CAPÍTULO 5 / TEMA 7 (REVISIÓN)

GEOMETRÍA | ¿QUÉ APRENDIMOS?

CUADRÍCULA

Desde la elaboración de planos y dibujos a escalas en hojas cuadriculadas, hasta la localización de estrellas en la galaxia, la unión de rectas perpendiculares nos ayuda a distinguir la posición de cualquier objeto. Una cuadrícula es un sistema de coordenadas compuesto por líneas perpendiculares verticales y horizontales, que funciona como sistema de referencias y permite ubicar elementos en un espacio definido. El conjunto de líneas horizontales y verticales, también llamadas ejes, suelen nombrarse con números y letras. 

Un claro ejemplo de cuadrícula es un tablero de ajedrez. En este cada cuadro representa una posición que puede ser ocupada por alguna pieza del juego.

TIPOS DE LÍNEAS

Las líneas son un conjunto de puntos ubicados uno junto al otro que generan un trazo continuo. Si los puntos están orientados en una misma dirección, entonces, forman una línea recta. Las líneas rectas son continuas e infinitas, no tienen ni principio ni final y se pueden clasificar según la forma en que interaccionan entre ellas en rectas paralelas (aquellas que nunca se cortan), rectas secantes perpendiculares (aquellas que se cortan formando ángulos rectos) y rectas secantes oblicuas (aquellas que se cortan sin formar ángulos rectos).

Un ejemplo de líneas rectas paralelas son las vías de un ferrocarril. Cuando se cortan con otras forman líneas secantes.

LOS ÁNGULOS Y SUS TIPOS

Un ángulo es una porción del plano delimitado por dos semirrectas. Cada semirrecta es uno de los lados del ángulo y coinciden en un punto de origen al que se denomina vértice. A la distancia entre lado y lado del ángulo se la denomina amplitud, y esta se mide en grados (°). Si queremos medir o trazar un ángulo es indispensable el uso del transportador. Según su amplitud, un ángulo puede ser convexo, cóncavo, nulo, completo, llano, agudo, recto u obtuso.

Las escuadras nos permiten estimar ángulos, pues tienen un ángulo de 90° y dos ángulos de 45°.

LOS TRIÁNGULOS

Los triángulos son polígonos regulares cerrados de tres lados, tres ángulos y tres vértices. Los ángulos interiores de un triángulo siempre suman 180° y los ángulos exteriores suman 360°. Son varios los criterios de clasificación que permiten agrupar a los triángulos de acuerdo a ciertas particularidades, los más utilizados son: la medida de sus lados y la medida de sus ángulos. Según la medida de sus lados, los triángulos se clasifican en equiláteros, isósceles y escalenos; mientras que, según la medida de sus ángulos se clasifican en acutángulo, obtusángulo y rectángulo.

Un mismo triángulo puede ser clasificado por más de un criterio, por ejemplo: todos los triángulos equiláteros son, a su vez, triángulos acutángulos, ya que sus tres ángulos iguales miden 60°.

CUADRILÁTEROS

Los cuadriláteros tienen cuatro lados, cuatro ángulos internos, cuatro ángulos externos, cuatro vértices y dos diagonales. Estos se clasifican en paralelogramos, trapecios y trapezoides. Los paralelogramos son aquellos cuadriláteros que poseen dos pares de lados opuestos paralelos y que comparten algunas propiedades específicas; los trapecios, por su parte, son figuras que presentan un par de lados opuestos paralelos a los que se suele denominar base; y los trapezoides son aquellos cuyos lados no son paralelos.

En primer lugar, los cuadriláteros pueden clasificarse en dos grandes grupos: paralelogramos y no paralelogramos. Las pantallas de nuestros móviles y tabletas son ejemplos de un paralelogramo.

POLIEDROS

Los poliedros son cuerpos geométricos tridimensionales con caras planas formados por polígonos. Cada una de las caras de un poliedro es un polígono (triángulo, cuadrado, rombo, etc.). Los poliedros pueden ser regulares cuando sus caras están compuestas por el mismo polígono regular; o irregulares si sus caras presentan diferentes formas. En estos poliedros el número de caras no presenta límites como ocurre con los poliedros regulares y se dividen en prismas (tienen dos bases) y pirámides (tienen una sola base).

Existen cinco poliedros regulares cuyas caras están conformados por polígonos regulares. Estos son conocidos como sólidos platónicos.

CAPÍTULO 5 / TEMA 6

POLIEDROS

La palabra “poliedro” proviene del griego y significa “que tiene muchas caras o planos”. Con este nombre se designa a aquellos cuerpos geométricos que están formados por polígonos y encierran un volumen. Cada una de las caras de un poliedro es un polígono (un triángulo, un cuadrado, un rombo, etc.) y se caracterizan por tener un mínimo de cuatro caras.

Solemos pensar que un balón de fútbol es una esfera, sin embargo, esto no es así. Un balón de fútbol es un poliedro que al ser hinchado con aire adopta una forma cercana a la esfera. A este tipo de poliedro se lo conoce como icosaedro truncado y combina 20 hexágonos regulares y 12 pentágonos regulares. Tiene 32 caras, 90 aristas y 60 vértices.

ELEMENTOS DE LOS POLIEDROS

Los poliedros son cuerpos geométricos tridimensionales con caras planas y que encierran un volumen. Es decir que un poliedro es una porción acotada de espacio limitada por distintos polígonos, a diferencia de los polígonos, que son porciones del plano limitadas por segmentos.

Los poliedros están constituidos por los siguientes elementos:

Bases Caras Aristas Vértices
Son las caras sobre las cuales se apoya el poliedro. Son las superficies planas que delimitan el espacio interno del poliedro. Son las líneas que componen el cuerpo de un poliedro. Son los puntos de encuentro entre tres o más aristas del poliedro.

TIPOS DE POLIEDROS

Poliedros regulares

Los poliedros regulares son aquellos cuyas caras están compuestas por el mismo polígono regular. Estos son conocidos también como sólidos platónicos.

Nombre del poliedro Forma del poliedro Número de caras Polígonos que forman sus caras
Tetraedro 4 Triángulos equiláteros
Cubo 6 Cuadrados
Octaedro 8 Triángulos equiláteros
Dodecaedro 12 Pentágonos regulares
Icosaedro 20 Triángulos equiláteros

¿Sabías qué?
Se les llama sólidos platónicos porque Platón, filósofo griego del siglo IV a. C., en su diálogo el Timeo explicó la construcción del universo por asociación de cada uno de los poliedros regulares con los elementos fundamentales: agua, aire, tierra y fuego.
El nombre que recibe cada poliedro depende del número de caras que presente. Se utilizan para ello prefijos numerales de origen griego y la terminación –aedro (que significa “plano o cara”). Por ejemplo, el cubo también se llama hexaedro porque tiene 6 caras. No obstante, muchos poliedros tienen sus nombres propios, como el prisma o la pirámide.

Poliedros irregulares

Los poliedros irregulares pueden presentar diferentes formas. En estos poliedros, el número de caras no presenta límites como ocurre con los poliedros regulares. Los poliedros irregulares más comunes son los prismas, las pirámides y todas sus variedades

  • Prismas: son poliedros limitados por dos bases que son polígonos iguales y por caras laterales que son paralelogramos. Ellos se nombran de acuerdo al polígono de la base. Así puedes encontrar:
Prisma triangular Prisma cuadrangular Prisma pentagonal Prisma hexagonal
Triángulos como bases. Cuadrados como bases. Pentágonos como bases. Hexágonos como bases.

VER INFOGRAFÍA

  • Pirámides: son poliedros que tienen una sola base conformada por un polígono y por caras laterales de triángulos con un vértice común. Al igual que los prismas, se nombran por el polígono de la base.
Pirámide triangular Pirámide cuadrangular Pirámide pentagonal Pirámide hexagonal
Triángulo como base. Cuadrado como base. Pentágono como base. Hexágono como base.

¡Construyamos poliedros!

Los poliedros son cuerpos geométricos, esto quiere decir que son tridimensionales y puedes construirlos fácilmente con pocos materiales.

Para construir un cubo necesitarás:

  • Tijeras.
  • Regla.
  • Cartón o un papel duro.
  • Pegamento.

Copia esta plantilla en el papel. Luego recortalo y realizar pliegues en las líneas. Los cuadrados quedarán como caras del poliedro y las pequeñas solapas servirán para unir la figura. En esas solapas debes colocar pegamento, para unirlas con las caras correspondientes. Quedará formado un cubo, similar al de la imagen. Será útil, por ejemplo, para hacer tus propios dados.

Para construir un tetraedro sigue los mismos pasos. Esta es la plantilla:

 

Para construir un octaedro sigue los mismos pasos. Esta es la plantilla:

 

Para construir un dodecaedro sigue los mismos pasos. Esta es la plantilla:

 

Para construir un icosaedro sigue los mismos pasos. Esta es la plantilla:

Poliedros en la vida cotidiana

En la vida cotidiana puedes encontrar continuamente poliedros. A lo largo de la historia, dos ejemplos de ellos se han vuelto mundialmente reconocidos: el cubo de Rubik y las pirámides de Egipto. Estas últimas son poliedros piramidales triangulares, cuya base es un polígono cualquiera y sus caras son triángulos con un vértice común.

RECURSOS PARA DOCENTES

Artículo “Poliedro irregulares”

En este artículo encontrarás el desarrollo teórico para ahondar en las características propias de los poliedros irregulares.

VER