¿CUÁNTO LÍQUIDO CABE EN UNA JARRA? ¿Y EN UNA TAZA DE TÉ? ¿Y EN UNA PISCINA? LOS OBJETOS QUE PUEDEN CONTENER A OTROS TIENEN CAPACIDAD. ESTA ES UNA PROPIEDAD QUE PUEDE MEDIRSE CON DISTINTAS UNIDADES Y UNA DE LAS MÁS COMUNES ES EL LITRO. MUCHOS DE LOS PRODUCTOS QUE CONSUMES VIENEN EN UN RECIPIENTE CON UNA ETIQUETA QUE INDICA SU CAPACIDAD.
LA CAPACIDAD
OBSERVA ESTAS IMÁGENES, ¿EN QUÉ OBJETOS CABEN OTROS OBJETOS?
EN UN VASO CABEN OTROS OBJETOS O LÍQUIDOS. EL VASO TIENE CAPACIDAD.
EN LAS LLAVES NO CABEN OTROS OBJETOS O LÍQUIDOS. LAS LLAVES NO TIENEN CAPACIDAD.
¿CUÁLES OBJETOS TIENEN CAPACIDAD?
LA CAPACIDAD ES UNA PROPIEDAD DE LOS RECIPIENTES PORQUE PUEDEN CONTENER DENTRO DE ELLOS OTRAS SUSTANCIAS LÍQUIDAS. POR EJEMPLO, UNA BOTELLA, UN CUBO, UNA TAZA DE TÉ, UNA PISCINA, UNA JARRA Y UN VASO SON OBJETOS CON CAPACIDAD.
UNIDADES DE CAPACIDAD
LA UNIDAD PRINCIPAL PARA MEDIR UNA CAPACIDAD ES EL LITRO. ES FÁCIL RECONOCER UN LITRO COMO LA CANTIDAD QUE ENTRA EN UNA BOTELLA O UN CARTÓN DE LECHE.
CUANDO QUEREMOS MEDIR CANTIDADES MÁS PEQUEÑAS DE LÍQUIDOS, COMO EL JARABE QUE DEBEMOS TOMAR CUANDO NOS SENTIMOS ENFERMOS, USAMOS OTRA UNIDAD DE CAPACIDAD LLAMADA MILILITRO.
– EJEMPLOS:
UN CUCHARA SUELE TENER UNA CAPACIDAD MENOR A UN LITRO.
UNA JARRA DE LECHE SUELE TENER UNA CAPACIDAD IGUAL A UN LITRO.
UNA REGADERA SUELE TENER UNA CAPACIDAD MAYOR A UN LITRO.
LOS JARABES PARA NIÑOS
SE INVENTARON HACE MUCHO TIEMPO. SU SABOR DULCE Y SU CONSISTENCIA LÍQUIDA HACEN QUE INGERIRLOS SEA MÁS AGRADABLE Y EVITA LAS MOLESTIAS DE TRAGAR PASTILLAS Y EL SABOR AMARGO DE LAS MEDICINAS. SE MIDEN EN MILILITROS YA QUE SE ADMINISTRAN EN CANTIDADES MUY PEQUEÑAS, POR ESO LO TOMAS CON CUCHARA O CON GOTERO.
OBSERVA ESTOS OBJETOS, ¿EN CUÁL CABE MÁS?, ¿CUÁL TIENE MAYOR CAPACIDAD?
EN LA TETERA CABE MÁS TÉ QUE EN LA TAZA DE TÉ. LA TETERA TIENE MAYOR CAPACIDAD.
EN LA BOTELLA CABE MÁS VINO QUE EN LA COPA. LA BOTELLA TIENE MAYOR CAPACIDAD.
¡ES TU TURNO!
¿CUÁL DE ESTOS OBJETOS TIENE MENOR CAPACIDAD?
SOLUCIÓN
LA CUCHARA TIENE MENOR CAPACIDAD.
RELACIÓN ENTRE CAPACIDAD Y VOLUMEN
LA CAPACIDAD Y EL VOLUMEN ESTÁN RELACIONADAS ENTRE SÍ PERO NO SIGNIFICAN LO MISMO. LA CAPACIDAD ES EL ESPACIO VACÍO QUE TIENE UN RECIPIENTE, PERO EL VOLUMEN ES EL ESPACIO QUE UN CUERPO OCUPA. EN EL CASO DE LOS LÍQUIDOS, COMO NO TIENEN UNA FORMA DEFINIDA, PODEMOS DETERMINAR SU VOLUMEN AL INTRODUCIRLOS EN UN RECIPIENTE.
¿SABÍAS QUÉ?
EL CUERPO DE UN HUMANO ADULTO TIENE ALREDEDOR DE 37 LITROS DE AGUA EN SU INTERIOR.
¡A PRACTICAR!
1. ENCIERRA EN UN CÍRCULO LOS OBJETOS QUE TIENEN UNA CAPACIDAD MAYOR A UN LITRO.
SOLUCIÓN
2. OBSERVA LOS OBJETOS DE LA IMAGEN ANTERIOR. ¿CUÁL TIENE MAYOR CAPACIDAD?, ¿CUÁL TIENE MENOR CAPACIDAD?
SOLUCIÓN
LA PISCINA TIENE MAYOR CAPACIDAD.
LA CUCHARA TIENE MENOR CAPACIDAD.
RECURSOS PARA DOCENTES
Artículo “Volumen y capacidad: aplicaciones”
Este artículo te permitirá profundizar sobre qué es la capacidad, sus diferencias con el concepto de volumen y las unidades de medida.
Si tienes que elegir entre 1/2 de pizza o 3/4 de pizza, ¿cuál elegirías? Para responder esta pregunta es importante que sepas comparar distintos tipos de fracciones. Estas expresiones matemáticas constan de un numerador y un denominador, y según la relación entre ellos pueden ser mayores o menores que otras. ¡Aprende cómo ordenar fracciones!
Ubicación de fracciones en la recta numérica
Fracciones propias
Las fracciones propias son aquellas que tienen el numerador menor al denominador, por lo que siempre son menores a 1. Para ubicar estas fracciones en la recta numérica dividimos a la unidad en tantos segmentos como indique el denominador de la fracción que queremos representar. Luego, contamos tantos espacios como indique el numerador a partir del cero.
– Ejemplo:
La fracción es propia porque su numerador es menor al denominador (4 < 5).
Para representarla en la recta dividimos el segmento entre el 0 y el 1 en 5 espacios (denominador). Después contamos 4 espacios (numerador) y ubicamos la fracción.
Fracciones impropias
Las fracciones impropias son aquellas cuyo numerador es mayor al denominador, por lo que siempre son mayores a 1. Para representar este tipo de fracciones en la recta numérica tenemos que transformarlas a números mixtos.
¿Qué es un número mixto?
Es aquel que tiene una parte entera y una parte fraccionaria. Por ejemplo:
Este número mixto se lee “dos enteros y un medio”.
¿Cómo transformar una fracción impropia a un número mixto?
Realiza la división entre el numerador y el denominador. Al terminar con la cuenta, el cociente de la división indica el entero del número mixto; el resto junto al divisor van a conformar la parte fraccionaria: el resto será el numerador y el divisor será el denominador.
– Ejemplo:
¿Cuál es el número mixto equivalente a la fracción ?
Por lo tanto:
De este modo, para poder representar el número mixto en la recta numérica consideramos el número entero, en este caso el 2, y a partir de este seguimos los mismos pasos que en las fracciones propias: dividimos el segmento entre el 2 y el 3 en 2 segmentos iguales (denominador), después contamos un espacio (numerador) y ubicamos la fracción.
Representa las siguientes fracciones en una recta numérica.
Solución
Como la fracción es impropia, la transformamos a número mixto.
Solución
Solución
Solución
Como la fracción es impropia, la transformamos a número mixto.
comparación de fracciones
Cuando comparamos fracciones, determinamos cuál es mayor o menor que otra. Para esto, debemos tomar en cuenta sus elementos y ver si los denominadores son iguales o si sus numeradores son iguales.
Comparar fracciones con igual denominador
Entre dos fracciones con igual denominador será mayor la fracción que tenga mayor numerador.
– Ejemplo:
Observa que los denominadores son iguales (3 = 3) pero los numeradores no; y como 8 > 6, la fracción 8/6 es mayor que 6/3.
Comparar fracciones con igual numerador
Entre dos fracciones con igual numerador será mayor la fracción que tenga menor denominador.
– Ejemplo:
Observa que los numeradores son iguales (12 = 12) pero los denominadores no; y como 5 > 4, la fracción 12/4 es mayor que 12/5.
Fracciones con distintos numeradores y denominadores
Cuando las dos fracciones tienen numeradores y denominadores diferentes, buscamos homogeneizar, es decir, encontrar fracciones equivalentes con igual denominador.
¿Cómo homogeneizar dos fracciones?
Para encontrar las fracciones equivalentes con igual denominador de unas fracciones seguimos estos pasos:
Determinamos el mínimo común múltiplo de los denominadores. Ese será el denominador de las fracciones equivalentes.
Encontramos el número por el que hay que multiplicar el numerador y el denominador de las fracciones.
– Ejemplo:
Homogeneiza las fracciones y . Luego compara.
1. Calculamos el m. c. m. de los denominadores 3 y 4.
2. Encontramos el número por el que hay que multiplicar el numerador y el denominador de las fracciones.
Como 3 × 4 = 12, entonces también multiplicamos el numerador por 4.
Como 4 × 3 = 12, entonces también multiplicamos el numerador por 3.
Ahora es más sencillo comparar las fracciones, pues tenemos fracciones homogéneas por lo que seguimos los pasos anteriores: entre dos fracciones con igual denominador será mayor la fracción que tenga mayor numerador. Así que:
Como es la fracción equivalente de ; y es la fracción equivalente de , podemos decir que:
¿Sabías qué?
En el año 1800 a. C. el pueblo babilonio introdujo las fracciones.
Comparación de números mixtos
Entre dos números mixtos, será mayor aquel que tenga mayor parte entera. Por ejemplo:
Pero si las partes enteras son iguales, comparamos la parte fraccionaria por medio de cualquier de los métodos aplicados anteriormente. Por ejemplo:
Las dos partes entera son iguales (1 = 1), pero las partes fraccionarias no. Como ves, ambas son fracciones homogéneas porque los denominadores son iguales (6 = 6), así que comparamos los numeradores, y como 4 > 1, el número mixto es mayor que .
¡A practicar!
1. Representa las siguientes fracciones en la recta numérica.
Solución
Solución
Solución
Solución
2. Compara los siguientes números mixtos.
y
Solución
y
Solución
y
Solución
porque
y
Solución
RECURSOS PARA DOCENTES
Artículo “Partes y porciones”
En este artículo podrás ampliar la información sobre la comparación de fracciones por medio del método del común denominador (sin utilizar recta numérica).
Enciclopedia “Enciclopedia de Matemáticas Primaria”
Con el Tomo 2 de esta enciclopedia podrás profundizar en el concepto de fracciones y su clasificación, así como en la comparación de fracciones y números mixtos.
MEDIR ES COMPARAR. CUANDO HACEMOS ESTO USAMOS UNIDADES DE MEDIDA QUE SON LAS CANTIDADES ESTABLECIDAS PARA UNA MAGNITUD, ES DECIR, LAS MEDIDAS ACEPTADAS EN TU PAÍS PARA SABER LA LONGITUD, LA MASA, LA CAPACIDAD O EL TIEMPO DE ALGO. SU NECESIDAD DE APLICACIÓN LOGRÓ SATISFACER NECESIDADES BÁSICAS DE LOS PRIMEROS POBLADORES COMO LA CREACIÓN DE VESTIMENTA, LA CANTIDAD DE ALIMENTOS Y LA ALTURA DE SUS CONSTRUCCIONES.
LA LONGITUD
LA LONGITUD ES UNA MAGNITUD MUY UTILIZADA POR LOS SERES HUMANOS. SU UNIDAD DE MEDIDA PRINCIPAL ES EL METRO, EL CUAL SE UTILIZA PARA MEDIR EL LARGO DE UN OBJETO O LA DISTANCIA ENTRE UN LUGAR Y OTRO. POR LO GENERAL SE USA PARA SABER A QUÉ DISTANCIA SE ENCUENTRA UNA PERSONA DE UN LUGAR AL QUE DESEA LLEGAR. LOS INSTRUMENTOS QUE SIRVEN PARA MEDIR LA LONGITUD SON LA REGLA GRADUADA O LA CINTA MÉTRICA.
MASA
LA MASA ES LA CANTIDAD DE MATERIA QUE TIENE UN CUERPO. SEGÚN EL SISTEMA INTERNACIONAL DE MEDIDAS SU UNIDAD DE MEDIDA PRINCIPAL ES EL KILOGRAMO. EN ALGUNOS CASOS TAMBIÉN SE UTILIZAN SUS UNIDADES DERIVADAS MENORES, COMO LO SON EL GRAMO O EL MILIGRAMO. LA MASA SE MIDE CON UN INSTRUMENTO LLAMADO BALANZA.
LA CAPACIDAD
LA CAPACIDAD ES UNA MAGNITUD QUE DETERMINA LA CANTIDAD DE SUSTANCIA QUE PUEDE ALMACENAR UN RECIPIENTE. SU UNIDAD PRINCIPAL ES EL LITRO Y SE UTILIZA A MENUDO EN LOS ALIMENTOS EN ESTADO LÍQUIDO QUE SON ENVASADOS. LA CAPACIDAD DE UN RECIPIENTE INDICA CUÁNTO LÍQUIDO PUEDE CONTENER Y TENDRÁ MÁS CAPACIDAD CUANTO MAYOR SEA EL VOLUMEN DE ESTE.
EL TIEMPO
EL TIEMPO ES UNA MAGNITUD QUE MUESTRA LA DURACIÓN DE LO EVENTOS. EL TIEMPO PUEDE SER MEDIDO Y, A DIFERENCIA DE LAS OTRAS MAGNITUDES, TIENE DIFERENTES UNIDADES DE MEDIDAS. LAS MENORES A UN DÍA SON LAS HORAS, LOS MINUTOS Y LOS SEGUNDOS; LAS MAYORES A UN DÍA SON LAS SEMANAS, LOS MESES, LOS AÑOS, LAS DÉCADAS, LOS SIGLOS, ETC. EL TIEMPO ESTÁ RELACIONADA CON EL MOVIMIENTO DE LA TIERRA.
EL CALENDARIO
EL CALENDARIO ES UN SISTEMA CREADO POR EL HOMBRE PARA CONTABILIZAR EL TRANSCURSO DEL TIEMPO. EL CALENDARIO USADO ACTUALMENTE POR TODO EL MUNDO ES EL CALENDARIO GREGORIANO, QUE TIENE EN CUENTA EL CALENDARIO SOLAR. EL MISMO EXPONE QUE UN AÑO TIENE 365 DÍAS DIVIDIDO EN 12 MESES. CADA CUATRO AÑOS SE SUMA 1 DÍA AL AÑO Y ESTE RECIBE EL NOMBRE DE “AÑO BISIESTO”.
El ángulo es uno de los elementos fundamentales para la geometría porque está presente en las figuras ¡Incluso las paredes de nuestras casas forman ángulos entre ellas! Se puede definir como la porción del plano que se encuentra delimitada por dos semirrectas que comparten el mismo origen.
Tipos de ángulos
Antes de poder reconocer los diferentes tipos de ángulos es necesario comprender los elementos que los forman.
Lado: es cada una de las semirrectas que conforman el ángulo y que tienen un origen en común.
Vértice: es el punto común o de origen de los lados.
Sistema de medida
El sistema usado para medir ángulos se denomina sistema sexagesimal, su unidad de medida es el grado (°) y resulta de dividir un ángulo llano en 180 partes, cada una de ellas representa un grado. Para medidas más pequeñas se usa el minuto (′) y el segundo (′′). Se denomina sexagesimal porque cada unidad es 60 veces mayor que la siguiente y 60 veces inferior que la anterior. Es por ello que 1° = 60′ y 1′ = 60′′.
De acuerdo a su tamaño los ángulos se clasifican en:
Ángulo agudo: es aquel mayor a 0° pero menor a 90°.
Ángulo recto: es aquel que mide 90°.
Ángulo obtuso: es aquel cuya medida es mayor a 90°pero menor a 180°.
Ángulo llano: es aquel cuyo ángulo es igual a 180°.
Uno de los instrumentos más usados para medir ángulos es el transportador, este presenta una serie de marcas que indican los grados. El más común es el transportador semicircular el cual viene graduado en 180°. Sus partes fundamentales son:
Para medir un ángulo con el transportador debemos seguir los siguientes pasos:
Ubicar el origen del transportador en el vértice del ángulo que se va a medir.
Hacer coincidir uno de los lados del ángulo con la línea horizontal de la base.
Leer el ángulo que corta el segundo lado. Si el ángulo está abierto hacia la izquierda se usa la escala externa, si está abierto hacia la derecha se usa la escala interna (de acuerdo al tipo de instrumento las escalas pueden invertirse).
¿Sabías qué?
El teodolito es un instrumento con mayor precisión que el transportador que permite medir grados, minutos y segundos.
Construcción de ángulos
Una de las formas de construir ángulos es a través de una regla y un transportador. Para ello debemos realizar los siguientes pasos:
1. Trazamos con ayuda de la regla una semirrecta que será más adelante uno de los lados del ángulo.
2. Ubicamos el origen del transportador en uno de los extremos de la semirrecta (este también será el origen del ángulo), de manera que el número cero de la escala coincida con el otro extremo.
3. Ubicamos en la escala el ángulo que deseamos construir, para este ejemplo queremos construir un ángulo de 40°.
4. Hacemos una marca en el punto donde leímos el ángulo deseado.
5. Unimos el origen con la lectura marcada, de esta forma construimos un ángulo agudo de 40°.
Comparación de ángulos
Luego de conocer cómo funciona el sistema sexagesimal en la medición de ángulos, podemos concluir que los ángulos llanos son mayores que los obtusos, que los obtusos son mayores que los rectos y que estos últimos son mayores que los agudos.
De manera que cuando necesitemos comparar ángulos lo primero que debemos hacer es identificar qué tipo de ángulo es. En el caso de conocer los valores de los ángulos, realizamos la comparación de de los números de acuerdo a la cantidad que representan, es decir: un ángulo de 35° es mayor que uno de 20°, pero es menor que uno de 150°.
Los ángulos y el triángulo
Los ángulos son tan importantes que en sí mismos determinan un criterio de clasificación de los triángulos. En este sentido, los triángulos se clasifican en acutángulos, rectángulos y obtusángulos. Los triángulos acutángulos tienen todos sus ángulos internos agudos, los triángulos rectángulos tienen un ángulo recto y los otros dos agudos, los triángulos obtusángulos tienen un ángulo obtuso y los otros dos agudos. En los triángulos se cumple que la suma de sus ángulos internos siempre es igual 180°.
¡A practicar!
1. ¿A qué tipo de ángulo corresponde cada imagen?
a)
Solución
Ángulo recto.
b)
Solución
Ángulo llano.
c)
Solución
Ángulo obtuso.
d)
Solución
Ángulo agudo.
2. ¿Cuál de los siguientes ángulos no es agudo?
a) 95°
b) 30°
c) 3°
d) 84°
Solución
a) 95°. No es agudo porque no es menor a 90°.
3. ¿Cuál de los siguientes ángulos no es obtuso?
a) 125°
b) 95°
c) 160°
d) 180°
Solución
d) 180°. No es obtuso porque es igual a 180°, los ángulos obtusos deben ser mayores a 90° y menores a 180°.
4. ¿Cuál de los siguientes ángulos es agudo?
a) 90°
b) 180°
c) 200°
d) 50°
Solución
d) 50°. Es agudo por ser menor a 90°.
RECURSOS PARA DOCENTES
Artículo “Ángulos”
El presente artículo profundiza más en los diferentes tipos de ángulos que existen según su medida, su posición y sus características.
Este artículo detalla los elementos y tipos de ángulos, su construcción y el uso del transportador. Al final se proponen una serie de ejercicios relacionados.