CAPÍTULO 4 / TEMA 5

RELACIONES DE TIEMPO

El tiempo es una magnitud que nos ayuda a medir la duración de un evento. Gracias al tiempo podemos ordenar sucesos y establecer un pasado, un presente y un futuro. Todas sus unidades de medidas pueden convertirse entre ellas. Aprender sus cálculos básicos permite saber, por ejemplo, en qué momento tenemos que hacer una tarea.

El tiempo es una de las magnitudes más utilizamos cotidianamente, por eso es normal que veas un reloj en todas las casa, escuelas y comercios. Las unidades menores a un día son las horas, minutos y segundo, y para medirlas usamos el reloj o un cronómetro; en cambio, las unidades mayores a un día, como los meses y los años, son medidas con un calendario.

UNIDADES DE Tiempo: equivalencias y conversiones

Todo lo que realizamos consume tiempo: sabemos que el recreo dura 10 minutos, que un partido de fútbol dura 90 minutos o que el día tiene 24 horas. Es una variable tan importante, que en todo el mundo se utilizan las mismas unidades para medir el tiempo, a diferencia de otras magnitudes, como la distancia o el volumen. A algunas de sus unidades más importantes puedes verlas en esta tabla, junto a sus equivalencias:

Unidades de tiempo y sus equivalencia
Menores a un día

 

1 día = 24 horas

1 hora = 60 minutos

1 minuto = 60 segundos

Mayores a un día

 

1 semana = 7 días

1 mes = 30 o 31 días

1 año = 365 días = 12 meses

Conversión de unidades de tiempo

Podemos hacer conversiones entre dos o más unidades de tiempo por medio de una regla de tres: método en el que establecemos relaciones, multiplicamos en forma diagonal y luego dividimos por la unidad restante.

– Ejemplo 1:

¿Cuánto días hay en 96 horas?

En 96 horas hay 4 días.


– Ejemplo 2:

¿Cuántos meses hay en 20 años?

En 20 años hay 240 meses.


– Ejemplo 3:

¿Cuántas horas tiene una semana?

Una semana (7 días) tiene 168 horas.

Otras unidades de tiempo

Para las medidas de tiempo más grandes, las equivalencias más prácticas son:

  • 1 lustro = 5 años
  • 1 década = 10 años
  • 1 siglo = 100 años
  • 1 milenio = 1.000 años

¿Sabías qué?
Hay una unidad de tiempo mucho menor que  el segundo: el microsegundo. Su símbolo es µs y es igual a una millonésima parte de un segundo, es decir, 10−6 s.
En un calendario o agenda representamos todos los días del mes. Son útiles para planificar las actividades a realizar cada día; incluso, algunas agendas dividen cada día en horas, de manera que podamos organizar aún mejor nuestro tiempo. También son útiles para conocer las fechas de cada mes y los días feriados que hay en cada uno de ellos.

el reloj

El reloj es una instrumento para medir el tiempo, gracias a él sabemos las horas, los minutos y los segundos de un día. Pueden ser digitales o analógicos.

Este es un reloj analógico e indica que son “las 6 y 15 minutos”.

 Este es un reloj digital e indica que son “las 10 y 20 minutos de la mañana”.

Abreviaturas am y pm

  • La abreviatura am significa que la hora leída corresponde a antes del mediodía.
  • La abreviatura pm significa que la hora leída corresponde a después del mediodía.

Sistema horario de 24 horas

Los relojes analógcos tienen un sistema de 12 horas, por lo que necesitan hacer dos ciclos completos para cubrir un día. En cambio, los relojes digitales pueden tener, además de un sistema de 12 horas, un sistema de 24 horas que se caracteriza por dividir al día en las 24 horas totales que lo conforman, por lo que no utiliza las abreviaturas am y pm.

La siguiente tabla muestra la relación entre ambos formatos:

Formato 24 horas Formato 12 horas
00:00 h 12:00 am
01:00 h 01:00 am
02:00 h 02:00 am
03:00 h 03:00 am
04:00 h 04:00 am
05:00 h 05:00 am
06:00 h 06:00 am
07:00 h 07:00 am
08:00 h 08:00 am
09:00 h 09:00 am
10:00 h 10:00 am
11:00 h 11:00 am
12:00 h 12:00 pm
13:00 h 01:00 pm
14:00 h 02:00 pm
15:00 h 03:00 pm
16:00 h 04:00 pm
17:00 h 05:00 pm
18:00 h 06:00 pm
19:00 h 07:00 pm
20:00 h 08:00 pm
21:00 h 09:00 pm
22:00 h 10:00 pm
23:00 h 11:00 pm

operaciones con unidades de tiempo

Suma

Los pasos a seguir para sumar horas y minutos son los siguientes:

  1. Sumamos los minutos y luego las horas.
  2. Si los minutos son 60, colocamos 00 en la columna de los minutos y sumamos 1 hora en la columnas de las horas.
  3. Si los minutos son más de 60, restamos 60 a ese resultado y sumamos 1 hora en la columnas de las horas.
  4. Escribimos la hora final.

– Ejemplo 1:

¿Cuánto es 2:36 + 5:15?

Así que:

2 h y 36 min + 5 h y 15 min = 7 h y 51 min

También podemos representarlo de esta manera:

02:36 + 05:15 = 07:51


– Ejemplo 2:

Marta salió de su casa a las 3: 45 pm y luego de 2 horas y 15 minutos llegó a la casa de su abuela, ¿a qué hora llegó?

  • Datos

Hora de salida: 3 h y 45 min

Duración del recorrido: 2 h y 15 min

  • Analiza

Tenemos que sumar la hora de salida con el tiempo que duró en el recorrido para saber la hora de llegada. Para esto sumamos primero los minutos y luego las horas.

  • Calcula

Primero sumamos los minutos: 45 min + 15 min = 60 min. Como 60 min son iguales a 1 h, escribimos 00 y sumamos 1 hora a la columna de las horas.

Luego sumamos las horas: 1 h + 3 h + 2 h = 6 h.

  • Responde

Marta llegó a las 6 pm en punto.


– Ejemplo 3:

Carla entró a un examen a las 8:50 am y tardó 2 horas y 39 minutos en hacerlo, ¿a qué hora salió del examen?

  • Datos

Hora de entrada: 8 h y 50 min

Duración en el examen: 2 h y 39 min

  • Analiza

Si sumamos la hora de entrada con el tiempo que duró en el examen tendremos la hora de salida del examen. Primero sumamos los minutos y luego las horas.

  • Calcula

Sumamos los minutos: 50 + 39 = 89. Pero ya sabemos que 60 minutos forman una hora, así que tenemos que “sacar” 60 min de 89 min, es decir, 89 − 60 = 29.

Escribimos 29 min en la columna de los minutos y sumamos 1 h en la columna de las horas.

Luego sumamos las horas: 1 h + 8 h + 2 h = 11 h.

  • Responde

Carla salió a las 11:29 am.

Una de las primeras formas de medir el tiempo fue por medio de un reloj solar. Este funciona gracias a la sombra que genera el Sol durante el día sobre un estilo ubicado encima de una superficie. El movimiento diurno del Sol hace que la sombra cambie de dirección y de este modo se podía saber con bastante precisión la hora del día.

Resta

Los pasos a seguir para restar horas y minutos son los siguientes:

  1. Restamos los minutos.
  2. Si el minuendo es menor que el sustraendo, sumamos 60 minutos (que es igual a 1 hora) a ese minuendo. Luego restamos una hora de la columna de las horas.
  3. Restamos las horas.
  4. Escribimos el resultado.

– Ejemplo 1:

¿Cuánto es 4:11 – 2:47?

Lo primero que debemos hacer es colocar una hora sobre otra.

Como 11 es menor que 47 y no lo puede restar, tomamos “prestado” 60 minutos (1 hora) de la columna de las horas, es decir, sumamos a 11 min + 60 min = 71 min. Luego restamos esa hora de la columna de las horas: 4 h − 1 h = 3 h.

Ahora sí podemos hacer la resta de minutos: 71 min − 47 min = 24 min.

Después restamos las horas: 3 h − 2 h = 1 h.

Entonces:

4 h y 11 min − 2 h y 47 min = 1 h y 24 min

También lo podemos escribir así:

4:11 − 2:47 = 1:24


– Ejemplo 2:

Después de 45 min, un tren llegó a las 16 h y 15 min, ¿a qué hora salió el tren?

  • Datos

Duración de recorrido: 45 min

Hora de llegada: 16 h y 15 min

  • Analiza

Hay que restar el tiempo recorrido a la hora de llegada para saber la hora exacta de salida.

  • Calcula

Como 15 es menor que 45, tomamos prestado 60 minutos (1 hora) de la columna de las horas. Por lo tanto: 15 min + 60 min = 75 min. Al prestar 1 hora, tenemos que restarla de la columna de las horas, así que: 16 h − 1 h = 15 h. Luego hacemos la resta de minutos y horas.

  • Responde

El tren salió a las 15:30.


– Ejemplo 3:

Francisco tomó el bus para visitar a sus primos en otra ciudad. El bus salió a las 8:30 am y llegó a las 10:45 am ¿cuánto duró el viaje?

  • Datos

Hora de salida: 8 h y 30 min

Hora de llegada: 10 h y 45 min

  • Analiza

Si restamos la hora de salida a la hora de llegada tendremos la diferencia de tiempo entre ambas. Restamos primero los minutos y luego las horas.

  • Calcula

  • Responde

El viaje duró 2 h y 15 min.

¡A practicar!

1. Resuelve las operaciones de tiempo:

  • 8:45 + 2:45
Solución
8:45 + 2:45 = 11:30
  • 4:25 − 3:42
Solución
4:25 − 3:42 = 00:43
  • 10:20 + 6:15
Solución
10:20 + 6:15 = 16:35
  • 8:23 − 5:15
Solución
8:23 − 5:15 = 3:08
  • 1:50 + 9:38
Solución
1:50 + 9:38 = 11:28
  • 12:12 − 6:30
Solución
12:12 − 6:30 = 5:42

 

2. Responde:

  • ¿Cuántas horas hay en 5 días?
Solución
120 horas.
  • ¿Cuántos días hay en 1 década?
Solución
3.650 días.
  • ¿Cuántos segundos hay en 2 horas?
Solución
7.200 segundos.
  • ¿Cuántos meses hay en 2 lustros?
Solución
240 meses.
  • ¿Cuántas décadas hay en 3 siglos?
Solución
30 décadas.
RECURSOS PARA DOCENTES

Artículo “Operaciones en el sistema sexagesimal”

Este artículo explica la forma de realizar operaciones con unidades de tiempo en el sistema sexagesimal.

VER

Artículo “Medidas de tiempo”

Con este recurso podrás ampliar la información sobre cómo hacer operaciones de suma y resta con las medidas de tiempo.

VER

CAPÍTULO 1 / TEMA 1

LECTURA DE NÚMEROS

Los números pueden parecer muy difíciles si tienen muchas cifras, pero no son tan complicados cuando conoces la posición de los dígitos y el valor relativo de cada uno. Con unos pasos muy sencillos podrás leerlos, ya sea que pertenezcan a nuestro sistema de numeración decimal o al sistema de numeración romano.

Lectura de números naturales

Brasil es un país ubicado en América del Sur. Tiene una superficie total de 8.515.770 km2 y una población estimada de 210.385.000 habitantes. Se trata del segundo país más poblado de todo el continente americano. ¿Puedes leer esos números?, ¿cuántos habitantes hay en Brasil?, ¿cuál es su superficie? En este artículo, veremos los pasos para saber cómo leerlos.

Los números naturales son aquellos que usas para contar. Inician desde el cero (0) y siguen hasta el infinito. Este conjunto de números fue el primero que se utilizó para calcular y por definición matemática se representan así:

\mathbb{N} = \left \{0,\, 1,\, 2,\, 3,\, 4,\, 5,\, ... \right \}

Estos son los que más empleas día a día. Con ellos das la hora, tu fecha de cumpleaños o tu número de identificación. En cualquier caso, la ubicación de cada cifra cumple un valor relativo. Así, en el número 25.651, el 5 se ubica en dos posiciones: en las decenas y en las unidades de mil. El valor relativo de cada cifra es:

Y el número se lee: veinticinco mil seiscientos cincuenta y uno.

Las posiciones de cada cifra permiten la correcta lectura de los números, en especial, cuando los números son grandes. Para leer un número natural, lo primero que debes hacer es escribirlo correctamente. Esto se logra por medio de agrupación de dígitos. Para leer el número 123604785219, los pasos son los siguientes:

  1. Coloca un punto cada tres dígitos. Empieza de derecha a izquierda.
  2. Cada punto rojo, de derecha a izquierda, representará la palabra “mil”.
  3. Cada punto azul, de derecha a izquierda, representará en orden ascendente la secuencia: millones, billones, trillones, cuatrillones, quintillones, etc.

Por último, se lee el número de izquierda a derecha: ciento veintitrés mil seiscientos cuatro millones setecientos cincuenta y ocho mil doscientos diecinueve.

¿Cómo se leen estos números?

  • 121.568.265

Solución
Ciento veintiún millones quinientos sesenta y ocho mil doscientos sesenta y cinco.
  • 923.645.687.156

Solución
Novecientos veintitrés mil seiscientos cuarenta y cinco millones seiscientos ochenta y siete mil ciento cincuenta y seis.
  • 216.035.548.665.021

Solución
Doscientos dieciséis billones treinta y cinco mil quinientos cuarenta y ocho millones seiscientos sesenta y cinco mil veintiuno.

¿Sabías qué?
El número de Graham es el número más grande que se ha representado matemáticamente. Su símbolo es la letra G y requirió el uso de símbolos y la notación flecha de Knuth para su representación.

LECTURA DE NÚMEROS DECIMALES

Los números decimales se componen de una parte entera y una parte decimal que va separada por una coma. Estos números están presentes en nuestro día a día: en nuestro peso, cuando usamos el termómetro o en los precios de los productos.

Las partes de un número decimal están divididas por un separador. Aunque el Sistema Internacional de Unidades (SI) y la ISO aceptan el punto y la coma como separador decimal, la Real Academia Española aclara que la coma es “el signo igual al ortográfico que se emplea para separar la parte entera de la parte decimal en las expresiones numéricas”.

Para el número 325,086 el valor relativo de cada cifra se representa así:

Según el lugar que ocupe el decimal se representará en orden ascendente la secuencia: décima, centésima, milésima, diezmilésima, cienmilésima, milmilésima, etc. Todos estos son valores más pequeños que uno (1). Observa la tabla:

Décimas Centésimas Milésimas
La décima parte de la unidad es

\frac{1}{10}= 0,1

La centésima parte de la unidad es

\frac{1}{100}= 0,01

La milésima parte de la unidad es

\frac{1}{1000}= 0,001

1 U = 10 d 1 U = 100 c

1 d = 10 c

1 U = 1.000 m

1 d = 100 m

1 c = 10 m

Donde:

U: unidad

d: décimas

c: centésimas

m: milésimas

De centenas a milésimas

Para leer un número decimal debes seguir estos pasos:

  1. Lee la parte entera de izquierda a derecha seguida de la palabra “enteros”.
  2. Lee toda la parte decimal como se lee la parte entera.
  3. Menciona la posición en la que se encuentra la última cifra decimal.

Entonces, la lectura del número 122,96 es: ciento veintidós enteros noventa y seis centésimas.

Existe otra forma de leer números decimales, los pasos son los siguientes:

  1. Lee la parte entera de izquierda a derecha seguida de la palabra “coma”.
  2. Lee toda la parte decimal como se lee la parte entera.

De este modo, la lectura del número 122,96 también es: ciento veintidós coma noventa y seis.

¿Cómo se leen estos números?

  • 2,364

Solución
Dos enteros trescientos sesenta y cuatro milésimas.
  • 5.879.009,587

Solución
Cinco millones ochocientos setenta y nueve mil nueve enteros quinientos ochenta y siete milésimas.
  • 175.756,2

Solución
Ciento setenta y cinco mil setecientos cincuenta y seis enteros dos décimas.

¿Sabías qué?
El número pi (π) es un número con decimales infinitos y es una de las constantes matemáticas más utilizadas. Relaciona el perímetro de una circunferencia con la amplitud de su diámetro.

LECTURA DE NÚMEROS ROMANOS

La numeración romana tiene siete símbolos representados por siete letras del abecedario latino:

Número romano I V X L C D M
Número arábigo 1 5 10 50 100 500 1.000

Por ejemplo, el número XVI es igual a 16 porque:

XVI = 10 + 5 + 1 = 16

Si bien los números romanos están en desuso en la actualidad, es posible verlos en relojes, capítulos y tomos de libros, materias en programas académicos, leyes y reformas, sagas de películas, concursos, actos y escenas de obras de teatro, nombres de papas, nombres de reyes, y en lápidas y esculturas conmemorativas.

Para poder realizar la lectura de los números romanos de pocas o muchas cifras necesitas conocer las siguientes reglas:

1. Regla de la suma

Si a la derecha de una número romano tenemos otro de menor valor, entonces las cifras se suman.

CL = 100 + 50 = 150

XXIII = 10 + 10 + 3 = 23

2. Regla de la resta

  • I solo puede colocarse delante de V y X.

IV = 5 − 1 = 4

IX = 10 − 1 = 9

  • X solo puede restar a L y C.

XL = 50 − 10 = 40

XC = 100 − 10 = 90

  • C solo puede restar a D y M.

CD = 500 − 100 = 400

CM = 1.000 − 100 = 900

  • V, L y D nunca pueden usarse para restar otros números.

3. Regla de la repetición

Podemos repetir I, X, C y M un máximo de tres veces. En cambio, V, L y D no se pueden repetir.

III = 1 + 1 + 1 = 3

MMM = 1.000 + 1.000 + 1.000 = 3.000

4. Regla de la multiplicación

Después de 3.999 el sistema es diferente y se coloca una raya horizontal encima del número romano, esto significa que se ha multiplicado por 1.000. Si se colocan dos rayas, el número será multiplicado por 1.000.000.

\overline{V} = 5 \times 1.000 = 5.000

\overline{XLIV} = [(50 - 10)+(5-1)] \times 1.000 = 44 \times 1.000 = 44.000

\overline{MMCXC}= [(1.000+1.000)+(100)+(100-10)]=2.190\times1.000=2.190.000

VER INFOGRAFÍA

De número natural a número romano

Al descomponer un número natural puedes encontrar el equivalente a su número romano. Para ello, solo debes usar los números 1, 5, 10, 50, 100, 500 o 1.000 en la descomposición. Las sumas y restas están permitidas.

Por ejemplo, el número romano equivalente a 279 se encuentra por medio de esta descomposición:

¿Estos números romanos son correctos?

  • VIIII

Solución
No. El número romano I solo puede repetirse un máximo de tres veces. Si deseas escribir el número 9 en números romanos lo correcto es:

IX = 10 − 1 = 9

  • VX

Solución
No. El número romano X solo puede restar a L y C. Si deseas escribir el número 15 en número romano lo correcto es:

XV = 10 + 5 = 15 

  • DDD

Solución
No. El número romano D no puede repetirse. Si deseas escribir el número 1.500 en número romanos, lo correcto es:

MD = 1.000 + 500 = 1.500

VALOR POSICIONAL DE CIFRAS

El sistema de numeración decimal es el más usado en el mundo, se caracteriza por:

  • Estar conformado por 10 cifras: 0, 1, 2, 3, 4, 5, 6, 7, 8 y 9.
  • Ser posicional, es decir, cada cifra tiene un valor de acuerdo a su posición dentro del número.
Mismos números, distintas posiciones

Con tres dígitos, como 8, 3 y 5, se pueden formar varios números, sin embargo, no todos tendrán el mismo valor posicional.

Según la posición que ocupe un dígito en un número su valor será diferente. Por ejemplo, el dígito 3 ocupa distintos puestos en el número 53.412.130.004.322,18, y por lo tanto, cada uno tiene un valor diferente. Observa la tabla de valores posicionales:

En este número, el dígito 3 ocupa tres posiciones:

  • Unidad de billón, que equivale a 1.000.000.000.000 unidades, entonces:

3 x 1.000.000.000.000 = 3.000.000.000.000

  • Decena de millón, equivalente a 10.000.000 unidades, entonces:

3 x 10.000.000 = 30.000.000

  • Centena, que equivale a 100 unidades, entonces:

3 x 100 = 300

Este número se lee: cincuenta y tres billones cuatrocientos doce mil ciento treinta millones cuatro mil trescientos veintidós enteros dieciocho centésimas.

Tabla de equivalencias

 

1 unidad = 1 unidad

1 decena = 10 unidades

1 centena = 100 unidades

1 unidad de mil (millar) = 1.000 unidades

1 decena de mil (millar) = 10.000 unidades

1 centena de mil (millar) = 100.000 unidades

1 unidad de millón = 1.000.000 unidades

1 decena de millón = 10.000.000 unidades

1 centena de millón = 100.000.000 unidades

1 unidad de millar de millón = 1.000.000.000 unidades

1 decena de millar de millón = 10.000.000.000 unidades

1 centena de millar de millón = 100.000.000.000 unidades

1 unidad de billón = 1.000.000.000.000 unidades

1 decena de billón = 10.000.000.000.000 unidades

1 centena de billón = 100.000.000.000.000 unidades

¿Qué valor posicional tienen los números marcados en rojo?

587.124.687,7956

Solución
Decena.

8.147.561,115

Solución
Unidad de millón.

64.789,185948

Solución
Milésima.

189.547.963.004.279

Solución
Centena de billón.
Ejercicios

1. Lee y escribe en letras los siguientes números:

  • 3465268
Solución
3.465.268 = tres millones cuatrocientos sesenta y cinco mil doscientos sesenta y ocho.
  • 12563,158
Solución
12.563,158 = doce mil quinientos sesenta y tres enteros ciento cincuenta y ocho milésimas.
  • 684812313
Solución
684.812.313 = seiscientos ochenta y cuatro millones ochocientos doce mil trescientos trece.
  • \fn_cm \overline{LXV}
Solución
Sesenta y cinco mil.
  • MM
Solución
Dos mil.
  • 165,5346821
Solución
Ciento sesenta y cinco enteros cinco millones trescientos cuarenta y seis mil ochocientos veintiún diezmillonésimas.
  • \fn_cm \overline{MMMC}
Solución
Tres millones cien mil.
  • \fn_cm \overline{DXI}
Solución
Quinientos once mil.
RECURSOS PARA DOCENTES

Artículo “Números grandes: lectura y escritura”

El siguiente artículo le permitirá ampliar información sobre la lectura y escritura de números grandes.

VER