a fracción

En este caso, debemos colocar el porcentaje en el numerador de la fracción y agregar 100 como denominador. Luego, simplificamos hasta obtener una fracción irreducible. Por ejemplo, para convertir 20 % a fracción:

La fracción 20/100 se puede simplificar a 1/5 al dividir tanto al numerador como al denominador entre 5.

Los porcentajes y las fracciones son formas de representar una parte de un total. Entonces, podemos convertir tanto los porcentaje a fracciones como las fracciones a porcentajes. Los porcentajes son muy utilizados en las ofertas, para indicar el descuento sobre el total. Mientras mayor sea el porcentaje, mayor será el descuento.

¡A practicar!

1. ¿Cuánto es el 15 % de 300?

a) 150
b) 45
c) 100
d) 30

SOLUCIÓN
b) \frac{15\times 300}{100}=\frac{4.500}{100}=45

2. Convierte los siguientes porcentajes en fracciones.

a) 25 %
b) 35 %
c) 40 %
d) 90 %

SOLUCIÓN

a) \frac{1}{4}

b) \frac{7}{20}

c) \frac{2}{5}

d) \frac{9}{10}

3. Convierte las siguientes fracciones a porcentaje.

a) \frac{4}{5}

b) \frac{1}{2}

c) \frac{7}{50}

d) \frac{1}{4}

RESPUESTAS

a) 80 %
b) 50 %
c) 14 %
d) 25 %

RECURSOS PARA DOCENTES

Artículo “Porcentajes”

En este artículo se explican las características de los porcentajes y los diferentes métodos para calcularlos, como la regla de tres simple.

VER

Artículo “Porcentaje y proporcionalidad. Descuentos y recargos”

En este artículo se explican algunas aplicaciones de los porcentajes, como los descuentos y las recargas.

VER

 

CAPÍTULO 4 / TEMA 5 (REVISIÓN)

Unidades y medidas | ¿Qué aprendimos?

Unidades de medición

Existen diferentes magnitudes físicas como la longitud, el área, el volumen y el tiempo que emplean unidades de medidas particulares. En el caso de la longitud, mide la distancia entre dos puntos; el área mide la superficie; el volumen mide el espacio y el tiempo mide la duración de un suceso. Desde 1960 se creó el Sistema Internacional de Unidades que busca que todos los países usen las mismas unidades de medición: el metro, el kilogramo, el metro cuadrado, el metro cúbico, el segundo, etc.

Los mayas usaban su propio calendario para medir el tiempo y planificar sus cosechas.

Instrumentos de medición

Medir es comparar con base en un patrón, de manera que para poder medir usamos instrumentos que se encuentran calibrados y presentan ciertas características como el rango de medición que soportan y que se indica en su cota superior e inferior. Algunos ejemplos de instrumentos que se usan en la escuela son la regla, la escuadra y el transportador. Los dos primeros miden longitudes y el último mide tamaños de ángulos.

Las reglas que usamos en la escuela generalmente vienen graduadas en centímetros y milímetros.

El tiempo

Para medir el tiempo usamos los relojes y cronómetros. Los relojes pueden ser análogos cuando emplean manecillas o digitales cuando no las emplean. La lectura del tiempo en estos casos se realiza de diferente manera. En un reloj analógico, la esfera se encuentra dividida en 12 horas que a su vez también presenta su división en minutos. Por otro lado, el formato de 24 horas es un sistema de medición que divide el día en 24 horas y comienza a partir de la medianoche hasta la medianoche siguiente.

Existen otras unidades de tiempo, como el día, la semana, el año, el lustro, la década, el siglo y el milenio.

Conversión de unidades

En el mundo existen diferentes unidades de medidas que pueden estar o no relacionados. Esto sucede con el metro, unidad usada para medir longitudes. El metro presenta submúltiplos como el decímetro, el centímetro y el milímetro; y múltiplos como el kilómetro, el hectómetro y el decámetro. Por medio de diagramas podemos transformar unidades de acuerdo a la relación que existan entre ellas, por ejemplo, las unidades de longitud y de capacidad aumentan de 10 en 10 y las de tiempo (segundo, minuto y hora) aumentan de 60 en 60.

El sistema para medir el tiempo es sexagesimal porque cada unidad es 60 veces menor que la anterior.

CAPÍTULO 3 / TEMA 3

capacidad

Si tenemos un vaso de vidrio y una taza pequeña de té, ¿en cuál cabe más agua? En el vaso, ¿cierto? La propiedad que indica lo que cabe dentro de un recipiente se llama capacidad, y la vemos en todos los envases de gaseosas, aceites y jugos. A continuación aprenderás cuáles son sus unidades de medida y cómo convertirlas.

Las unidades de medida de capacidad nos permiten conocer y comparar la cantidad de líquido que contiene un envase con la que contiene otro. El litro y el mililitro son las unidades principales y las usamos a diario. Por ejemplo, podemos tomarnos 2 litros de agua en un día, pero si estamos enfermos, el doctor nos puede recetar 5 mililitros de un jarabe.

el litro y el mililitro

La capacidad nos permite conocer qué cabe dentro de un recipiente, por ejemplo, en uno de leche, perfume o champú. Estas cantidades se expresan con unidades de medida y las más usadas son el litro y el mililitro.

Capacidad y volumen: ¿son lo mismo?

No, la capacidad es la cantidad que cabe dentro de un recipiente, mientras que el volumen es la cantidad de espacio que ocupa un cuerpo. La unidad de medida del volumen es el metro cúbico, mientras que la unidad de medida de la capacidad es el litro.

El litro es la unidad principal de las medidas de capacidad y en forma abreviada se representa con la letra L. Al litro lo podemos dividir en medios litro y cuartos de litro. Observa:

 

– Ejemplo:

Esta jarra tiene capacidad para 1 litro de jugo. Si solo tenemos vasos de ½ litro, ¿cuántos vasos podríamos llenar? ¿y si son de ¼ de litro?

 

Si dividimos un litro en dos partes iguales, cada parte es igual a ½ litro o 0,5 L, es decir, que si tenemos vasos de ½ litro podemos llenar solo 2 vasos.

1 litro = ½ litro + ½ litro

 

Si dividimos un litro en cuatro partes iguales, cada parte es ¼ de litro o 0,25 L, entonces, si tenemos vasos de ¼ de litro podemos llenar solo 4 vasos.

1 litro = ¼ de litro + ¼ de litro + ¼ de litro + ¼ de litro

¡Es tu turno!

  • Susana llenó su termo con ocho vasos de ¼ de litro. ¿Qué capacidad tiene el termo?
Solución
2 litros.
  • Una pecera tiene una capacidad de 4 litros. ¿Cuántas botellas de medio litro son necesarias para llenarla?
Solución
8 botellas.

El litro tiene submúltiplos y con ellos podemos expresar cantidades pequeñas de capacidad, estos son el decilitro (dL), centilitro (cL) y el mililitro (mL). Las equivalencias son las siguientes:

  • 1 decilitro (dL) = 0,1 litros (L)
  • 1 centilitro (cL) = 0,01 litros (L)
  • 1 mililitro (mL) = 0,001 litros (L)

Además de los submúltiplos, el litro tiene múltiplos, es decir, unidades que nos permiten expresar cantidades grandes de capacidad. Estos son el kilolitro (kL), el hectolitro (hL) y el decalitro (daL).

Sus equivalencias son:

  • 1 kilolitro (kL) = 1.000 litros (L)
  • 1 hectolitro (hL) = 100 litros (L)
  • 1 decalitro (dL) = 10 litros (L)

Para que tengas una idea acerca de las unidades de capacidad veamos algunos ejemplos:

 

El mililitro es un submúltiplo del litro y se representa con las letras mL. Se utiliza a menudo para medir pequeñas cantidades de líquidos.

En las antiguas civilizaciones se usaban envases de cerámica de medida estándar para medir el volumen, estas se llamaban ánforas y eran empleadas en todos los territorios griegos. Tenían diferentes tamaños y formas que variaban de acuerdo a su uso y capacidad, había desde 2 litros hasta 26 litros.

conversión de las unidades de capacidad

Las principales unidades de capacidad son el litro y el mililitro. Si queremos comparar dos capacidades, la de un tanque y la de una botella, y una está en litros y la otra en mililitros, lo primero que debemos hacer es convertir las unidades. De esta manera las dos tendrán la misma unidad y podrás compararlas.

Con este esquema podemos convertir litros a sus submúltiplos y viceversa:

Para convertir unidades de capacidad existen dos métodos:

  • El primero consiste en mover a la derecha o a la izquierda la coma del número tantos lugares como casillas sean necesarias para llegar a la unidad deseada.
  • El segundo consiste en multiplicar o dividir por diez tantas veces como casillas se necesiten para llegar a la unidad deseada.

– Ejemplo:

  • Convierte 1,89 L a mL

Primer método

Dibuja el cuadro y mueve tantos lugares a la derecha como sean necesarios hasta llegar a la posición de los mililitros.

Como nos desplazamos tres lugares a la derecha, movemos la coma tres lugares a la derecha.

Observa que después del 9 agregamos un cero y al lado la coma.

Entonces, 1,89 L equivalen a 1.890 mL.

Segundo método

Multiplica tres veces seguidas por diez (10).

Observa que tres veces diez (10) es igual a 10 x 10 x 10 = 1.000. Así que puedes multiplicar de forma directa:

1,89 x 1.000 = 1.890

El resultado será el mismo, 1,89 L son equivalentes a 1.890 mL.

 

– Otro ejemplo:

  • Convierte 4.320 mL a L.

Primer método

Dibuja el cuadro y mueve tantos lugares a la izquierda como sean necesarios hasta llegar a la posición de los litros.

Como nos desplazamos tres lugares a la izquierda, movemos la coma tres lugares a la izquierda.

Entonces, 4.320 mL son equivalentes a 4,32 L.

Segundo método

Divide tres veces seguidas por diez (10).

Observa que tres veces diez (10) es igual a 10 x 10 x 10 = 1.000. Así que puedes dividir de forma directa:

4.320 ÷ 1.000 = 4,32

El resultado será el mismo, 4.320 mL son equivalentes a 4,32 L.

 

Otras medidas de capacidad

• El barril, que equivale a 159 litros, se utiliza para determinar la cantidad de petróleo y algunos de sus productos derivados como la gasolina.

• El galón, que equivale a 3,785 litros, se utiliza cuando compramos enormes cantidades de líquidos, por ejemplo la pintura para pintar la casa.

¿cómo medir la capacidad?

Muchos envases muestran con etiquetas o marcas la capacidad que tienen, y muchos otros sirven para medir el líquido contenido en ellos. En tu hogar puedes ver algunos como estos:

 

Este tipo de recipientes tienen una escala en litros o en mililitros que nos permite conocer la cantidad del líquido que se encuentra dentro de ellos.

– Ejemplo:

Si tenemos una botella llena de leche, pero no conocemos su capacidad, ¿cómo podemos saber cuántos mL de leche contiene la botella?

Para conocer la capacidad de la botella podemos usar un vaso graduado o jarra medidora como esta:

Como puedes ver, el vaso tiene marcas para indicar la medidas en mililitros (mL) hasta llegar a 1 litro (L), que es su capacidad máxima. Así que solo agregamos la leche de la botella en el vaso graduado para poder medir la cantidad de líquido.

 

Después de verter todo lo líquido, nos fijamos en qué marca quedó la leche. En este caso quedó en los 500 mL o ½ L.

Por lo tanto, la botella de leche tiene una capacidad de 500 mL o ½ L.

¡Es tu turno!

¿Cuánto jugo de naranja contiene el vaso graduado?

 

Solución
400 mL.
Usamos las unidades de medida de capacidad a diario. En el supermercado podemos encontrar diferentes productos como agua, jugo, leche, yogurt y aceite envasados en algún recipiente, el cual, sin importar la forma que tenga, tendrá un volumen determinado de ese líquido. Es decir, la forma del envase no tiene relación con su capacidad.

problemas de capacidad

1. Aurora compró 3 litros de jugo de naranja, 4 litros de jugo de manzana, 2 medios litros de jugo de fresa y 4 cuartos de litro de jugo de pera. ¿Cuántos litros de jugo compró en total?

  • Datos

Jugo de naranja: 3 L

Jugo de manzana: 4 L

Jugo de fresa: 2 veces ½ L

Jugo de pera: 4 veces ¼ L

  • Pregunta

¿Cuántos litros de jugo compró en total?

  • Piensa

Para saber la cantidad total de litros debes saber el total de litros por fruta. Así que primero suma los medios litros del jugo de fresa y los cuartos de litro del jugo de pera. Al final, suma con los litro de jugo de naranja y manzana.

  • Resuelve

Juego de fresa:

½ L + ½ L = 1 L

Compró 1 L de jugo de fresa.

Jugo de pera:

¼ L + ¼ L + ¼ L + ¼ L = 1 L

Compró 1 L de jugo de pera.

Todos lo sabores:

3 L + 4 L + 1 L + 1 L = 9 L

  • Solución

Aurora compró 9 litros de jugo en total.


2. Un balde de agua tiene 3,46 litros, si la capacidad total del balde es de 10.000 mililitros, ¿cuántos litros le falta al balde para llenarse?

  • Datos

Capacidad del balde: 10.000 mL

Volumen de agua en el balde: 3,46 L

  • Pregunta

¿Cuántos litros le falta al balde para llenarse?

  • Piensa

a. Tenemos que convertir los mililitros a litros para que los dos datos tengan las mimas unidades.

b. Hay que hacer una resta entre la capacidad total del balde y lo que ya tiene de agua.

  • Resuelve

a. Para convertir los mililitros a litros basta con dividir 10.000 ÷ 1.000.

10.000 ÷ 1.000 = 10

El balde tiene una capacidad total de 10 L.

b. Hacemos la resta:

10 L − 3,46 L = 6,54 L

  • Solución

Faltan 6,54 litros para llenar el balde.


3. Durante el día, Gloria se ha tomado 800 mililitros de jugo de naranja natural y Pedro se ha tomado 1,4 litros.  ¿Cuál de los dos ha tomado más jugo?

  • Datos

Jugo tomado por Gloria: 800 mL

Jugo tomado por Pedro: 1,4 L

  • Pregunta

¿Cuál de los dos ha tomado más jugo?

  • Piensa

Tenemos que convertir los mililitros a litros para que los dos datos tengan las mismas unidades, para eso solo dividimos 800 entre 1.000. Luego comparamos el resultado con 1,4 para saber cuál es la mayor.

  • Resuelve

División:

800 ÷ 1.000 = 0,8

800 mL son equivalentes a 0,8 L.

Comparación

1,4 > 0,8.

  • Solución

Pedro ha tomado más jugo que Gloria.


4. Pablo está enfermo y el doctor le ha indicado tomar 0,7 centilitros de la medicina, pero su jeringuilla dosificadora tiene una escala en mililitros. ¿Cuántos mililitros debe tomar de su medicina?

  • Datos

Medicina indicada: 0,7 centilitros

  • Pregunta

¿Cuántos mililitros debe tomar de su medicina?

  • Piensa

Hay que convertir los centilitros a mililitros para saber cuánto puede tomar.

  • Calcula

0,7 x 10 = 7

  • Solución

Pablo debe tomar 7 mL de su medicina.

¡A practicar!

Realiza las siguientes conversiones:

  • 2.000 mL a L
Solución
2 L
  • 4,8 L a mL
Solución
4.800 mL
  • 2.960 mL a L
Solución
2,96 L
  • 5,97 L a mL
Solución
5.970 mL
  • 500 mL a L
Solución
0,5 L
RECURSOS PARA DOCENTES

Artículo “Capacidad y volumen”

El siguiente material permitirá que trabajes con tus alumnos las unidades de capacidad y volumen y sus aplicaciones.

VER