CAPÍTULO 4 / TEMA 4

Relaciones Espaciales

Las relaciones espaciales nos orientan sobre las distancias a las que nos encontramos de algún objeto o lugar. Asimismo, sirven para especificar la posición de un territorio en el espacio. Los mapas y los croquis son ejemplos de herramientas usadas para encontrar distancias y ubicaciones específicas.

¿qué es un croquis?

Es un dibujo que indica nuestra ubicación o la de algún objeto o lugar. En él no hay medidas o distancias. Por ejemplo, cuando decimos que hacemos una representación mental de nuestra habitación, si la dibujamos tenemos un croquis.

Este podría ser el croquis de nuestra habitación. Observa que, después de pasar la puerta, a la izquierda tenemos una mesa, al frente está la cama y a la derecha de esta, justo al lado de la ventana, está ubicado el escritorio.

¡Es tu turno!

Observa este croquis de un zoológico, luego responde.

a) ¿Qué camino debe tomar Daniel para encontrarse con Laura?

Solución
Puede ir por la derecha del parque hasta donde están los caballos y allí se encontrará con Laura.

b) ¿Existe un solo camino?

Solución
No, hay varias maneras de llegar hasta donde está Laura.

c) ¿El canguro está al lado de la jirafa?

Solución
No. El canguro está entre el elefante y el oso.

d) ¿El caballo está frente al hipopótamo?

Solución
Sí, el caballo está frente al hipopótamo.

¿Qué son los mapas?

Son representaciones gráficas de un territorio. Por lo general, se representan de forma bidimensional pero también pueden encontrarse de forma esférica en los globos terráqueos y en modelos 3D.

Una de las características esenciales de todo mapa es su exactitud, por lo cual, debe poseer propiedades métricas a escala para permitir relacionar lo que representan con el mundo real. Toda distancia, ángulo o superficie denotada en un mapa debe cumplir con este principio.

Un planisferio, también conocido como mapamundi, es una representación gráfica a escala del mapa del mundo. Esta ilustración muestra todos los elementos del mapa de la Tierra de manera bidimensional. Muestra datos como relieve y altura sobre el nivel del mar, también señala ríos, regiones y otros elementos.

Los mapas se utilizan para distintos fines. Los más comunes indican:

  • Las calles de un barrio.
  • Las rutas.
  • Los climas.
  • Los continentes.
  • Las provincias.
  • Los relieves.
  • Los subterráneos y/o trenes.

VER INFOGRAFÍA

Historia de los mapas

Desde la organización de las primeras civilizaciones se utilizan los mapas como instrumento de ubicación. En la Edad Media se representaba a la Tierra de forma plana, y la ciudad de Jerusalén era el centro del mundo. Los mapas más antiguos que se tiene registro fueron realizados por los babilonios que vivieron en la Mesopotamia. Tallaban en tablillas de arcilla mediciones de sus tierras y luego las empleaban como herramienta de referencia para cobrar impuestos.

Característica de los mapas

Los mapas pertenecen a una forma de comunicación que emplea una serie de símbolos y nomenclaturas que permiten comprender amplias regiones de la Tierra en una pequeña porción de papel u otro material. Es por ello que es importante comprender los elementos más importantes de cualquier mapa:

  • Título del mapa: indica el objeto de estudio que se trata en el mapa.
  • Leyenda: presenta la codificación expresada en el mapa, es decir, explica los símbolos usados.
  • Escala: señala la proporción que existe entre la medida del mapa y la del terreno real.
  • Referencia de orientación: permite conocer la dirección de los elementos del mapa. Por convencionalismo, se suele usar una rosa de los vientos para señalar la ubicación de los puntos cardinales.

¿Sabías qué?
A comienzos de la Edad Moderna, cuando los exploradores como Cristóbal Colón comenzaron a recorrer los mares, la cartografía y los mapas empezaron a ser muy importantes para la sociedad.

La escala

¿Qué pasa si queremos dibujar un mapa de América? El continente no va a estar dibujado con su tamaño real porque no nos alcanzaría una hoja. Entonces, para poder dibujarlo, el creador del mapa coloca debajo del mismo una escala que indica los kilómetros que están representados por cada centímetro dibujados.

Una escala señala la proporción que existe entre la medida del mapa y la del terreno real. Las escalas pueden representarse de forma explícita cuando se indica, por ejemplo, que 1 cm = 100 km; de forma numérica cuando se muestra la fracción matemática, como por ejemplo 1/10.000; y de forma de regla graduada.
RECURSOS PARA DOCENTES

Artículo “Lenguajes de mapas”

Con este artículo podrá ampliar la información sobre los mapas y sus partes.

VER

Artículo “Mapas y recursos”

Este artículo muestra de qué manera ubicarse en un mapa

VER

CAPÍTULO 5 / TEMA 2

Ángulos

El ángulo es uno de los elementos fundamentales para la geometría porque está presente en las figuras ¡Incluso las paredes de nuestras casas forman ángulos entre ellas! Se puede definir como la porción del plano que se encuentra delimitada por dos semirrectas que comparten el mismo origen. 

Tipos de ángulos

Antes de poder reconocer los diferentes tipos de ángulos es necesario comprender los elementos que los forman.

  • Lado: es cada una de las semirrectas que conforman el ángulo y que tienen un origen en común.
  • Vértice: es el punto común o de origen de los lados.

 

Sistema de medida

El sistema usado para medir ángulos se denomina sistema sexagesimal, su unidad de medida es el grado (°) y resulta de dividir un ángulo llano en 180 partes, cada una de ellas representa un grado. Para medidas más pequeñas se usa el minuto (′) y el segundo (′′). Se denomina sexagesimal porque cada unidad es 60 veces mayor que la siguiente y 60 veces inferior que la anterior. Es por ello que 1° = 60′ y 1′ = 60′′.

De acuerdo a su tamaño los ángulos se clasifican en:

  • Ángulo agudo: es aquel mayor a 0° pero menor a 90°.
  • Ángulo recto: es aquel que mide 90°.
  • Ángulo obtuso: es aquel cuya medida es mayor a 90°pero menor a 180°.
  • Ángulo llano: es aquel cuyo ángulo es igual a 180°.

VER INFOGRAFÍA

Medición de ángulos

Uno de los instrumentos más usados para medir ángulos es el transportador, este presenta una serie de marcas que indican los grados. El más común es el transportador semicircular el cual viene graduado en 180°. Sus partes fundamentales son:

Para medir un ángulo con el transportador debemos seguir los siguientes pasos:

  1. Ubicar el origen del transportador en el vértice del ángulo que se va a medir.
  2. Hacer coincidir uno de los lados del ángulo con la línea horizontal de la base.
  3. Leer el ángulo que corta el segundo lado. Si el ángulo está abierto hacia la izquierda se usa la escala externa, si está abierto hacia la derecha se usa la escala interna (de acuerdo al tipo de instrumento las escalas pueden invertirse).

¿Sabías qué?
El teodolito es un instrumento con mayor precisión que el transportador que permite medir grados, minutos y segundos.

Construcción de ángulos

Una de las formas de construir ángulos es a través de una regla y un transportador. Para ello debemos realizar los siguientes pasos:

1. Trazamos con ayuda de la regla una semirrecta que será más adelante uno de los lados del ángulo.

 

2. Ubicamos el origen del transportador en uno de los extremos de la semirrecta (este también será el origen del ángulo), de manera que el número cero de la escala coincida con el otro extremo.

 

3. Ubicamos en la escala el ángulo que deseamos construir, para este ejemplo queremos construir un ángulo de 40°.

 

4. Hacemos una marca en el punto donde leímos el ángulo deseado.

 

5. Unimos el origen con la lectura marcada, de esta forma construimos un ángulo agudo de 40°.

Además del transportador, otros instrumentos usados para construir ángulos son el compás y la escuadra. Esta última permite construir ángulos rectos. Disciplinas como la arquitectura hacen uso de los ángulos en sus diseños. La exactitud en las mediciones es importante porque de lo contrario muchas de las estructuras podrían sufrir daños y afectar a las personas.

 

Comparación de ángulos

Luego de conocer cómo funciona el sistema sexagesimal en la medición de ángulos, podemos concluir que los ángulos llanos son mayores que los obtusos, que los obtusos son mayores que los rectos y que estos últimos son mayores que los agudos.

De manera que cuando necesitemos comparar ángulos lo primero que debemos hacer es identificar qué tipo de ángulo es. En el caso de conocer los valores de los ángulos, realizamos la comparación de de los números de acuerdo a la cantidad que representan, es decir: un ángulo de 35° es mayor que uno de 20°, pero es menor que uno de 150°.

Los ángulos y el triángulo

Los ángulos son tan importantes que en sí mismos determinan un criterio de clasificación de los triángulos. En este sentido, los triángulos se clasifican en acutángulos, rectángulos y obtusángulos. Los triángulos acutángulos tienen todos sus ángulos internos agudos, los triángulos rectángulos tienen un ángulo recto y los otros dos agudos, los triángulos obtusángulos tienen un ángulo obtuso y los otros dos agudos. En los triángulos se cumple que la suma de sus ángulos internos siempre es igual 180°.

¡A practicar!

1. ¿A qué tipo de ángulo corresponde cada imagen?

a)

Solución
Ángulo recto.
b) 
Solución
Ángulo llano.
c) 
Solución
Ángulo obtuso.
d) 
Solución
Ángulo agudo.

2. ¿Cuál de los siguientes ángulos no es agudo?

a) 95°

b) 30°

c) 3°

d) 84°

Solución
a) 95°. No es agudo porque no es menor a 90°.

3. ¿Cuál de los siguientes ángulos no es obtuso?

a) 125°

b) 95°

c) 160°

d) 180°

Solución
d) 180°. No es obtuso porque es igual a 180°, los ángulos obtusos deben ser mayores a 90° y menores a 180°.

4. ¿Cuál de los siguientes ángulos es agudo?

a) 90°

b) 180°

c) 200°

d) 50°

Solución
d) 50°. Es agudo por ser menor a 90°.

RECURSOS PARA DOCENTES

Artículo “Ángulos”

El presente artículo profundiza más en los diferentes tipos de ángulos que existen según su medida, su posición y sus características.

VER

Video “Propiedades de los ángulos de los polígonos”

En el presente video se muestra de manera animada cómo varían los ángulos externos e internos de los principales polígonos regulares.

VER

Artículo “Ángulo”

Este artículo detalla los elementos y tipos de ángulos, su construcción y el uso del transportador. Al final se proponen una serie de ejercicios relacionados.

VER