CAPÍTULO 7 / TEMA 7 (REVISIÓN)

ORDEN Y RELACIONES │ ¿QUÉ APRENDIMOS?

SUCESIONES

Las sucesiones son secuencias ordenadas de términos que siguen una determinada regla de recurrencia o patrón. Estas pueden ser aritméticas geométricas. Las aritméticas tienen una diferencia con el término anterior en una cantidad constante, por ejemplo, 2, 4, 6, 8,… En cambio, en las geométricas cada término (excepto el primero) es múltiplo del término anterior de la sucesión, por ejemplo, 2, 4, 8, 16, 32,… Las sucesiones se utilizan en las matemáticas, en entidades financieras, en ciencias naturales, en informática y hasta en el arte.

La espiral de Fibonacci se trata de una espiral áurea que podemos construir a partir de los números contenidos en la sucesión de Fibonacci: 1, 2, 3, 5, 8, 13,…

LA RECTA NUMÉRICA

La recta numérica es una representación gráfica unidimensional que nos permite ubicar los números reales (\mathbb{R}), lo cual resulta de gran utilidad para comparar valores o indicar soluciones de intervalos en las inecuaciones. Se caracteriza por poseer el cero centrado y se considera el origen de la recta; hacia la izquierda se ubican los números negativos y a la derecha los positivos. Entre dos números, será mayor el que esté más a la derecha. Existen métodos para representar con precisión algunos números radicales sobre la recta.

Las reglas graduadas son un ejemplo de rectas numéricas. En estas vemos las divisiones de las unidades enteras que equivalen a las décimas.

PLANO CARTESIANO

Es un sistema de representación bidimensional muy utilizado en matemática y otras áreas para la ubicación de puntos en el plano. Su nombre se debe al filósofo y matemático René Descartes, quien propuso su aplicación en el siglo XVII como una base del sistema de coordenadas rectangulares. Está formado por un eje horizontal denominado eje de las abscisas, que tradicionalmente denotamos con la letra x; y un eje vertical llamado eje de las ordenadas, que por lo general representamos con la letra y. Cada eje se comporta como una recta numérica que se prolonga hasta el infinito.

Por lo general, lo mapas contienen ejes de coordenadas que asemejan el plano cartesiano. Las unión de dos coordenadas dan la ubicación de un punto.

FUNCIONES

Son expresiones matemáticas que indican una relación de correspondencia entre un conjunto de partida y un conjunto de llegada. Para que una relación sea considerada función, debe cumplirse que cada elemento del dominio tenga una sola imagen en el conjunto de llegada. Las funciones pueden ser inyectivas, sobreyectivas o biyectivas.

Las funciones también se pueden clasificar de acuerdo con los operadores que contienen sus términos y estas pueden ser polinómicas, trigonométricas, exponenciales, logarítmicas, entre otras.

FUNCIÓN LINEAL

La función lineal es un tipo de función polinómica cuyo mayor grado de exponente es 1. Su representación gráfica es una línea recta que puede ser descrita a partir de la ecuación explícita: y = mx + b, donde m es la pendiente de la recta y b es su ordenada al origen. Si conocemos la función de la recta podemos graficarla por medio una tabla de valores que cumpla con las soluciones de la función.

Estas gráficas representan dos funciones lineales. Las que no pasan por el origen se llaman funciones afines. Con dos puntos como mínimo se puede construir la recta.

PROPORCIONES

Las proporciones son una medida que relaciona a dos razones mediante una constante. El cociente que resulta de dividir una razón de proporción se conoce como constante de proporcionalidad. Dos magnitudes son directamente proporcionales si al aumentar una cantidad, la otra también aumenta; o si al disminuir una cantidad, la otra también disminuye. En cambio, dos magnitudes son inversamente proporcionales si al incrementar el valor de una, el valor de la otra disminuye; o si al disminuir el valor de una, la otra aumenta.

La cantidad de productos que compramos son directamente proporcionales con el precio, ya que a medida que más compramos más dinero pagamos.

CAPÍTULO 4 / TEMA 4

PROPORCIONALIDAD

Si compramos una gaseosa a $ 2, 2 gaseosas costarán $ 4 y 3 gaseosas costarán $ 6. Esto se llama proporcionalidad porque las dos magnitudes, precio y cantidad, tiene una relación directa entre sí. Esta relación sirve para hacer conversiones de unidades de medida. ¡Aprendamos a resolver problemas de proporcionalidad!

¿QUÉ ES LA PROPORCIONALIDAD?

La proporcionalidad es una relación que existe entre las magnitudes que podemos medir, como el tiempo, la longitud, la superficie o el peso.

Las proporciones son mucho más comunes de lo que pensamos. Las utilizamos al calcular la cantidad de ingredientes para hacer una torta, cuando convertimos unidades de medida o cuando vamos al cine con nuestros amigos y deseamos saber cuál es el costo total de las entradas.

Muchas de las cantidades que utilizamos cotidianamente están relacionadas entre sí. Por ejemplo, siempre que vamos a un kiosco, sabemos que mientras más productos compremos, más dinero tendremos que pagar. Eso es porque “la cantidad de productos que compramos” y “la cantidad que debemos pagar” tienen una relación directamente proporcional.

¿Sabías qué?
Existen dos tipos de proporcionalidad: la proporcionalidad directa y la proporcionalidad inversa.

PROPORCIONALIDAD DIRECTA

Cuando dos magnitudes están relacionadas mediante una proporcionalidad directa se comportan de tal manera que:

  • Cuando una cantidad aumenta, la otra también aumenta.
  • Cuando una cantidad disminuye, la otra también disminuye.

Si esto sucede, se dice que las cantidades son “directamente proporcionales”.

– Ejemplo:

Si una camiseta cuesta $ 3, ¿cuánto cuestan 2 camisetas?, ¿y 3 camisetas?

Cantidad de dinero $ 3 $ 6 $ 9
Cantidad de camisetas 1 2 3

Observa que al aumentar la cantidad de camisetas también aumenta la cantidad de dinero, por eso, ambas son directamente proporcionales.

Siempre que dos magnitudes sean directamente proporcionales el cociente entre ellas será constante. A esta relación la podemos escribir y comprobar por medio de una fracción:

\frac{{\color{Blue} 3}}{{\color{Red} 1}}=\boldsymbol{3}

\frac{{\color{Blue} 6}}{{\color{Red} 2}}=\boldsymbol{3}

\frac{{\color{Blue} 9}}{{\color{Red} 3}}=\boldsymbol{3}

Los numeradores en azul representan la cantidad de dinero y los denominadores en rojo representan la cantidad de camiseta. Todos los cocientes son iguales, es decir, la proporción es constante.

Razón de proporcionalidad

Si dividimos entre sí las magnitudes que aumentan o disminuyen, obtendremos como resultado un número llamado razón de proporcionalidad, y si dividimos ambas cantidades luego de que aumenten o disminuyan, también obtendremos como resultado al mismo número. Por lo tanto, dos magnitudes son directamente proporcionales si:

magnitud 1 ÷ magnitud 2 = razón de proporcionalidad

¿cómo resolver problemas de PROPORCIONALIDAD DIRECTA?

Un método para resolver problemas de proporcionalidad es la regla de tres. Esta se utiliza para hallar el cuarto término de una proporción cuando ya conoces tres valores.

– Ejemplo 1:

En cada paquete de chicles hay 8 chicles. ¿Cuántos chicles hay en 4 paquetes?

1. Escribimos la primera relación, que es la que tiene los dos valores conocidos:

 

2. Luego escribimos la segunda relación. En esta solo conocemos un valor y al desconocido lo representamos con la letra equis (x).

En conjunto, estas relaciones se leen así: “si un paquete de chicles tiene ocho chicles, ¿cuántos chicles tienen cuatro paquetes de chicles?”.

Observa que colocamos una magnitud debajo de otra magnitud: paquetes de chicles debajo de paquetes de chicles y cantidad de chicles debajo de cantidad de chicles. La “x” es una valor que desconocemos, pero la magnitud buscada es “cantidad de chicles”.

 

3. Multiplicamos en diagonal y luego dividimos por el valor que quede solo.

 

4. Resolvemos las operaciones.

Nota que las magnitudes que son iguales tanto en el numerador como en el denominador se tachan y queda la magnitud deseada: cantidad de chicles.

 

5. Damos respuesta a la interrogante.

En 4 paquetes de chicles hay 32 chicles.

Dos magnitudes directamente proporcionales son la cantidad de kilómetros recorridos en un automóvil y la cantidad de combustible gastado. Cuando una de estas cantidades se modifica, la otra lo hace de igual manera; pues si recorremos 110 kilómetros gastaremos 10 litros de combustible, pero si recorremos 330 kilómetros gastaremos 30 litros.

– Ejemplo 2:

Para pintar 6 edificios son necesarios 80 galones de pintura, ¿cuántos galones de pintura son necesarios para pintar 18 edificios?

  • Relaciones

  • Reflexión

Este problema de proporcionalidad se resuelve al multiplicar en forma diagonal las relaciones antes mostradas, y después al dividir entre 6. No debemos olvidar tachar las magnitudes iguales en el numerador y en el denominador.

  • Operaciones

  • Respuesta

Para pintar 18 edificios se necesitan 240 galones de pintura.


– Ejemplo 3:

Si 10 lápices cuestan $ 5, ¿cuánto costarán 70 lápices?

  • Relaciones

  • Reflexión

Hay que resolver la regla de tres, para esto multiplicamos en forma diagonal: 70 × 5 y luego dividimos este resultado entre 10. Tachamos las unidades repetidas en los numeradores y denominadores.

  • Operaciones

  • Respuesta

70 lápices costarán $ 35.


¿Sabías qué?
En la cocina también utilizamos la proporcionalidad. Si tenemos una receta que indica las cantidades para 1 persona, pero queremos hacer la receta para 5 personas, debemos multiplicar a todas las cantidades por 5.

USOS DE LA PROPORCIONALIDAD DE LA CONVERSIÓN DE MEDIDAS

La proporcionalidad nos puede ser útil a la hora de convertir unidades de medidas. Por ejemplo, cuando conocemos la longitud de un objeto en centímetros y queremos conocerla en metros, o cuando conocemos nuestro peso en kilogramos pero queremos conocerlo en gramos.

La conversión de unidades de medida es usada en múltiples oficios. Los costureros y diseñadores utilizan a menudo la cinta métrica: una cinta flexible con marcas que muestran los metros y los centímetros. Esta es de gran utilidad para medir grandes o pequeñas longitudes de tela. También es usada por arquitectos y médicos.

Equivalencias de interés

Masa

Unidad principal: gramo (g)

 

1 g = 1.000 mg

1 g = 100 cg

1 g = 10 dg

1 g = 0,1 dag

1 g = 0,01 hg

1 g = 0,001 kg

Longitud

Unidad principal: metro (m)

 

1 m = 1.000 mm

1 m = 100 cm

1 m = 10 dm

1 m = 0,1 dam

1 m = 0,01 hm

1 m = 0,001 km

Capacidad

Unidad principal: litro (L)

 

1 L = 1.000 mL

1 L = 100 cL

1 L = 10 dL

1 L = 0,1 daL

1 L = 0,01 hL

1 L = 0,001 kL

– Ejemplo 1:

Convierte 1,90 m a cm.

Ya sabemos que 1 metro = 100 centímetros, por lo tanto, esta es nuestra primera relación para la regla de tres. Luego resolvemos:

1,90 m equivalen a 190 cm.


– Ejemplo 2:

Convierte 5.600 ml a L.

5.600 mL equivalen a 5,6 L.


– Ejemplo 3:

Convierte 8,96 km a m.

9,96 km equivalen a 8.960 m.


¡A practicar!

1. Resuelve estos problemas de proporcionalidad por medio de reglas de tres.

a) Un automóvil recorre 200 km en 4 horas, ¿cuánto tiempo tardará en recorrer 500 km si la velocidad es constante?

Solución
Tardará 10 horas.

b) José compró 25 servilletas por $ 5, ¿cuántas servilletas podrá comprar con $ 30?

Solución
José podrá comprar 150 servilletas.

c) Si 60 segundos son iguales a 1 minuto, ¿cuántos minutos hay en 2.160 segundos?

Solución
Hay 36 minutos.

d) 8 obreros realizaron una obra de 200 m, ¿cuántos metros de obras pueden hacer 10 obreros?

Solución
Pueden hacer 250 metros.

 

2. Realiza las siguientes conversiones de unidades de medida.

a) 0,69 g a mg.

Solución
690 mg.

b) 5.896 mg a g.

Solución
5,896 g.

c) 5 kg a g.

Solución
5.000 g.

d) 0,94 L a mL.

Solución
940 mL.

e) 3.216 mL a L.

Solución
3,216 L.

f) 1,5 g a mg.

Solución
15.000 mg.

g) 7.415 g a kg.

Solución
7,415 kg.

h) 0,05 kg a g.

Solución
5.000 g.
RECURSOS PARA DOCENTES

Artículo “Regla de 3 simple y compuesta”

Este artículo trata sobre una herramienta que se utiliza para resolver problemas de proporcionalidad: la regla de 3 simple y compuesta.

VER