CAPÍTULO 2 / TEMA 3

¿QUÉ ES LA MULTIPLICACIÓN?

CUANDO UNA CANTIDAD SE REPITE VARIAS VECES PODEMOS ACUDIR A UNA OPERACIÓN BÁSICA DE LAS MATEMÁTICAS: LA MULTIPLICACIÓN. ESTA ES IGUAL A UNA SUMA RESUMIDA Y LA USAMOS CADA VEZ COMPRAMOS VARIOS PRODUCTOS IGUALES, POR EJEMPLO, 4 HELADOS A $ 2 ES IGUAL A 4 × 2 Y SE LEE “CUATRO POR DOS”.

TANTA VECES TANTO

SI TENEMOS LA MISMA CANTIDAD DE ELEMENTOS EN VARIOS GRUPOS PODEMOS SABER LA CANTIDAD TOTAL SI CONTAMOS CUÁNTOS GRUPOS HAY Y LUEGO CONTAMOS CUÁNTO HAY EN CADA GRUPO.

– EJEMPLO 1:

¿CUÁNTOS GRUPOS HAY?, ¿CUÁNTAS CEREZAS HAY EN CADA GRUPOS?, ¿CUÁNTAS CEREZAS HAY EN TOTAL?

  • HAY 3 GRUPOS.
  • HAY 2 CEREZAS EN CADA GRUPO.
  • HAY 6 CEREZAS EN TOTAL PORQUE 2 + 2 + 2 = 6

PODEMOS DECIR QUE:

3 VECES 2 ES IGUAL A 6


– EJEMPLO 2:

¿CUÁNTOS GRUPOS HAY?, ¿CUÁNTAS PALETAS HAY EN CADA GRUPO?, ¿CUÁNTAS PALETAS HAY EN TOTAL?

  • HAY 2 GRUPOS.
  • HAY 4 PALETAS EN CADA GRUPO.
  • HAY 8 PALETAS EN TOTAL PORQUE 4 + 4 = 8

PODEMOS DECIR QUE:

2 VECES 4 ES IGUAL A 8

¡ES TU TURNO!

¿CUÁNTOS GRUPOS HAY?, ¿CUÁNTAS BANANAS HAY EN CADA GRUPO?, ¿CUÁNTAS BANANAS HAY EN TOTAL?

SOLUCIÓN
  • HAY 3 GRUPOS.
  • HAY 3 BANANAS EN CADA GRUPO.
  • HAY 9 BANANAS EN TOTAL PORQUE 3 + 3 + 3 = 9

ASÍ QUE:

3 VECES 3 ES IGUAL A 9

LA MULTIPLICACIÓN Y SUS ELEMENTOS

CUANDO SABEMOS LA CANTIDAD DE GRUPOS Y LA CANTIDAD DE ELEMENTOS EN CADA GRUPO PODEMOS HACER UNA OPERACIÓN LLAMADA MULTIPLICACIÓN. LA USAMOS CADA VEZ QUE LA CANTIDAD DENTRO DE CADA GRUPO SEA LA MISMA. LA MULTIPLICACIÓN ESTÁ FORMADA POR FACTORES Y UN PRODUCTO.

¿SABÍAS QUÉ?
EL SIGNO DE MULTIPLICACIÓN ES × Y SE LEE “POR”.

– EJEMPLO 1:

¿CUÁNTAS FRESAS HAY EN TOTAL?

LA CANTIDAD TOTAL DE FRESAS EN ESTA IMAGEN LA PODEMOS REPRESENTAR ASÍ:

3 + 3 + 3 + 3 = 12

4 VECES 3 ES IGUAL A 12

O COMO UNA MULTIPLICACIÓN:

4 × 3 = 12

  • EL 4 REPRESENTA LA CANTIDAD DE GRUPOS. ES UN FACTOR.
  • EL 3 REPRESENTA LA CANTIDAD DE FRESAS EN CADA GRUPO. ES UNA FACTOR.
  • EL 12 REPRESENTA EL TOTAL DE FRESAS. ES EL PRODUCTO O RESULTADO.

RESPUESTA: HAY 12 FRESAS.


– EJEMPLO 2:

¿CUÁNTAS LAZOS HAY EN TOTAL?

4 + 4 + 4 + 4 = 16

4 VECES 4 ES IGUAL A 16

4 × 4 = 16

RESPUESTA: HAY 16 LAZOS.

LA MULTIPLICACIÓN ES UNA OPERACIÓN QUE SE UTILIZA PARA ABREVIAR SUMAS REPETIDAS. LA SUMA 4 + 4 ES IGUAL QUE 2 × 4, YA QUE SON 2 VECES LAS QUE SE REPITE EL 4. POR EJEMPLO, SI TENEMOS 5 CAJAS DE ALFAJORES CON 9 EN CADA UNA. LA SUMA REPETIDA SERÍA: 9 + 9 + 9 + 9 + 9 Y EN MULTIPLICACIÓN 9 × 5. AMBAS EXPRESIONES DARÁN EL MISMO RESULTADO: 45 ALFAJORES EN TOTAL.

EL ORDEN DE LOS FACTORES NO MODIFICA EL PRODUCTO

NO IMPORTA EN QUÉ ORDEN ESCRIBAS LOS FACTORES EN UNA MULTIPLICACIÓN, EL RESULTADO SIEMPRE SERÁ EL MISMO. EJEMPLO:

3 × 4 = 12 PORQUE 4 + 4 + 4 = 12

4 × 3 = 12 PORQUE 3 + 3 + 3 + 3 = 12

EL DOBLE

EL DOBLE DE UNA CANTIDAD ES IGUAL A ESA CANTIDAD MULTIPLICADA POR 2.

– EJEMPLO 1:

SI TENEMOS 5 MANZANAS, ¿CUÁL ES EL DOBLE?

PRIMERO DIBUJAMOS LAS 5 MANZANAS:

COMO DEBEMOS SABER EL DOBLE, REPETIMOS EL CONJUNTO PARA TENERLO 2 VECES:

CONTAMOS LAS MANZANAS O REPRESENTAMOS COMO UNA MULTIPLICACIÓN:

5 + 5 = 10

2 VECES 5 ES IGUAL A 10

2 × 5 = 10

LUEGO RESPONDEMOS:

EL DOBLE DE 5 MANZANAS SON 10 MANZANAS.


– EJEMPLO 2:

¿CUÁL ES EL DOBLE DE 8?

COMO YA SABEMOS EL PROCESO, BASTA CON QUE SUMEMOS DOS VECES EL MISMO NÚMERO (8) O QUE MULTIPLIQUEMOS 8 POR 2.

8 + 8 = 16

2 × 8 = 16

EL DOBLE DE 8 ES 16.


– EJEMPLO 3:

¿CUÁL ES EL DOBLE DE 7?

7 + 7 = 14

2 × 7 = 14

EL DOBLE DE 7 ES 14.

LAS TABLAS DE MULTIPLICAR

SON UN RECURSO EXPRESADO EN UNA CUADRÍCULA DONDE PODEMOS VER LA RELACIÓN DE LOS PRODUCTOS ENTRE DOS FACTORES. LAS TABLAS DE MULTIPLICAR MUESTRAN DE FORMA RESUMIDA EL RESULTADO DE LAS MULTIPLICACIONES.

¡CONSTRUYAMOS LA TABLA DEL 2!

EN CADA CUADRO HAY 2 PELOTAS.

2 × 1 = 2
2 × 2 = 4
2 × 3 = 6
2 × 4 = 8
2 × 5 = 10
2 × 6 = 12
2 × 7 = 14
2 × 8 = 16
2 × 9 = 18

OBSERVA LOS PRODUCTOS (2, 4, 6, 8, 10, …). TODOS AUMENTAN DE 2 EN 2.

¡ES TU TURNO!

CONSTRUYE LA TABLA DE MULTIPLICAR DEL 3.

EN CADA CUADRO HAY 3 NUECES.

3 × 1 = 3
SOLUCIÓN
3 × 1 = 3
3 × 2 = 6
3 × 3 = 9
3 × 4 = 12
3 × 5 = 15
3 × 6 = 18
3 × 7 = 21
3 × 8 = 24
3 × 9 = 27

UNA GRAN HERRAMIENTA

PARA HACER CÁLCULOS DE MULTIPLICACIONES SE IDEARON LAS TABLAS DE MULTIPLICAR, QUE NO SON MÁS QUE UN ATAJO PARA REALIZAR SUMAS LARGAS DE FORMA RÁPIDA. LA FORMA MÁS COMÚN DE REPRESENTAR LAS TABLAS DE MULTIPLICACIÓN ES, COMO SU NOMBRE LO INDICA, A TRAVÉS DE TABLAS. NORMALMENTE SE MUESTRAN LAS TABLAS DEL 1 AL 10 Y CADA UNA DE ELLAS INDICA LAS MULTIPLICACIONES DEL NÚMERO QUE REPRESENTAN DEL 1 AL 10 O DEL 0 AL 10.

 

¡A PRACTICAR!

1. OBSERVA LOS GRUPOS. RESUELVE COMO SUMA REPETIDA, TANTAS VECES TANTO Y MULTIPLICACIÓN.

SOLUCIÓN

5 + 5 + 5 = 15

3 VECES 5 ES IGUAL A 15

3 × 5 = 15

SOLUCIÓN

2 + 2 + 2 + 2 = 8

4 VECES 2 ES IGUAL A 8

4 × 2 = 8

SOLUCIÓN

4 + 4 + 4 + 4 = 16

4 VECES 4 ES IGUAL A 16

4 × 4 = 16

 

2. RESPONDE:

  • ¿CUÁL ES EL DOBLE DE 9?
SOLUCIÓN
18
  • ¿CUÁL ES EL DOBLE DE 2?
SOLUCIÓN
4
  • ¿CUÁL ES EL DOBLE DE 6?
SOLUCIÓN
12
RECURSOS PARA DOCENTES

Artículo “Trucos para aprender las tablas de multiplicar”

En el siguiente artículo encontrarás un conjuntos de consejos para aprender las tablas de multiplicar.

VER

CAPÍTULO 2 / TEMA 2

sustracción

LA RESTA O SUSTRACCIÓN ES LA OPERACIÓN INVERSA A LA SUMA. EN ESTE CÁLCULO “QUITAMOS” UNA CANTIDAD A OTRA, POR EJEMPLO, SI TENEMOS 8 CARAMELOS Y NOS COMEMOS 3, AL FINAL TENDREMOS SOLO 5. AUNQUE TIENE MUCHA RELACIÓN CON LA SUMA, NO CUMPLE CON LAS MISMAS PROPIEDADES. EN ESTE ARTÍCULO APRENDERÁS CÓMO RESTAR NÚMEROS DE HASTA TRES CIFRAS.

LA SUSTRACCIÓN Y SUS ELEMENTOS

LA SUSTRACCIÓN ES UNA OPERACIÓN QUE CONSISTE EN RESTAR O QUITAR UNA CANTIDAD LLAMADA SUSTRAENDO A OTRA LLAMADA MINUENDO.

– EJEMPLO:

MARÍA TENÍA 10 MAGDALENAS Y REGALÓ 8 MAGDALENAS A SUS AMIGOS, ¿CUÁNTAS MAGDALENAS LE QUEDARON?

ESTE PROBLEMA LO SOLUCIONAMOS POR MEDIO DE UNA SUSTRACCIÓN. AL MINUENDO 10 LE “QUITAMOS” EL SUSTRAENDO 8 (10 − 8). POR ESTO, LA RESTA O DIFERENCIA ES 2.

UNA DE LAS FORMAS MÁS SENCILLAS DE HACER RESTAS DE PEQUEÑAS CANTIDADES ES CON LOS DEDOS O CON PALITOS. POR EJEMPLO, SI DESEAS RESTARLE 4 A 9, DEBES TOMAR 9 PALITOS, LUEGO QUITAS 4 PALITOS Y LA CANTIDAD DE PALITOS QUE TE QUEDEN SERÁ LA DIFERENCIA O RESTA. LO REPRESENTAMOS ASÍ: 9 − 4 = 5. SEGURO TIENES PALITOS EN TU CASA. ¡INTÉNTALO!

 

RESTA CON TABLAS POSICIONALES

ES UNA MANERA DE REPRESENTAR LAS RESTAS O SUSTRACCIONES. CONSISTE EN COLOCAR EN COLUMNAS LAS UNIDADES, LAS DECENAS Y LAS CENTENAS DE CADA NÚMERO. POR EJEMPLO:

COMO VES, PRIMERO RESTAMOS LA UNIDADES (9 − 8 = 1) Y LUEGO LAS DECENAS (4 − 0 = 4).

¡ES TU TURNO!

REALIZA LAS SIGUIENTES RESTAS:

  • 79 − 6
  • 36 − 4
  • 25 − 2
SOLUCIÓN

¿SABÍAS QUÉ?
SI NO HAY UN NÚMERO EN LA CASILLA DE LAS DECENAS O CENTENAS SE ENTIENDE QUE HAY UN CERO. 

RESTAS PRESTANDO

CUANDO LA UNIDAD DEL MINUENDO ES MENOR QUE LA DEL SUSTRAENDO TENEMOS QUE “PRESTAR” UNA DECENA. SI SUCEDE CON LA DECENA DEL MINUENDO, PRESTAMOS UNA CENTENA. LOS PASOS SON LOS SIGUIENTES:

1. COLOCAMOS EL MINUENDO SOBRE EL SUSTRAENDO. DIBUJAMOS LA LÍNEA Y EL SIGNO “MENOS”.

 

2. COMO A 3 NO SE LE PUEDE RESTAR 7, PRESTAMOS UNA DECENA A LA POSICIÓN DE LAS UNIDADES. DE ESTE MODO, EL 3 SE TRANSFORMA EN 13. COMO 6 PRESTÓ UNA DECENA, LO TACHAMOS Y AHORA SE CONVIERTE EN 5.

 

3. RESTAMOS LAS UNIDADES. TENEMOS QUE 13 − 7 = 6.

 

4. RESTAMOS LA DECENAS. TENEMOS QUE 5 − 2 = 3.

 

– OTROS EJEMPLOS:

 

TAMBIÉN PUEDE OCURRIR CON LAS CENTENAS. OBSERVA:

PROPIEDADES DE LA SUSTRACCIÓN

LA SUSTRACCIÓN NO CUMPLE CON LAS MISMAS PROPIEDADES DE LA ADICIÓN. LA SUSTRACCIÓN NO CUMPLE CON LA PROPIEDAD CONMUTATIVA, NI CON LA PROPIEDAD ASOCIATIVA.

ELEMENTO NEUTRO

LA RESTA DE CUALQUIER NÚMERO CON CERO DA COMO RESULTADO EL NÚMERO INICIAL.

¿CÓMO COMPROBAR UNA RESTA?

CON LA SUMA DEL SUSTRAENDO Y LA DIFERENCIA O RESTA.

¡ES TU TURNO!

REALIZA ESTAS RESTAS Y LUEGO COMPRUEBA EL RESULTADO.

  • 966 − 82
SOLUCIÓN
966 − 82 = 884

COMPROBACIÓN:

82 + 884 = 966

  • 32 − 27
SOLUCIÓN
32 − 27 = 5

COMPROBACIÓN:

27 + 5 = 32

LA RESTA NO TIENE LAS MISMAS PROPIEDADES DE LA SUMA YA QUE SU OPERACIÓN ES LA INVERSA. LA RESTA NO ES CONMUTATIVA PORQUE SI CAMBIAMOS DE POSICIÓN EL SUSTRAENDO Y EL MINUENDO SU RESULTADO NO VA A SER UN NÚMERO NATURAL. LA RESTA NO ES ASOCIATIVA PORQUE AL CAMBIAR EL ORDEN DE LAS CANTIDADES CAMBIA SU RESULTADO.

¡PRACTIQUEMOS LO APRENDIDO!

1. JOSÉ QUIERE COMPRAR UNOS INSTRUMENTOS QUE CUESTAN $ 257. SI HA AHORRADO $ 129, ¿CUÁNTO DINERO LE FALTA  PARA PODER COMPRAR LOS INSTRUMENTOS?

  • DATOS

PRECIO DE LOS INSTRUMENTOS: $ 257

DINERO AHORRADO: $ 129

  • PREGUNTA

¿CUÁNTO DINERO LE FALTA A JOSÉ PARA PODER COMPRAR LOS INSTRUMENTOS?

  • ANALIZA

TENEMOS QUE HACER UNA RESTA. EL MINUENDO ES 257 Y EL SUSTRAENDO ES 129. RESTAMOS PRIMERO LAS UNIDADES, LUEGO LAS DECENAS Y LAS CENTENAS.

  • CALCULA

  • RESPUESTA

A JOSÉ LE FALTAN $ 128 PARA PODER COMPRAR LOS INSTRUMENTOS.

 


2. UNA ESCUELA PLANIFICA UN VIAJE ESCOLAR. EN TOTAL VAN 240 PERSONAS ENTRE ESTUDIANTES Y PROFESORES. SI HAY 25 PROFESORES, ¿CUÁNTOS ESTUDIANTES VAN AL VIAJE?

  • DATOS

TOTAL DE ESTUDIANTES Y PROFESORES: 240

TOTAL DE PROFESORES: 25

  • PREGUNTA

¿CUÁNTOS ESTUDIANTES VAN AL VIAJE?

  • ANALIZA

TENEMOS QUE HACER UNA RESTA. EL MINUENDO ES 240 Y EL SUSTRAENDO ES 25. RESTAMOS PRIMERO LAS UNIDADES, LUEGO LAS DECENAS Y LAS CENTENAS.

  • CALCULA

  • RESPUESTA

VIAJAN 215 ESTUDIANTES.

 


3. A UN MUSEO ASISTIERON 389 PERSONAS EN UN DÍA. SI DURANTE LA MAÑANA SOLO FUERON 19 PERSONAS, ¿CUÁNTAS PERSONAS FUERON EN LA TARDE?

  • DATOS

ASISTENTES EN UN DÍA: 389

ASISTENTES DE LA MAÑANA: 19

  • PREGUNTA

¿CUÁNTAS PERSONAS FUERON EN LA TARDE?

  • ANALIZA

TENEMOS QUE HACER UNA RESTA. EL MINUENDO ES 389 Y EL SUSTRAENDO ES 19. RESTAMOS PRIMERO LAS UNIDADES, LUEGO LAS DECENAS Y LAS CENTENAS.

  • CALCULA

  • RESPUESTA

EN LA TARDE FUERON 370 PERSONAS AL MUSEO.

 


4. EL SEÑOR PEDRO TIENE 436 MANZANAS VERDES Y ROJAS PARA VENDER. 184 MANZANAS SON VERDES Y LAS DEMÁS SON ROJAS. ¿CUÁNTAS MANZANAS SON ROJAS?

  • DATOS

CANTIDAD DE MANZANAS: 436

CANTIDAD DE MANZANAS VERDES: 184

  • PREGUNTA

¿CUÁNTAS MANZANAS SON ROJAS?

  • ANALIZA

DEBEMOS RESTAR ESTAS CANTIDADES. 436 ES EL MINUENDO Y 184 ES EL SUSTRAENDO.

  • CALCULA

  • RESPUESTA

252 MANZANAS SON ROJAS.

 


LA SUSTRACCIÓN ES UNA OPERACIÓN QUE CONSISTE EN RESTAR O QUITAR UNA CANTIDAD LLAMADA SUSTRAENDO A OTRA LLAMADA MINUENDO. LAS PODEMOS REPRESENTAR DE MANERA HORIZONTAL O DE MANERA VERTICAL POR MEDIO DE UNA TABLA POSICIONAL. EL SIGNO MENOS (−) ES UN POCO MÁS LARGO QUE EL GUIÓN (-) Y UN POCO MÁS CORTO QUE LA RAYA (—).

¡A PRACTICAR!

1. RESUELVE LAS SIGUIENTES RESTAS:

  • 48 − 12
SOLUCIÓN
48 − 12 = 36 
  • 589 − 354
SOLUCIÓN
589 − 354 = 235
  • 16 − 14
SOLUCIÓN
16 − 14 = 2
  • 708 − 573
SOLUCIÓN
708 − 573 = 135
  • 86 − 45
SOLUCIÓN
86 − 45 = 41
  • 78 − 28
SOLUCIÓN
78 − 28 = 50
  • 337 − 182
SOLUCIÓN
337 − 182 = 155

 

 

2. ¿QUÉ NÚMERO FALTA?

  • ____ − 342 = 484
SOLUCIÓN
826 − 342 = 484
  • ____ − 182 = 155
SOLUCIÓN
337 − 182 = 155
  • ____ − 82 = 464
SOLUCIÓN
546 − 82 = 464
  • ____ − 6 = 315
SOLUCIÓN
321 − 6 = 315
  • ____ − 14 = 313
SOLUCIÓN
327 − 14 = 313
  • ____ − 317 = 227
SOLUCIÓN
544 − 317 = 227

 

3. COLOREA EL DIBUJO SEGÚN EL RESULTADO DE LAS SUMAS Y RESTAS.

 

RECURSOS PARA DOCENTES

Artículo “Resta de números naturales”

Con el siguiente artículo podrás ampliar las estrategias de enseñanza para la resta de números naturales.

VER

CAPÍTULO 2 / TEMA 1

ADICIÓN

MUCHAS VECES NECESITAMOS AGRUPAR OBJETOS, POR EJEMPLO, LAS TARJETAS DE UN COMPAÑERO CON LAS NUESTRAS, PERO ¿CÓMO SABER CUÁNTAS HAY AL FINAL? PARA ESTO USAMOS UNA OPERACIÓN LLAMADA ADICIÓN O SUMA QUE CONSISTE EN UNIR CANTIDADES. SEGURO LA USAS DIARIAMENTE. HOY APRENDERÁS CUÁLES SON SUS PROPIEDADES Y CÓMO CALCULARLA.

LA ADICIÓN Y SUS ELEMENTOS

LA ADICIÓN ES UNA OPERACIÓN MATEMÁTICA QUE UNE DOS O MÁS CANTIDADES. EN ESA UNIÓN SE FORMA OTRA CANTIDAD LLAMADA SUMA. SUS ELEMENTO SON LOS SUMANDOS Y LA SUMA TOTAL.

– EJEMPLO:

JOSÉ Y CARLOS COMPRARON PALETAS PARA TODOS SUS AMIGOS. SI JOSÉ COMPRÓ 4 PALETAS Y CARLOS COMPRÓ 5 PALETAS, ¿CUÁNTAS PALETAS COMPRARON EN TOTAL?

ESTE PROBLEMA SE RESUELVE CON UNA SUMA. LOS SUMANDOS SON 4 Y 5 Y LA SUMA TOTAL ES LA UNIÓN DE ESAS DOS CANTIDADES, ES DECIR, 9.

LA SUMA ES UNA DE LAS PRIMERAS OPERACIONES MATEMÁTICAS QUE APRENDEMOS PORQUE ES UNA DE LAS MÁS USADAS EN LA VIDA COTIDIANA. DESDE LA ANTIGÜEDAD SE HAN AGRUPADO NÚMEROS PARA SABER CANTIDADES. INICIAMOS A SUMAR CON LOS DEDOS, PERO CUANDO LAS CIFRAS SON MAYORES TENEMOS QUE USAR LOS SÍMBOLOS DE LOS NÚMEROS Y SUS VALORES EN TABLAS POSICIONALES.

SUMA CON TABLA DE VALORES

ES UNA MANERA SENCILLA DE REPRESENTAR LAS SUMAS. AQUÍ DEBEMOS COLOCAR EN COLUMNAS LAS UNIDADES, LAS DECENAS Y LAS CENTENAS DE CADA NÚMERO.

– EJEMPLO:

¡ES TU TURNO!

REALIZA LAS SIGUIENTES SUMAS:

  • 15 + 14
  • 45 + 2
  • 45 + 51
SOLUCIÓN

 

SUMA CON LLEVADAS

A VECES LA SUMA DE LAS UNIDADES DE LOS SUMANDOS PUEDE SER MAYOR A 10, EN ESE CASO SEGUIMOS ESTOS PASOS:

1. SUMAMOS LAS UNIDADES Y COLOCAMOS EL 1 EN LA COLUMNA DE LAS DECENAS.

2. SUMAMOS LAS DECENAS CON EL 1 QUE SE COLOCÓ ANTES.

 

– EJEMPLOS:

 

TAMBIÉN PUEDE OCURRIR CON LAS CENTENAS. OBSERVA:

 

NUESTRO SISTEMA DE NUMERACIÓN SOLO TIENE DIEZ DÍGITOS: 0, 1, 2, 3, 4, 5, 6, 7, 8 Y 9. CON ELLOS FORMAMOS TODOS LOS NÚMEROS QUE EXISTEN Y CADA CIFRA TENDRÁ UN VALOR DIFERENTE SEGÚN EL LUGAR QUE OCUPE DENTRO DEL NÚMERO. POR EJEMPLO, EN EL NÚMERO 25, EL 2 VALE 20 Y EL 5 VALE 5, PERO EN EL NÚMERO 52, EL 5 VALE 50 Y EL 2 VALE 2.

PROPIEDADES DE LA ADICIÓN

PROPIEDAD CONMUTATIVA

EN UNA SUMA DE DOS CANTIDADES, SI CAMBIAMOS EL ORDEN DE LOS SUMANDOS EL RESULTADO ES EL MISMO.

PROPIEDAD ASOCIATIVA

EN UNA SUMA DE TRES SUMANDOS, SI CAMBIAMOS LA AGRUPACIÓN DE LOS SUMANDOS EL RESULTADO ES EL MISMO.

ELEMENTO NEUTRO

LA SUMA DE CUALQUIER NÚMERO CON CERO DA COMO RESULTADO SU NÚMERO INICIAL.

DESCOMPOSICIÓN ADITIVA

SE TRATA DE REPRESENTAR UN NÚMERO COMO LA SUMA DE OTROS. EN ESTE CASO CONSIDERAMOS LOS VALORES POSICIONALES. RECUERDA QUE:

  • 1 UNIDAD = 1 UNIDAD
  • 1 DECENA = 10 UNIDADES
  • 1 CENTENA = 100 UNIDADES

– EJEMPLO 1:

EL NÚMERO 156 TIENE:

  • 1 CENTENA = 1 × 100 = 100
  • 5 DECENAS = 5 × 10 = 50
  • 6 UNIDADES = 6 × 1 = 6

DESCOMPOSICIÓN ADITIVA:

156 = 100 + 50 + 6

 

– EJEMPLO 2:

EL NÚMERO 84 TIENE:

  • 8 DECENAS = 8 × 10 = 80
  • 4 UNIDADES = 4 × 1 = 4

DESCOMPOSICIÓN ADITIVA:

84 = 80 + 4

¡ANTES DE LAS CALCULADORAS!

DESDE HACE MILES DE AÑOS EL SER HUMANO HA NECESITADO CONTAR, ¡Y CLARO! SUMAR. AL PRINCIPIO LO HACÍA CON LOS DEDO, CON PALOS O CON PIEDRAS. TAMBIÉN HACÍAN NUDOS EN CUERDAS PARA CONTAR CANTIDADES. PERO UNO DE LOS MÁS IMPORTANTES INVENTOS FUE EL ÁBACO: UN HERRAMIENTA QUE HACE CÁLCULOS MANUALES POR MEDIO DE CONTADORES O ESFERAS QUE REPRESENTAN CANTIDADES.

¡PRACTIQUEMOS LO APRENDIDO!

1. PARA UN TORNEO DE BALONCESTO SE INSCRIBIERON 78 NIÑOS DE PRIMERO GRADO Y 81 NIÑOS DE SEGUNDO GRADO, ¿CUÁNTO NIÑOS SE INSCRIBIERON EN TOTAL?

  • DATOS

NIÑOS DE PRIMERO GRADO: 78

NIÑOS DE SEGUNDO GRADO: 81

  • PREGUNTA

¿CUÁNTOS NIÑOS SE INSCRIBIERON EN TOTAL?

  • ANALIZA

HAY QUE HACER UNA SUMA. PARA ESTO COLOCAMOS LOS SUMANDOS UNO SOBRE Y OTRO. SUMAMOS PRIMERO LAS UNIDADES Y LUEGO LAS DECENAS.

  • CALCULA

  • RESPUESTA

SE INSCRIBIERON 159 NIÑOS PARA EL TORNEO.


2. EN UN DÍA, UNA LIBRERÍA VENDIÓ 45 LÁPICES AMARILLOS Y 82 LÁPICES ROJOS, ¿CUÁNTOS LÁPICES SE VENDIERON ESE DÍA?

  • DATOS

LÁPICES AMARILLOS VENDIDOS: 45

LÁPICES ROJOS VENDIDOS: 82

  • PREGUNTA

¿CUÁNTOS LÁPICES SE VENDIERON ESE DÍA?

  • ANALIZA

HAY QUE HACER UNA SUMA. PARA ESTO COLOCAMOS LOS SUMANDOS UNO SOBRE Y OTRO. SUMAMOS PRIMERO LAS UNIDADES Y LUEGO LAS DECENAS.

  • CALCULA

  • RESPUESTA

SE VENDIERON 127 LÁPICES ESE DÍA.


3. ANTONIO TIENE 3 PAQUETES CON CARAMELOS. EN EL PRIMERO HAY 29 CARAMELOS, EN EL SEGUNDO HAY 8 Y EN EL TERCERO HAY 2. ¿CUÁNTOS CARAMELOS TIENE ANTONIO?, ¿CUÁL ES LA SOLUCIÓN MÁS FÁCIL PARA ESTE PROBLEMA?

  • DATOS

CANTIDAD DE CARAMELOS EN PAQUETE 1: 29

CANTIDAD DE CARAMELOS EN PAQUETE 2: 8

CANTIDAD DE CARAMELOS EN PAQUETE 3: 2

  • PREGUNTA

¿CUÁNTOS CARAMELOS TIENE ANTONIO?, ¿CUÁL ES LA SOLUCIÓN MÁS FÁCIL PARA ESTE PROBLEMA?

  • ANALIZA

EN ESTE CASO UTILIZAMOS LA PROPIEDAD ASOCIATIVA. AGRUPAMOS LOS PRIMEROS DOS TÉRMINOS Y LUEGO SUMAMOS EL TERCERO. LUEGO AGRUPAMOS EL SEGUNDO Y EL TERCER TÉRMINO Y SUMAMOS EL PRIMERO. AL COMPARAR LAS DOS OPCIONES VEREMOS CUÁL ES LA MÁS FÁCIL.

  • CALCULA

  • RESPUESTA

ANTONIO TIENE 39 CARAMELOS.

ES MÁS FÁCIL SUMAR 8 + 2 = 10 Y LUEGO SUMARLE 29.


4. CAROLINA DEBE PAGAR $ 134 EN EL SUPERMERCADO. SI SOLO TIENE BILLETES DE $ 100, $ 10 Y $ 1, ¿CUÁNTOS BILLETES DE CADA DENOMINACIÓN TIENE QUE USAR PARA PAGAR LA CUENTA?

  • DATOS

PAGO QUE TIENE QUE HACER CAROLINA: $ 134

BILLETES QUE TIENE CAROLINA: $ 100, $ 10 Y $ 1

  • PREGUNTA

¿CUÁNTOS BILLETES DE CADA DENOMINACIÓN TIENE QUE USAR PARA PAGAR LA CUENTA?

  • ANALIZA

HAY DE HACER UNA DESCOMPOSICIÓN ADITIVA DE 134. DE ESTE MODO TENDREMOS UNA SUMA DE VALORES QUE REPRESENTAN LA MISMA CANTIDAD. TENEMOS QUE VER LA CANTIDAD DE UNIDADES (QUE VALEN 1), DECENAS (QUE VALEN 10) Y CENTENAS (QUE VALEN 100) HAY EN LA SUMA.

  • CALCULA

EL NÚMERO 134 TIENE:

  • 1 CENTENA = 1 × 100 = 100
  • 3 DECENAS = 3 × 10 = 30
  • 4 UNIDADES = 4 × 1 = 4

DESCOMPOSICIÓN ADITIVA:

134 = 100 + 30 + 4

COMO YA VIMOS, 100 = 1 VEZ 100, 30 = 3 VECES 10 Y 4 = A VECES 1.

  • RESPUESTA

CAROLINA TIENE QUE USAR 1 BILLETE DE $ 100, 3 BILLETE DE $ 10 Y 4 BILLETES DE $ 1.


¡A PRACTICAR!

1. RESUELVE LAS SUMAS. COMPRUEBA LA PROPIEDAD CONMUTATIVA.

  • 15 + 10 =
SOLUCIÓN

15 + 10 = 25

10 + 15 = 25

  • 60 + 20 =
SOLUCIÓN

60 + 20 = 80

20 + 60 = 80

  • 48 + 2 =
SOLUCIÓN

48 + 2 = 50

2 + 48 = 50

 

2. RESUELVE LAS SUMAS. COMPRUEBA LA PROPIEDAD ASOCIATIVA.

  • 40 + 25 + 10 =
SOLUCIÓN

(40 + 25) + 10 = 65 + 10 = 75

40 + (25 + 10) = 40 + 35 = 75

  • 15 + 60 + 10 =
SOLUCIÓN

(15 + 60) + 10 = 75 + 10 = 85

15 + (60 + 10) = 15 + 70 = 85

  • 40 + 14 + 20 =
SOLUCIÓN

(40 + 14) + 20 = 54 + 20 = 74

40 + (14 + 20) = 40 + 34 = 74

 

3. REALIZA LA DESCOMPOSICIÓN ADITIVA DE LOS SIGUIENTES NÚMEROS.

  • 189
SOLUCIÓN
189 = 100 + 80 + 9
  • 74
SOLUCIÓN
74 = 70 + 4
  • 123
SOLUCIÓN
123 = 100 + 20 + 3
RECURSOS PARA DOCENTES

Artículo “Propiedades de la suma”

Este recurso te permitirá ampliar la información sobre las propiedades de la adición.

VER

Artículo “Cómo enseñar a sumar y a restar”

Con este artículo obtendrás algunas orientaciones y ejemplos prácticos de gran utilidad al momento de enseñar estas operaciones matemáticas.

VER