EXISTEN DISTINTOS TIPOS DE NÚMEROS, COMO LOS CARDINALES, LOS ORDINALES Y LOS ROMANOS. NO TODOS SE ESCRIBEN IGUAL Y SUS FUNCIONES SON DIVERSAS. POR EJEMPLO, CON LOS NÚMEROS CARDINALES CONTAMOS LA CANTIDAD DE LÁPICES QUE TENEMOS Y CON LOS ORDINALES INDICAMOS LA POSICIÓN DE LLEGADA EN UNA CARRERA.
NÚMEROS CARDINALES
LOS NÚMEROS CARDINALES NOS PERMITEN CONTAR CANTIDADES: UNO, DOS, TRES, CUATRO, CINCO…
SIEMPRE QUE OBSERVEMOS UN CONJUNTO DE COSAS QUE PODAMOS CONTAR TAMBIÉN PODEMOS ASIGNARLE UN NÚMERO CARDINAL. POR EJEMPLO:
CONTAMOS TODOS ESTOS ELEMENTOS AGRUPADOS: LOS TOMATES, LOS CONOS DE HELADOS Y LAS PERAS. 6, 5 Y 4 SON LOS NÚMEROS CARDINALES QUE INDICAN LA CANTIDAD DE ELEMENTOS DE CADA CONJUNTO.
NUESTRO SISTEMA DE NUMERACIÓN
LOS NÚMEROS QUE USAMOS PARA CONTAR PERTENECEN AL SISTEMA DE NUMERACIÓN DECIMAL. SE LO LLAMA ASÍ PORQUE SOLO TIENE DIEZ DÍGITOS QUE VAN DESDE EL CERO (0) HASTA EL NUEVE (9). CON ESTOS DÍGITOS PODEMOS FORMAR CUALQUIER NÚMERO, COMO EL 568 O EL 123.
NÚMEROS ORDINALES
LOS NÚMEROS ORDINALES NOS INDICAN EL ORDEN O LA POSICIÓN DE LOS ELEMENTOS DE UNA SERIE.
QUIZÁS NO TE HAYAS DADO CUENTA PERO LOS USAMOS MUCHAS VECES EN NUESTRA VIDA COTIDIANA. POR EJEMPLO AL MENCIONAR LOS PISOS DE UN EDIFICIO, AL ANUNCIAR EL ORDEN DE LOS GANADORES DE UNA CARRERA, LA POSICIÓN EN LA FILA DE LA ESCUELA O EL TURNO DE LLEGADA AL MÉDICO.
OBSERVA ESTA IMAGEN, ¿QUIÉN ENTRARÁ PRIMERO AL SALÓN DE CLASES?
MARIO ENTRARÁ PRIMERO AL SALÓN DE CLASES. ¿Y LOS DEMÁS?
PARA RESPONDER ESTA PREGUNTA TIENES QUE SABER QUE LOS NÚMEROS ORDINALES PUEDEN SER MASCULINOS O FEMENINOS Y SE ESCRIBEN CON UN PEQUEÑO SÍMBOLO A LA DERECHA DEL NÚMERO.
ESTA TABLA MUESTRA LOS PRIMEROS DIEZ NÚMEROS ORDINALES:
MASCULINO
FEMENINO
1.º
PRIMERO
1.ª
PRIMERA
2.º
SEGUNDO
2.ª
SEGUNDA
3.º
TERCERO
3.ª
TERCERA
4.º
CUARTO
4.ª
CUARTA
5.º
QUINTO
5.ª
QUINTA
6.º
SEXTO
6.ª
SEXTA
7.º
SÉPTIMO
7.ª
SÉPTIMA
8.º
OCTAVO
8.ª
OCTAVA
9.º
NOVENO
9.ª
NOVENA
10.º
DÉCIMO
10.ª
DÉCIMA
¡ES TU TURNO!
OBSERVA DE NUEVO LA IMAGEN DE ARRIBA. INDICA EL ORDEN EN EL QUE ENTRARÁN LOS ESTUDIANTES AL SALÓN DE CLASES.
SOLUCIÓN
PRIMERO: MARIO
SEGUNDA: LUISA
TERCERO: JUAN
CUARTO: PEDRO
QUINTA: CARLA
SEXTO: JOSÉ
SÉPTIMA: ÁNGELA
¿SABÍAS QUÉ?
CUANDO DAMOS UNA FECHA CON EL PRIMER DÍA DEL MES USAMOS NÚMEROS ORDINALES, POR EJEMPLO, EL DÍA DEL TRABAJADOR ES EL PRIMERO DE MAYO.
NÚMEROS ROMANOS
LOS NÚMEROS ROMANOS ERAN MUY UTILIZADOS EN LA ANTIGUA ROMA HASTA QUE SURGIERON LOS NÚMEROS ARÁBIGOS, QUE SON LOS QUE CONOCEMOS EN LA ACTUALIDAD.
LOS NÚMEROS ROMANOS SON SOLO SIETE Y ESTÁN REPRESENTANDO CON LAS LETRAS DE NUESTRO ABECEDARIO:
Desde la elaboración de planos y dibujos a escalas en hojas cuadriculadas, hasta la localización de estrellas en la galaxia, la unión de rectas perpendiculares nos ayuda a distinguir la posición de cualquier objeto. Una cuadrícula es un sistema de coordenadas compuesto por líneas perpendiculares verticales y horizontales, que funciona como sistema de referencias y permite ubicar elementos en un espacio definido. El conjunto de líneas horizontales y verticales, también llamadas ejes, suelen nombrarse con números y letras.
TIPOS DE LÍNEAS
Las líneas son un conjunto de puntos ubicados uno junto al otro que generan un trazo continuo. Si los puntos están orientados en una misma dirección, entonces, forman una línea recta. Las líneas rectas son continuas e infinitas, no tienen ni principio ni final y se pueden clasificar según la forma en que interaccionan entre ellas en rectas paralelas (aquellas que nunca se cortan), rectas secantes perpendiculares (aquellas que se cortan formando ángulos rectos) y rectas secantes oblicuas (aquellas que se cortan sin formar ángulos rectos).
LOS ÁNGULOS Y SUS TIPOS
Un ángulo es una porción del plano delimitado por dos semirrectas. Cada semirrecta es uno de los lados del ángulo y coinciden en un punto de origen al que se denomina vértice. A la distancia entre lado y lado del ángulo se la denomina amplitud, y esta se mide en grados (°). Si queremos medir o trazar un ángulo es indispensable el uso del transportador. Según su amplitud, un ángulo puede ser convexo, cóncavo, nulo, completo, llano, agudo, recto u obtuso.
LOS TRIÁNGULOS
Los triángulos son polígonos regulares cerrados de tres lados, tres ángulos y tres vértices. Los ángulos interiores de un triángulo siempre suman 180° y los ángulos exteriores suman 360°. Son varios los criterios de clasificación que permiten agrupar a los triángulos de acuerdo a ciertas particularidades, los más utilizados son: la medida de sus lados y la medida de sus ángulos. Según la medida de sus lados, los triángulos se clasifican en equiláteros, isósceles y escalenos; mientras que, según la medida de sus ángulos se clasifican en acutángulo, obtusángulo y rectángulo.
CUADRILÁTEROS
Los cuadriláteros tienen cuatro lados, cuatro ángulos internos, cuatro ángulos externos, cuatro vértices y dos diagonales. Estos se clasifican en paralelogramos, trapecios y trapezoides. Los paralelogramos son aquellos cuadriláteros que poseen dos pares de lados opuestos paralelos y que comparten algunas propiedades específicas; los trapecios, por su parte, son figuras que presentan un par de lados opuestos paralelos a los que se suele denominar base; y los trapezoides son aquellos cuyos lados no son paralelos.
POLIEDROS
Los poliedros son cuerpos geométricos tridimensionales con caras planas formados por polígonos. Cada una de las caras de un poliedro es un polígono (triángulo, cuadrado, rombo, etc.). Los poliedros pueden ser regulares cuando sus caras están compuestas por el mismo polígono regular; o irregulares si sus caras presentan diferentes formas. En estos poliedros el número de caras no presenta límites como ocurre con los poliedros regulares y se dividen en prismas (tienen dos bases) y pirámides (tienen una sola base).
Existen diferentes magnitudes físicas como la longitud, el área, el volumen y el tiempo que emplean unidades de medidas particulares. En el caso de la longitud, mide la distancia entre dos puntos; el área mide la superficie; el volumen mide el espacio y el tiempo mide la duración de un suceso. Desde 1960 se creó el Sistema Internacional de Unidades que busca que todos los países usen las mismas unidades de medición: el metro, el kilogramo, el metro cuadrado, el metro cúbico, el segundo, etc.
Instrumentos de medición
Medir es comparar con base en un patrón, de manera que para poder medir usamos instrumentos que se encuentran calibrados y presentan ciertas características como el rango de medición que soportan y que se indica en su cota superior e inferior. Algunos ejemplos de instrumentos que se usan en la escuela son la regla, la escuadra y el transportador. Los dos primeros miden longitudes y el último mide tamaños de ángulos.
El tiempo
Para medir el tiempo usamos los relojes y cronómetros. Los relojes pueden ser análogos cuando emplean manecillas o digitales cuando no las emplean. La lectura del tiempo en estos casos se realiza de diferente manera. En un reloj analógico, la esfera se encuentra dividida en 12 horas que a su vez también presenta su división en minutos. Por otro lado, el formato de 24 horas es un sistema de medición que divide el día en 24 horas y comienza a partir de la medianoche hasta la medianoche siguiente.
Conversión de unidades
En el mundo existen diferentes unidades de medidas que pueden estar o no relacionados. Esto sucede con el metro, unidad usada para medir longitudes. El metro presenta submúltiplos como el decímetro, el centímetro y el milímetro; y múltiplos como el kilómetro, el hectómetro y el decámetro. Por medio de diagramas podemos transformar unidades de acuerdo a la relación que existan entre ellas, por ejemplo, las unidades de longitud y de capacidad aumentan de 10 en 10 y las de tiempo (segundo, minuto y hora) aumentan de 60 en 60.
CASI TODOS LOS CUERPOS ESTÁN EN MOVIMIENTO Y POR LO TANTO, SU POSICIÓN EN EL ESPACIO CAMBIA. JUSTO AHORA PODEMOS ESTAR FRENTE A LA COMPUTADORA, PERO LUEGO PODEMOS ESTAR EN OTRA CASA O CIUDAD. LOS EJES CARTESIANOS AYUDAN A UBICAR PUNTOS EN UN PLANO Y SI LOS USAMOS EN UN MAPA, TAMBIÉN NOS SIRVEN PARA UBICAR PERSONAS Y LUGARES DEL MUNDO.
RELACIONES ESPACIALES
PARA UBICAR ELEMENTOS EN EL ESPACIO USAMOS LAS RELACIONES ESPACIALES. ESTAS NO INDICAN LA POSICIÓN DE ALGO O ALGUIEN RESPECTO A OTRA COSA. POR LO GENERAL SE UTILIZAN LAS SIGUIENTES EXPRESIONES:
ARRIBA
↑
ABAJO
↓
IZQUIERDA
←
DERECHA
→
¡ES TU TURNO!
OBSERVA DE NUEVO LA IMAGEN Y RESPONDE:
¿EN QUÉ POSICIÓN ESTÁ LA PANTALLA DE LA COMPUTADORA RESPECTO A LA MESA?
SOLUCIÓN
LA PANTALLA DE LA COMPUTADORA ESTÁ ARRIBA DE LA MESA.
¿EN QUÉ POSICIÓN ESTÁ LA LÁMPARA RESPECTO A LA REPISA?
SOLUCIÓN
LA LÁMPARA ESTÁ ABAJO DE LA REPISA.
¿EN QUÉ POSICIÓN ESTÁN LOS MARCADORES RESPECTO A LA LÁMPARA?
SOLUCIÓN
LOS MARCADORES ESTÁN A LA DERECHA DE LA LÁMPARA.
¿cómo GRAFICAR LA POSICIÓN DE ELEMENTOS?
PODEMOS GRAFICAR Y UBICAR LA POSICIÓN DE CUALQUIER PUNTO EN UN PLANO POR MEDIO DE EJES DE COORDENADAS EN UN DIAGRAMA CARTESIANO.
LOS EJES CARTESIANOS SON DOS LÍNEAS QUE SE CRUZAN, UNA TIENE UNA ORIENTACIÓN VERTICAL, LLAMADA “Y”, Y LA OTRA UNA ORIENTACIÓN HORIZONTAL, LLAMADA “X“. EN CONJUNTO, DAN A CONOCER LA POSICIÓN DE UN PUNTO EN EL PLANO.
– EJEMPLO:
ESTA ES UNA CUADRÍCULA CON EJES COORDENADOS. CUANDO UN DATO DEL EJE X SE CRUZA CON UNA DATO DEL EJE Y TENEMOS LAS COORDENADAS O UBICACIÓN DEL OBJETO.
¿CÓMO ESCRIBIR LAS COORDENADAS DE UN PUNTO?
PARA ESCRIBIR LAS COORDENADAS PRIMERO VEMOS LAS DEL EJE X Y LUEGO LAS DEL EJE Y. LOS DOS NÚMEROS SE SEPARAN CON UNA COMA Y SE ENCIERRA ENTRE PARÉNTESIS. ENTONCES, LAS COORDENADAS DE LAS FIGURAS EN EL DIAGRAMA CARTESIANO ANTERIOR SON LAS LAS SIGUIENTES:
FIGURA
COORDENADAS
ESTRELLA
(3, 5)
LUNA
(1, 3)
CORAZÓN
(6, 2)
– EJEMPLO 2:
CADA PUNTO TIENE UNA LETRA. UBIQUEMOS LAS COORDENADAS DE CADA PUNTO.
PUNTO
COORDENADAS
A
(4, 2)
B
(1, 1)
C
(2, 3)
D
(5, 6)
E
(1, 6)
F
(0, 4)
¿SABÍAS QUÉ?
CUANDO UN PUNTO ESTÁ UBICADO DIRECTAMENTE SOBRE UN EJE, QUIERE DECIR QUE EL VALOR DEL OTRO EJE ES CERO, POR EJEMPLO (0, 4) SIGNIFICA QUE EL DATO DEL EJE X ES 0 Y EL DEL EJE Y ES 4.
¡ES TU TURNO!
OBSERVA DE NUEVO LA CUADRÍCULA. COMPLETA LA TABLA CON LAS COORDENADAS DE LOS PUNTOS.
SOLUCIÓN
PUNTO
COORDENADAS
A
(4, 2)
B
(1, 1)
C
(2, 3)
D
(5, 6)
E
(1, 6)
F
(0, 4)
G
(0, 5)
H
(6, 4)
I
(3, 5)
TRASLACIÓN
LA TRASLACIÓN ES UN MOVIMIENTO EN EL QUE CADA PUNTO DE LA FIGURA SIGUE UNA MISMA DIRECCIÓN. LA FIGURA GEOMÉTRICA TRASLADADA NO GIRA NI CAMBIA DE TAMAÑO.
ROTACIÓN
LA ROTACIÓN ES UN MOVIMIENTO O GIRO ALREDEDOR DE UN CENTRO DE ROTACIÓN.
MOVIMIENTOS DE LA TIERRA
NUESTRO PLANETA REALIZA TANTO EL MOVIMIENTO DE ROTACIÓN COMO EL DE TRASLACIÓN. CUANDO ROTA O GIRA SOBRE SU PROPIO EJE SE PRODUCE EL DÍA Y LA NOCHE. CUANDO SE TRASLADA ALREDEDOR DEL SOL SE CUMPLE UN AÑO O 365 DÍAS.
LOS MAPAS Y SU IMPORTANCIA
LOS EJES DE COORDENADAS TAMBIÉN LOS VEMOS EN LOS MAPAS. GRACIAS A ELLAS PODEMOS LOCALIZAR CUALQUIER CIUDAD O PERSONA EN EL MUNDO. LOS EJES DE COORDENADAS PERMITEN QUE CADA UBICACIÓN EN NUESTRO PLANETA SEA ESPECIFICADA CON NÚMEROS, LETRAS Y SÍMBOLOS. POR EJEMPLO, LA LATITUD DE LOS MAPAS DETERMINA EL EJE X Y LA LONGITUD DETERMINA EL EJE Y.
¡A PRACTICAR!
1. OBSERVA LA CUADRÍCULA. EN ELLA SE VEN LOS RECORRIDOS QUE PUEDE HACER EL PERRO HASTA SU HUESO, HASTA SU DUEÑO O HASTA SU CASA. RESPONDE LAS PREGUNTAS.
¿CÓMO ES EL RECORRIDO DEL PERRO HASTA SU HUESO?
SOLUCIÓN
5 ESPACIOS HACIA ARRIBA Y UN ESPACIO A LA DERECHA.
¿CÓMO ES EL RECORRIDO DEL PERRO HASTA SU DUEÑO?
SOLUCIÓN
3 ESPACIOS HACIA ARRIBA Y 3 ESPACIOS A LA DERECHA.
¿CÓMO ES EL RECORRIDO DEL PERRO HASTA SU CASA?
SOLUCIÓN
5 ESPACIOS A LA DERECHA Y UN ESPACIO HACIA ARRIBA.
¿CÓMO ES EL RECORRIDO DEL DUEÑO HASTA EL PERRO?
SOLUCIÓN
3 ESPACIOS A LA IZQUIERDA Y 3 ESPACIOS HACIA ABAJO.
¿CUÁLES SON LAS COORDENADAS DEL PERRO?
SOLUCIÓN
(1, 1)
¿CUÁLES SON LAS COORDENADAS DEL HUESO?
SOLUCIÓN
(2, 6)
¿CUÁLES SON LAS COORDENADAS DEL DUEÑO?
SOLUCIÓN
(4, 4)
¿CUÁLES SON LAS COORDENADAS DE LA CASA DEL PERRO?
SOLUCIÓN
(6, 2)
RECURSOS PARA DOCENTES
Artículo “Simetrías”
Con este recurso se podrá ampliar la información sobre los movimientos en el plano
El tiempo es una magnitud física que permite llevar un orden de los sucesos. En otras palabras, gracias al tiempo podemos distinguir lo que pasó la semana pasada, ayer u hoy. En la actualidad, para determinar el tiempo usamos sistemas que dividen los días en 24 horas. Por medio de los relojes podemos conocer en qué hora del día estamos.
Lectura del tiempo
El ser humano siempre ha sentido la necesidad de medir el tiempo, ya sea para la duración de acontecimientos o para establecer separaciones de sucesos. Por eso, a lo largo de la historia han existido una serie de calendarios basados principalmente en ciclos lunares o solares.
Algunos calendarios son más precisos que otros, pero todos buscan una sola cosa: tener noción del tiempo.
Las unidades de tiempo más comunes son la hora, el minuto y el segundo, donde se cumple que:
1 hora = 60 minutos
1 minuto = 60 segundos
Sin embargo, existen otras unidades para medir el tiempo:
1 día = 24 horas
1 semana = 7 días
1 año común = 365 días
1 año bisiesto = 366 días
1 lustro = 5 años
1 década = 10 años
1 siglo = 100 años
1 milenio = 1.000 años
Los relojes
Son instrumentos usados para medir el tiempo. A lo largo de la historia han pasado de ser relojes solares y de arena, a relojes cada vez más sofisticados como los relojes inteligentes de hoy en día. Los más usados en la actualidad son los relojes analógicos y los digitales.
¿Cómo leer la hora en relojes analógicos?
Una reloj analógico se caracteriza por tener agujas o manecillas que indican las horas, los minutos y los segundos a través de ciertos marcadores y números. Los elementos de un reloj analógico son los siguientes:
Las manecillas: son las agujas que marcan las horas, minutos y segundos. La más chica de ellas indica la hora y se denomina horario; la aguja grande más larga indica los minutos y se denomina minutero; la aguja más fina y que va más rápido indica los segundos y se denomina segundero.
Marcadores: son las doce partes en las que está dividida la circunferencia del reloj. Estas partes están rotuladas con los números del 1 al 12 y cada una, a su vez, está dividida en cinco subdivisiones más pequeñas marcadas con segmentos de rectas.
¿Sabías qué?
Existen relojes digitales que imitan a los relojes analógicos por contener agujas en pantallas LCD. Debido a su formato también son considerados relojes analógicos.
El horario tarda 12 horas en dar la vuelta completa, de manera que en un día tiene que realizar dos vueltas completas. El minutero tarda 60 minutos que equivalen a 1 hora en dar la vuelta completa, y el segundero tarda 60 segundos en dar una vuelta completa que equivalen a 1 minuto.
Cuando el minutero se encuentra en el número 12 significa que han transcurrido 0 minutos de la hora que marca el horario, por lo tanto, al leer la hora indicada y agregamos la expresión “en punto“. Por ejemplo:
El reloj muestra las ocho en punto.
El reloj muestra las dos en punto.
Como ya vimos, el reloj está dividido en 12 secciones y cada una de ellas está subdivide en cinco, es decir, el reloj está dividido en 60 partes iguales que equivalen a cada minuto contenido en una hora. Quiere decir que si partimos del número 12 y miramos solamente los segmentos donde aparecen marcados los números, notaremos como los minutos se incrementan de cinco en cinco.
En este sentido, si el minutero se encuentra sobre el número 1, significa que han pasado 5 minutos; si se encuentra en el número 2 indica que pasaron 10 minutos y así sucesivamente hasta el número 12 que indica que no ha pasado ningún minuto aún. Para leer la hora en estos casos, decimos la hora marcada por el horario y luego leemos los minutos.
El reloj muestra las ocho y cinco minutos.
El reloj muestra las diez y veinticinco minutos.
¿Sabías qué?
Cuando el horario se encuentra entre dos números, la hora que indica corresponde al número menor de los dos.
Cuando el minutero está en el número 3, 6 y 9, la hora se suele mencionar de manera particular.
– Cuando el minutero está en el 3 indica que han transcurrido 15 minutos, es decir una cuarta parte de lo que dura una hora. Por eso, después de decir la hora agregamos la expresión “…y cuarto”.
El reloj muestra las once y cuarto.
– Cuando el minutero está en el 6 significa que han pasado 30 minutos, es decir, la mitad de una hora, por eso decimos “…y media”.
El reloj muestra las nueve y media.
– Cuando el minutero está en el 9 han pasado 45 minutos lo significa que falta un cuarto de hora (quince minutos) para la hora siguiente. Por eso decimos “un cuarto para…” y luego la hora próxima.
El reloj muestra un cuarto para las siete.
En algunos países en lugar de decir “un cuarto para” se lee la hora próxima y se agrega la expresión “menos cuarto”. En este sentido, el ejemplo anterior se leería como “las siete menos cuarto”.
Para otros casos, se lee la hora mostrada por el horario y luego los minutos indicados por el minutero.
¿Cómo leer la hora en relojes digitales?
En el reloj digital no se observan manecillas sino que expresa la hora y los minutos separados por dos puntos. Las primeras dos cifras corresponden a las horas y las dos cifras que se encuentran a la derecha de los dos puntos indican los minutos.
La lectura es similar a la de los relojes analógicos, la diferencia es que la hora y los minutos se observan de manera más directa. Primero leemos la hora y después los minutos
En los casos a los cuales aplique se agregan las expresiones “…en punto”, “…y cuarto”, “…y media” y “un cuarto para…”.
Son abreviaturas que suelen aparecer en los relojes digitales. La abreviatura a. m. significa que la hora leída corresponde a antes del mediodía, mientras que p. m. se usa para indicar las horas después del mediodía.
Sistema horario de 24 horas
El sistema usado por los relojes analógicos es de 12 horas. Por lo tanto tiene que completar dos ciclos para cubrir un día. El sistema de 24 horas lleva este nombre porque divide al día en las 24 horas totales que lo conforman. Por eso no necesita de las siglas a. m. y p. m. En este sistema las 00:00 horas o 00:00 h corresponden a las 12 a. m., hora desde la cual se empiezan a contar las horas de manera ascendente. En esta convención de tiempo el día se mide de medianoche a medianoche.
Formato 24 horas
Formato 12 horas
00:00 h
12:00 a. m.
01:00 h
01:00 a. m.
02:00 h
02:00 a. m.
03:00 h
03:00 a. m.
04:00 h
04:00 a. m.
05:00 h
05:00 a. m.
06:00 h
06:00 a. m.
07:00 h
07:00 a. m.
08:00 h
08:00 a. m.
09:00 h
09:00 a. m.
10:00 h
10:00 a. m.
11:00 h
11:00 a. m.
12:00 h
12:00 m.
13:00 h
01:00 p. m.
14:00 h
02:00 p. m.
15:00 h
03:00 p. m.
16:00 h
04:00 p. m.
17:00 h
05:00 p. m.
18:00 h
06:00 p. m.
19:00 h
07:00 p. m.
20:00 h
08:00 p. m.
21:00 h
09:00 p. m.
22:00 h
10:00 p. m.
23:00 h
11:00 p. m.
¡A practicar!
1. ¿Qué hora indican los relojes?
a)
Solución
Son las once y cinco minutos.
b)
Solución
Son las once y media.
c)
Solución
Son las ocho y cuarto.
c)
Solución
Son las tres y media
2. ¿Qué hora observas en estos relojes?
a)
Solución
Son las tres y veinte minutos.
b)
Solución
Son las diez en punto.
c)
Solución
Son las once y cuarto.
3. ¿A qué hora del sistema de 12 horas corresponde?
a) Las ocho y treinta y cinco minutos.
b) Las treinta y cinco para las diecinueve.
c) Las nueve y media.
d) Las seis y treinta y cinco minutos.
Solución
d) Las seis y treinta y cinco minutos.
RECURSOS PARA DOCENTES
Artículo “Medidas de tiempo”
Este artículo describe las principales unidades de tiempo y propone una serie de operaciones que se pueden realizar con unidades de tiempo.
Este artículo describe el origen de los calendarios y las característica del calendario gregoriano, uno de los más usados hoy en día. También explica otros tipos de calendarios que han sido utilizados por diversas culturas como la maya y la egipcia.
ENTRE NUESTRA CASA Y LA CASA DE UN AMIGO HAY UNA DISTANCIA QUE LAS SEPARA, ESTA DISTANCIA LA PODEMOS MEDIR EN METROS: UNIDAD QUE NOS PERMITE SABER LA LONGITUD DE LAS COSAS, PERO NO ES LA ÚNICA UNIDAD. TAMBIÉN ESTÁN LOS MILÍMETROS Y LOS CENTÍMETROS. LOS INSTRUMENTOS PARA MEDIR LONGITUD SON MÁS COMUNES DE LO QUE CREES Y SEGURO TIENES ALGUNO EN CASA.
¿QUÉ ES LA LONGITUD?
OBSERVA ESTAS CINTAS, ¿CUÁL ES LA MÁS LARGA?, ¿CUÁL CINTA ES MÁS CORTA?
LA CINTA ROJA OCUPA 4 CUADROS Y LA CINTA AZUL OCUPA 7 CUADROS. ASÍ QUE:
LA CINTA AZUL ES MÁS LARGA QUE LA CINTA ROJA.
LA CINTA ROJA ES MÁS CORTA QUE LA CINTA AZUL.
LA LONGITUD ES UNA MAGNITUD QUE DETERMINA LA DISTANCIA ENTRE DOS PUNTOS. GRACIAS A ELLA SABEMOS QUÉ TAN LARGO O ALTO ES UN OBJETO. LA UNIDAD DE MEDIDA PRINCIPAL ES EL METRO.
UNIDADES PARA MEDIR LONGITUD
PODEMOS MEDIR LONGITUDES CON UNIDADES ARBITRARIAS Y CONVENCIONALES.
LAS UNIDADES DE MEDIDA ARBITRARIAS SON LA CUARTA, EL PIE O LOS PASOS. ESTAS MEDIDAS NO SON EXACTAS PORQUE LAS PARTES DEL CUERPO NO SON IGUALES EN TODAS LAS PERSONAS.
LAS UNIDADES CONVENCIONALES SON LAS ACEPTADAS EN LA MAYORÍA DE LOS PAÍSES. PARA LA LONGITUD EL SISTEMA INTERNACIONAL DE MEDIDA ACEPTA AL METRO Y SUS SUBMÚLTIPLOS.
EL METRO Y SUS SUBMÚLTIPLOS
EL METRO ES LA UNIDAD PRINCIPAL PARA MEDIR LONGITUDES. GRACIAS A ESTA UNIDAD SABEMOS QUE TAN ALTOS SOMOS.
LOS SUBMÚLTIPLOS DEL METRO SON LAS UNIDADES MENORES QUE ÉL; ES DECIR, QUE PARA MEDIR LONGITUDES MENORES AL METRO USAMOS LOS SUBMÚLTIPLOS: EL DECÍMETRO, EL CENTÍMETRO Y EL MILÍMETRO.
VEAMOS CÓMO SE COMPONE UN METRO DE LONGITUD EN UNA CINTA MÉTRICA:
DENTRO DE 1 METRO TENEMOS 10 DECÍMETROS.
DENTRO DE 1 METRO TENEMOS 100 CENTÍMETROS.
DENTRO DE 1 METRO TENEMOS 1.000 MILÍMETROS.
EQUIVALENCIAS DE INTERÉS
1 METRO = 10 DECÍMETROS
1 METRO = 100 CENTÍMETROS
1 METRO = 1.000 MILÍMETROS
¿SABÍAS QUÉ?
TAMBIÉN EXISTEN UNIDADES MAYORES AL METRO, COMO EL KILÓMETRO, QUE ES IGUAL A 1.000 METROS.
INSTRUMENTOS USADOS PARA MEDIR LA LONGITUD
LOS INSTRUMENTOS UTILIZADOS PARA MEDIR LA LONGITUD SON:
INSTRUMENTO
CARACTERÍSTICAS
REGLA GRADUADA
ES UN INSTRUMENTO CORTO Y PLANO. SE UTILIZA PARA TRAZAR FIGURAS GEOMÉTRICAS O PARA SUBRAYAR.
ESCUADRA
ES UN INSTRUMENTO DE FORMA TRIANGULAR Y SE UTILIZA EN GEOMETRÍA. ES MUY ÚTIL PARA TRAZAR RECTAS PARALELAS.
FLEXÓMETRO
ES UN INSTRUMENTO FLEXIBLE QUE MIDE 1,5 METROS. ES MUY USADO POR LOS COSTUREROS PARA LOS CORTES Y CONFECCIONES.
CINTA MÉTRICA
ES UN INSTRUMENTO METÁLICO CON UNA CINTA FLEXIBLE QUE PUEDE ENROLLARSE. POR LO GENERAL TIENE 5 METROS.
¿cómo medir con la regla graduada?
LAS REGLAS GRADUADAS TIENEN MEDIDAS EN CENTÍMETROS MARCADAS CON NÚMEROS. ENTRE LOS CENTÍMETROS HAY UNIDADES MÁS PEQUEÑAS QUE VEMOS CON RAYAS. SI DESEAMOS MEDIR UN OBJETO PEQUEÑO EN CENTÍMETROS CON UNA REGLA SEGUIMOS ESTOS PASOS:
1. COLOCAMOS UN EXTREMO DEL OBJETO EN CERO.
2. LEEMOS EL NÚMERO QUE ESTÁ EN EL OTRO EXTREMO.
LA CINTA AZUL MIDE 10 CENTÍMETROS.
¡COMPAREMOS LONGITUDES!
OBSERVA LA CUADRÍCULA Y LOS OBJETOS. CADA CUADRO MIDE 1 CENTÍMETRO. LUEGO RESPONDE:
¿CUÁL OBJETO TIENE MAYOR LONGITUD?
EL CLIP OCUPA 2 CUADROS. MIDE 2 CENTÍMETROS.
LA GOMA DE BORRAR OCUPA 4 CUADROS. MIDE 4 CENTÍMETROS.
LA GOMA DE BORRAR TIENE MAYOR LONGITUD QUE EL CLIP.
¿CUÁL OBJETO TIENE MAYOR LONGITUD?
EL MARCADOR OCUPA 9 CUADROS. MIDE 9 CENTÍMETROS.
EL LÁPIZ OCUPA 6 CUADROS. MIDE 6 CENTÍMETROS.
EL MARCADOR TIENE MAYOR LONGITUD QUE EL LÁPIZ.
¡A PRACTICAR!
1. ¿CUÁNTO MIDE EL LÁPIZ?
SOLUCIÓN
EL LÁPIZ MIDE 11 CENTÍMETROS.
2. ¿CUÁNTO MIDE EL PINCEL?
SOLUCIÓN
EL PINCEL MIDE 15 CENTÍMETROS.
3. RESPONDE LAS SIGUIENTES PREGUNTAS:
¿CUÁL UNIDAD USARÍAS PARA MEDIR EL CUELLO DE UNA JIRAFA?
SOLUCIÓN
LOS METROS.
¿CUÁL UNIDAD USARÍAS PARA MEDIR EL TAMAÑO DE UN HORMIGA?
SOLUCIÓN
LOS MILÍMETROS.
¿CUÁL UNIDAD USARÍAS PARA MEDIR EL LARGO DE UN DEDO?
SOLUCIÓN
LOS CENTÍMETROS.
¿CUÁL UNIDAD USARÍAS PARA MEDIR EL ANCHO DE UNA MESA?
SOLUCIÓN
LOS METROS.
¿CUÁL UNIDAD USARÍAS PARA MEDIR UN GRANO DE ARROZ?
SOLUCIÓN
LOS MILÍMETROS.
RECURSOS PARA DOCENTES
Artículo “Conversión de unidades de longitud”
Con este recurso ampliaras la información relacionada a los múltiplos y submúltiplo de las unidades de longitud.
UNA DE LAS PROPIEDADES QUE SE PUEDEN MEDIR DE LOS CUERPOS ES LA MASA. UN ESCRITORIO, UN GATO, UN GLOBO, UN JUGO O UNA HORMIGA SON CUERPOS CON MASA. LA MANERA MÁS SENCILLA DE MEDIRLA ES CON UNA BALANZA Y ES PROBABLE QUE TENGAS UNA EN CASA PORQUE TAMBIÉN SON NECESARIAS PARA SABER NUESTRO PESO A MEDIDA QUE CRECEMOS.
¿QUÉ ES LA MASA?
LA MASA ES LA CANTIDAD DE MATERIA QUE CONTIENE UN CUERPO. TODOS LOS OBJETOS O CUERPOS TIENEN MASA, YA SEA EN ESTADO SÓLIDO, LÍQUIDO O GASEOSO. POR EJEMPLO, UN LÁPIZ, EL AGUA Y EL AIRE TIENEN MASA.
CUANDO ALGUIEN PREGUNTA CUÁL ES EL PESO DE UNA PERSONA, ESTE SE EXPRESA EN KILOGRAMOS. ESTO SUCEDE PORQUE LA ACCIÓN DE DETERMINAR LA MASA DE UN CUERPO EN UNA BALANZA SE LLAMA “PESAR”.
¿SABÍAS QUÉ?
EL PESO Y LA MASA NO SON LO MISMO. LA MASA ES INDEPENDIENTE DEL LUGAR DONDE LA MIDAMOS, SIN EMBARGO, EL PESO NO. CUANTO MÁS ALEJADOS DEL CENTRO DE LA TIERRA NOS ENCONTREMOS, MENOR SERÁ NUESTRO PESO.
¿CON QUÉ SE MIDE LA MASA?
LA MASA SE MIDE CON UN INSTRUMENTO LLAMADO BALANZA. LA BALANZAMIDE LA MASA DE CUERPOS Y OBJETOS. TAMBIÉN SE UTILIZAN OTROS INSTRUMENTOS COMO LOS PLATILLOS EN LOS LABORATORIOS O LAS BALANZAS ELECTRÓNICAS PARA PESAR ALIMENTOS.
LAS BALANZAS DE DOS PLATILLOS SON DE MUCHA AYUDA PARA COMPARAR MASAS, POR EJEMPLO:
LAS DOS MACETAS TIENEN IGUAL MASA PORQUE LA BALANZA ESTÁ EN EQUILIBRIO.
LA PIÑA TIENE MAYOR MASA QUE LA FRESA PORQUE LA BALANZA ESTÁ INCLINADA HACIA SU LADO.
LA CALABAZA TIENE MAYOR MASA QUE EL LIMÓN PORQUE LA BALANZA ESTÁ INCLINADA HACIA SU LADO.
TIPOS DE BALANZA
LA BALANZA ES UN INSTRUMENTO QUE PODEMOS VER EN LOS COMERCIOS, EN LOS CONSULTORIOS MÉDICOS, EN LOS LABORATORIOS O HASTA EN NUESTRAS CASAS. HAY MUCHOS TIPOS, PERO LAS MÁS COMUNES SON LAS MECÁNICAS, CON PLATILLOS Y ESFERAS O REGLAS CON MARCAS; Y LAS ELECTRÓNICAS CON PANTALLAS QUE MUESTRAN DIRECTAMENTE EL VALOR DE LA MASA.
KILOGRAMO Y GRAMO
EL SISTEMA INTERNACIONAL DE MEDIDAS SOSTIENE QUE LA UNIDAD DE MEDIDA PRINCIPAL DE LA MASA ES EL KILOGRAMO. EN ALGUNOS CASOS TAMBIÉN SE UTILIZAN SUS UNIDADES DERIVADAS MENORES, COMO LO SON EL GRAMO O EL MILIGRAMO.
¿SABÍAS QUÉ?
LA ABREVIATURA DEL KILOGRAMO ES “kg” Y LA DE LOS GRAMOS ES “g”.
UN PERRO PUEDE PESAR 20 KILOGRAMOS.
UNA BANANA PUEDE PESAR 150 GRAMOS.
UNA HORMIGA PUEDE PESAR 3 MILIGRAMOS.
ALGUNAS EQUIVALENCIAS DE INTERÉS SON LAS SIGUIENTES:
1 KILOGRAMOS ES IGUAL A DOS MEDIOS KILOS.
1 KILOGRAMO ES IGUAL A CUATRO CUARTOS DE KILO.
OTRAS EQUIVALENCIAS
1 KILOGRAMO = 1.000 GRAMOS
½ KILOGRAMOS = 500 GRAMOS
¼ KILOGRAMOS = 250 GRAMOS
¿CÓMO CONVERTIR KILOGRAMOS A GRAMOS?
LA MASA DE MUCHOS PRODUCTOS DEL MERCADO PUEDEN ESTAR MEDIDAS EN KILOGRAMOS, POR EJEMPLO, 2 KILOGRAMOS DE HARINA. PERO SI NECESITAMOS LA MASA EN GRAMOS PARA PREPARAR UNA RECETA, ¿CÓMO HACEMOS?
CAMBIAR UNA MISMA CANTIDAD A OTRA UNIDAD ES MUY FÁCIL. PARA CONVERTIR KILOGRAMOS A GRAMOS SOLO TIENES QUE AGREGAR TRES CEROS A LA CIFRA DE LOS KILOGRAMOS. POR EJEMPLO:
1 KILOGRAMO = 1.000 GRAMOS
2 KILOGRAMOS = 2.000 GRAMOS
3 KILOGRAMOS = 3.000 GRAMOS
OBSERVA ESTAS CAJAS, ¿CUÁNTOS GRAMOS PESAN EN TOTAL?
A)
HAY DOS CAJAS. CADA CAJA PESA 1 KILOGRAMO.
YA SABEMOS QUE:
1 KILOGRAMO = 1.000 GRAMOS
ASÍ QUE:
2 KILOGRAMOS = 2.000 GRAMOS
RESPUESTA: EN TOTAL LAS CAJAS PESAN 2 KILOGRAMOS.
B)
HAY DOS CAJAS. UNA CAJA PESA 1 KILOGRAMO Y LA OTRA PESA ½ KILOGRAMO.
YA SABEMOS QUE:
1 KILOGRAMO = 1.000 GRAMOS
½ KILOGRAMO = 500 GRAMOS
ASÍ QUE:
1.000 GRAMOS + 500 GRAMOS = 1.500 GRAMOS
RESPUESTA: EN TOTAL LAS CAJAS PESAN 1.500 GRAMOS.
C)
HAY TRES CAJAS. UNA CAJA PESA 1 KILOGRAMO Y LAS OTRAS DOS PESAN ¼ DE KILOGRAMO CADA UNA.
Es posible que hayas visto rectas verticales y horizontales en algún mapa. Esta red de líneas se llama cuadrícula y sirve para ubicar un punto de manera sencilla. Las cuadrículas tienen varios usos: cuando sus líneas se cruzan forman una coordenada y gracias a ella podemos saber exactamente, por ejemplo, la posición de una persona en el mundo o la posición de un planeta en el espacio.
¿QUÉ ES UNA CUADRÍCULA?
Una cuadrícula es un conjunto de líneas verticales y horizontales que funcionan como sistema de referencia y permiten ubicar elementos en un espacio. Cada línea puede tener asignado un número o una letra.
¿qué son las COORDENADAS?
Las coordenadas son un conjunto de valores que permiten localizar un punto en un espacio determinado. En un plano, las coordenadas están dadas por dos ejes: el eje X y el eje Y.
Ejes de coordenadas
Son las rectas rectas perpendiculares que se cortan en un punto denominado origen de coordenadas. Juntas forman el sistema de coordenadas.
El eje horizontal se llama eje de abscisas y es conocido normalmente como eje X.
El eje vertical se llama eje de ordenadas y es conocido normalmente como eje Y.
– Ejemplo:
En este sistema de coordenadas observamos que:
El eje Y está representado por números.
El eje X está representado por letras.
El origen de las coordenadas es denotado por (0,0).
La estrella está en un cuadro que corresponde a la posición D del eje X y a la posición 4 del eje Y.
¿Sabías qué?
Al tipo de localización que describe exactamente la posición de un objeto o una persona a través de un sistema de coordenadas geográficas se lo llama localización absoluta.
¿Cómo se escriben las coordenadas?
Existe una manera sencilla de escribir las coordenadas de un punto en el plano, para esto debemos seguir los siguientes pasos:
Ubicar el dato del eje horizontal o eje X.
Ubicar el dato del eje vertical o eje Y.
Separar ambos datos con una coma.
Colocarlos dentro de paréntesis.
Observa el ejemplo anterior. En ese sistema de coordenadas la estrella ocupa el cuadro que coincide con el punto D del eje X y el punto 4 del eje Y. Por lo tanto, las coordenadas de la estrella son (D,4).
– Ejemplo:
Esta cuadrícula tiene coordenadas por cuadros. Los del eje X tienen letras y los del eje Y tienen números. ¿Cuáles son las coordenadas de las figuras?
Figura
Coordenadas
Corazón
(C,5)
Círculo
(E,4)
Rayo
(A,1)
¡A practicar!
Completa la tabla y escribe las coordenadas de las demás figuras.
Solución
Figura
Coordenadas
Corazón
(C,5)
Círculo
(E,4)
Rayo
(A,1)
Cuadrado
(A,5)
Luna
(C,4)
Sol
(B,2)
Nube
(E,2)
Triángulo
(B,3)
¿Sabías qué?
Al ubicar un punto en una cuadrícula, siempre tomaremos primero la referencia horizontal del eje X y luego la vertical del eje Y.
También podemos hallar puntos en una posición precisa si asignamos valores a las líneas.
– Ejemplo:
Esta cuadrícula tiene coordenadas con letra en el eje X y coordenadas con números en el eje Y. ¿Cuáles son las coordenadas de los punto de colores?
Color del punto
Coordenada
Azul
(F,3)
Naranja
(B,2)
Rosa
(D,5)
¡A practicar!
Completa la tabla y escribe las coordenadas de los demás puntos.
Solución
Color del punto
Coordenada
Azul
(F,3)
Naranja
(B,2)
Rosa
(D,5)
Verde
(0,4)
Rojo
(0,0)
Morado
(B,6)
Amarillo
(E,1)
GPS: un gran invento
Uno de los mejores inventos de nuestros tiempos ha sido el GPS, cuyas siglas en español significan “Sistema de Posicionamiento Global”. Este sistema brinda servicios de posicionamiento y navegación a todos sus usuarios a nivel mundial. Su funcionamiento se basa en un sistema de coordenadas geográficas llamado WGS que puede ubicar cualquier punto en el planeta.
¿Sabías qué?
Las coordenadas cartesianas son un sistema para localizar un punto en el plano. René Descartes fue el primer matemático que las utilizó de manera formal, de ahí el nombre de “cartesianas”.
¿PARA QUÉ SIRVE LA CUADRICULA?
Desde la elaboración de planos y dibujos a escalas en hojas cuadriculadas, hasta la localización de estrellas en la galaxia. La unión de rectas perpendiculares nos ayuda a distinguir la posición de cualquier objeto.
Cuando conforman un sistema de coordenadas, las cuadrículas son comunes en los planos de los museos, los parques de diversiones, o incluso de los barrios. También se emplean en los mapas de las ciudades o de los países, los planisferios o incluso los globos terráqueos y en el GPS de los teléfonos móviles y los medios de transporte.
¡A practicar!
Ubica en un cuadrícula las siguientes coordenadas:
(A,3)
(B,7)
(C,2)
(D,6)
(E,1)
(F,5)
Solución
2) Observa la siguiente cuadrícula e indica las coordenadas que están pintadas.
Solución
Azul: (A,6) (A,7) (B,6) (B,7)
Rojo: (F,5) (F,6) (F,7) (G,6)
Morado: (B,3) (C,1) (C,2) (C,3)
Amarillo: (E,1) (E,2) (E,3) (F,1) (F,3) (G,1)
RECURSOS PARA DOCENTES
Artículo “Ejes cartesianos”
Este artículo te permitirá ampliar la información acerca del sistema de representación de ejes cartesianos.
Este artículo brinda información para los estudiantes, así como material para el docente, relacionada a la ubicación geográfica a partir de coordenadas.
DESDE QUE EXISTE EL SER HUMANO, TAMBIÉN EXISTE LA NECESIDAD DE CONTAR. DISTINTAS CIVILIZACIONES CREARON SUS PROPIOS SISTEMAS DE NUMERACIÓN, ESTE ES EL CASO DE LA CIVILIZACIÓN ROMANA. LOS NÚMEROS ROMANOS SOLO CUENTAN CON SIETE SÍMBOLOS, PERO CON ELLOS PUEDES FORMAR INFINIDAD DE NÚMEROS.
HISTORIA DE LOS NÚMEROS ROMANOS
EL SISTEMA DE NUMERACIÓN ROMANO TIENE SUS ORÍGENES EN LOS ETRUSCOS, UN ANTIGUO PUEBLO UBICADO EN LA ACTUAL ITALIA CENTRAL. LOS SÍMBOLOS DE ESTE SISTEMA SURGIERON EN LA ANTIGUA ROMA Y SE MANTUVIERON DURANTE TODO EL IMPERIO ROMANO.
SI BIEN SU USO DISMINUYÓ TRAS LA CAÍDA DEL IMPERIO, AÚN ERAN EMPLEADOS EN MUCHAS OCASIONES. CON EL TIEMPO, EL SISTEMA DE NUMERACIÓN ROMANO FUE SUSTITUIDO POR EL SISTEMA DECIMAL, EL CUAL USAMOS DÍA A DÍA Y CONSTA DE DIEZ CIFRAS: 1, 2, 3, 4, 5, 6, 7, 8, 9 Y 10.
¿QUÉ SON LOS NÚMEROS ROMANOS?
LOS NÚMEROS ROMANOS SON NÚMEROS EXPRESADOS EN LETRASQUE INDICAN UNA CANTIDAD. ESTE SISTEMA DE NUMERACIÓN SOLO TIENE SIETE SÍMBOLOS:
NÚMERO ROMANO
VALOR
I
1
V
5
X
10
L
50
C
100
D
500
M
1.000
¿SABÍAS QUÉ?
EN EL SISTEMA DE NUMERACIÓN ROMANO EL 1 SIEMPRE VALDRÁ UNO 1, YA SEA QUE LO SUMEMOS O LO RESTEMOS. EN CAMBIO, EN NUESTRO SISTEMA DE NUMERACIÓN DECIMAL, EL UNO 1 PUEDE TENER VALORES DISTINTOS SEGÚN EL LUGAR QUE OCUPE EN EL NÚMERO, POR EJEMPLO, EN 21, EL 1 ES UNIDAD Y VALE 1, PERO EN 15, ESE 1 NO VALE 1, VALE 10.
ESCRITURA Y LECTURA DE LOS NÚMEROS ROMANOS
PARA LEER Y ESCRIBIR NÚMEROS ROMANOS DEBEMOS SEGUIR LAS SIGUIENTES REGLAS:
LOS SÍMBOLOS SE ESCRIBEN DE IZQUIERDA A DERECHA. SI UN NÚMERO UBICADO A LA DERECHA DE OTRO ES IGUAL O MENOR A ESTE, SE SUMAN.
XVII = 10 + 5 + 1 + 1 = 17
VIII = 5 + 1 + 1 + 1 = 8
SI UN SÍMBOLO DE MENOR VALOR ESTÁ A LA IZQUIERDA DE UNO DE MAYOR VALOR, ENTONCES SE RESTAN.
IV = 5 − 1 = 4
IX = 10 − 1 = 9
¿SABÍAS QUÉ?
LOS SÍMBOLOS I (1) Y X (10) SÓLO PUEDEN RESTAR A SUS DOS SÍMBOLOS INMEDIATAMENTE SUPERIORES, ES DECIR:
I SÓLO PUEDE RESTAR A V Y X.
X SÓLO PUEDE RESTAR A L Y A C.
LOS SÍMBOLOS V (5) Y L (50) SIEMPRE SUMAN Y NUNCA PUEDEN ESTAR A LA IZQUIERDA PARA RESTAR A UN VALOR MAYOR:
XCV = 100 − 10 + 5 = 95
XLV = 50 − 10 + 5 = 45
LOS SÍMBOLOS PUEDEN REPETIRSE TRES VECES DE MANERA CONSECUTIVA COMO MÁXIMO. V Y L NO SE REPITEN.
III = 1 + 1 + 1 = 3
XXX = 10 + 10 + 10 = 30
UN SÍMBOLO QUE RESTA NO PUEDE REPETIRSE DE MANERA CONSECUTIVA.
¡A PRACTICAR!
EXPRESA LOS SIGUIENTES NÚMEROS ARÁBIGOS EN NÚMEROS ROMANOS:
58
SOLUCIÓN
LVIII
86
SOLUCIÓN
LXXXVI
73
SOLUCIÓN
LXXIII
61
SOLUCIÓN
LXI
48
SOLUCIÓN
XLVIII
36
SOLUCIÓN
XXXVI
APLICACIÓN DE LA NUMERACIÓN ROMANA
HOY DÍA AÚN USAMOS LOS NÚMEROS ROMANOS EN DIVERSAS CIRCUNSTANCIA. ESTOS SON ALGUNOS EJEMPLOS:
PARA DAR LA HORA EN ALGUNOS TIPOS RELOJES.
PARA NOMBRAR PAPAS, POR EJEMPLO, EL PAPA BENEDICTO XVI.
PARA NOMBRAR REYES, POR EJEMPLO, LA REINA ISABEL II.
PARA NOMBRAR SIGLOS, POR EJEMPLO, EL SIGLO XXI.
PARA NOMBRAR EVENTOS, POR EJEMPLO, LA V EDICIÓN DEL FESTIVAL DE MÚSICA.
ACTIVIDADES
1. ORDENA LOS SIGUIENTES NÚMEROS ROMANOS DE MENOR A MAYOR:
XIII – LXX – XXIV – IV – VIII – XXXI
SOLUCIÓN
IV (4)- VIII (8)- XIII (13)- XXIV (24)- XXXI (31) – LXX (70)
2. EXPRESAR LOS SIGUIENTES NÚMEROS ROMANOS EN NÚMEROS CARDINALES:
III – IX – XII – XXII – LXXIX – LXV – LIII
SOLUCIÓN
3 – 9 – 12 – 22 – 79 – 65 – 53
RECURSOS PARA DOCENTES
Artículos “Números romanos”
En el siguiente artículo hay más estrategias de enseñanza para ampliar los conocimientos acerca del sistema de numeración romana.
El área mide la extensión de una superficie, por eso permite saber información importante de las cosas, como el tamaño de un país o la cantidad de baldosas que se necesitan en el piso de una casa. De acuerdo al tipo de figura, el área puede calcularse a través de fórmulas o mediante la descomposición de las figuras en otras más sencillas.
Cálculo de áreas en figuras planas
El área es la superficie o extensión comprendida en una figura. En el caso de las figuras planas, para calcular su área es necesario reconocer cada figura, porque su cálculo es diferente en cada caso.
Triángulos
En los triángulos se cumple que su área es igual a la base por la altura y el resultado se divide entre dos:
– Calcula el área del siguiente triángulo:
Es importante tener en cuenta que al multiplicar dos unidades de longitud (en este caso centímetros) escribimos el producto al cuadrado; es decir, colocamos el exponente “2” arriba de la unidad de medida, por eso se escribe cm2, y se lee “centímetros cuadrados”.
El área y las unidades al cuadrado
En el Sistema Internacional de Unidades el área siempre se expresa en unidades de longitud elevadas al cuadrado, esto se debe a que el área es la medida de una superficie. Un área de 15 cm2 quiere decir que esa superficie está cubierta por 15 cuadrados que miden 1 cm en cada uno de sus lados. Otras unidades de área comunes son: mm2 (milímetros cuadrados), m2 (metro cuadrado) y km2 (kilómetro cuadrado).
El área de un cuadrado es igual a la multiplicación de dos de sus lados. Como los lados de un cuadrado son todos iguales, la fórmula también se puede expresar como la medida de un lado al cuadrado.
– Calcula el área del siguiente cuadrado
Es un cuadrado de nueve metros cuadrados de área.
Rectángulos y romboides
El área de los rectángulos y romboides es igual al producto de su base por su altura.
– Calcula el área del siguiente rectángulo:
Rombos
El área de un rombo es igual al producto de su diagonal mayor (D) y su diagonal menor (d) dividido entre 2.
– Calcula el área del siguiente rombo:
El área del rombo es de 22,5 centímetros cuadrados.
Trapecios
En el caso de los trapecios el área es igual a la suma de su base mayor y su base menor, el resultado se divide entre 2 y luego se multiplica por la altura.
– Calcula el área del siguiente trapecio:
El trapecio tiene un área de 48 milímetros cuadrados.
Polígonos regulares
Los polígonos regulares son figuras geométricas donde todos sus lados miden lo mismo. En todos los polígonos regulares se cumple que:
Donde:
N = número de lados del polígono regular.
L = longitud de uno de los lados.
ap = longitud de la apotema.
¿Sabías qué?
La apotema es la menor distancia que existe entre el centro de un polígono y cualquiera de sus lados.
– Calcula el área del siguiente polígono regular:
Observa que en este caso como el polígono regular tiene seis lados (hexágono) se coloca el número 6. El área de este hexágono es de 40,8 centímetros cuadrados.
¿Cómo calcular el área de un círculo?
Para determinar el área de un círculo se debe multiplicar el número pi (que aunque es un número infinito se redondea a 3,14) por el radio de la circunferencia elevado al cuadrado, es decir; . El área para un círculo con un radio igual a 2 cm, por ejemplo; se calcularía como .
Cálculo de áreas en figuras compuestas
Las figuras compuestas se llaman así porque están formadas por dos o más figuras geométricas. Para calcular el área en estas figuras debemos “separar” las figuras geométricas presentes y calcular por separado el área de cada una. El área total de la figura compuesta será igual a la sumatoria de las áreas de las figuras geométricas que la conformen.
– Calcula el área de la siguiente figura compuesta:
Lo primero para resolver es identificar las figuras geométricas presentes, en este caso es un triángulo (figura 1) y un rectángulo (figura 2).
Calculamos las áreas de las figuras por separado.
– Área del triángulo:
La altura es un dato del problema y es 2 cm, la base del triángulo tiene la misma longitud que la base mayor del rectángulo, por lo tanto tiene el mismo valor que es 5 cm. Calculamos el área según la fórmula de área para el triángulo:
– Área del rectángulo:
Calculamos con la fórmula de área para rectángulos.
El área total es igual a la sumatoria de las áreas de las figuras geométricas calculadas:
Quiere decir que el área de la figura compuesta es de 25 centímetros cuadrados.
¿Por qué es útil conocer el área?
Conocer la superficie del área tiene múltiples usos desde los cotidianos hasta lo científico. Por ejemplo, gracias al área podemos saber cuánta tela necesita un vestido, o cuántas baldosas son necesarias en la construcción de un piso. También se usa para realizar comparaciones, por ejemplo, con el área podemos comparar países de acuerdo a su tamaño. O, también, podemos estimar la superficie de un planeta de acuerdo a su forma.
Además, el área es un parámetro usado en otras fórmulas más avanzadas como los cálculos de presiones. Por otra parte, las diferentes medidas permiten cuantificar desde áreas de tamaños microscópicos hasta áreas del tamaño de una estrella.
¡A practicar!
1. Calcular el área de las siguientes figuras:
a)
Solución
A = 6 cm2
b)
Solución
A = 20 m2
c)
Solución
A = 18 cm2
d)
Solución
A = 61,5 mm2
e)
Solución
A = 79 cm2
2. ¿A cuál de estas figuras corresponde la fórmula de área ?
a)
b)
c)
d)
e)
Solución
d) Es un romboide.
RECURSOS PARA DOCENTES
Video “Resolución del área”
En este video se explica cómo resolver cálculos de áreas en figuras compuestas y se muestran dos de las fórmulas de área más usadas.