Las sucesiones son secuencias ordenadas de términos que siguen una determinada regla de recurrencia o patrón. Estas pueden ser aritméticas o geométricas. Las aritméticas tienen una diferencia con el término anterior en una cantidad constante, por ejemplo, 2, 4, 6, 8,… En cambio, en las geométricas cada término (excepto el primero) es múltiplo del término anterior de la sucesión, por ejemplo, 2, 4, 8, 16, 32,… Las sucesiones se utilizan en las matemáticas, en entidades financieras, en ciencias naturales, en informática y hasta en el arte.
LA RECTA NUMÉRICA
La recta numérica es una representación gráfica unidimensional que nos permite ubicar los números reales (), lo cual resulta de gran utilidad para comparar valores o indicar soluciones de intervalos en las inecuaciones. Se caracteriza por poseer el cero centrado y se considera el origen de la recta; hacia la izquierda se ubican los números negativos y a la derecha los positivos. Entre dos números, será mayor el que esté más a la derecha. Existen métodos para representar con precisión algunos números radicales sobre la recta.
PLANO CARTESIANO
Es un sistema de representación bidimensional muy utilizado en matemática y otras áreas para la ubicación de puntos en el plano. Su nombre se debe al filósofo y matemático René Descartes, quien propuso su aplicación en el siglo XVII como una base del sistema de coordenadas rectangulares. Está formado por un eje horizontal denominado eje de las abscisas, que tradicionalmente denotamos con la letra x; y un eje vertical llamado eje de las ordenadas, que por lo general representamos con la letra y. Cada eje se comporta como una recta numérica que se prolonga hasta el infinito.
FUNCIONES
Son expresiones matemáticas que indican una relación de correspondencia entre un conjunto de partida y un conjunto de llegada. Para que una relación sea considerada función, debe cumplirse que cada elemento del dominio tenga una sola imagen en el conjunto de llegada. Las funciones pueden ser inyectivas, sobreyectivas o biyectivas.
FUNCIÓN LINEAL
La función lineal es un tipo de funciónpolinómica cuyo mayor grado de exponente es 1. Su representación gráfica es una línea recta que puede ser descrita a partir de la ecuación explícita: y = mx + b, donde m es la pendiente de la recta y b es su ordenada al origen. Si conocemos la función de la recta podemos graficarla por medio una tabla de valores que cumpla con las soluciones de la función.
PROPORCIONES
Las proporciones son una medida que relaciona a dos razones mediante una constante. El cociente que resulta de dividir una razón de proporción se conoce como constante de proporcionalidad. Dos magnitudes son directamente proporcionales si al aumentar una cantidad, la otra también aumenta; o si al disminuir una cantidad, la otra también disminuye. En cambio, dos magnitudes son inversamente proporcionales si al incrementar el valor de una, el valor de la otra disminuye; o si al disminuir el valor de una, la otra aumenta.
Cuando dos magnitudes se relacionan de manera directamente proporcional pueden representarse como una función de expresión algebraica y = mx + b. Estas funciones pueden identificarse rápidamente por medio de su gráfica, pues en el plano cartesiano siempre estarán representadas con una línea recta ascendente o descendente.
GRÁFICA DE UNA FUNCIÓN
Si conocemos la función matemática que relaciona a dos variables, podemos construir su gráfica, o al menos una aproximación de ella. Para esta tarea solo calculamos, a partir de la función, una serie de puntos que cumplan con la solución. Debemos tener en cuenta que cuantos más puntos utilicemos para graficar una función, mayor precisión obtendremos.
Algunas funciones matemáticas tienen gráficas características en el plano cartesiano, por ejemplo:
Funciones lineales
f(x) = mx + b
Funciones potenciales
f(x) = x2
Funciones exponenciales
f(x) = 2x
Funciones irracionales
f(x) = √x
Funciones racionales
f(x) = 1/x
Funciones trigonométricas
f(x) = sen x
¿Qué es una función lineal?
Una función lineal es una función cuya gráfica es igual a una línea recta que pasa por el origen de coordenadas. Su expresión algebraica es la siguiente:
f(x) = mx
Donde:
m = constante de proporcionalidad o pendiente de la recta
¿Sabías qué?
Las funciones lineales también son llamadas “funciones de proporcionalidad directa”.
– Ejemplo:
Un tren tiene una velocidad media de 160 km/h. La relación entre la distancia y el tiempo se puede observa en la siguiente tabla:
Tiempo (h) = x
0
1
2
3
4
Distancia (km) = y
0
160
320
480
640
Por medio de esta tabla vemos que las dos magnitudes (tiempo y distancia) son directamente proporcionales porque a medida que una aumenta, la otra también lo hace. Si realizamos una gráfica entre estas dos magnitudes nos resulta una línea recta como esta:
Nota que la recta pasa por el origen (0, 0) y va en aumento, por lo tanto, la recta es continua y creciente. La constante de proporcionalidad es 160, así que la expresión algebraica de esta función es:
f(x) = 160x
Función afín
Una función afín es un tipo de función lineal que no pasa por el origen de coordenadas. Su expresión algebraica es:
f(x) = mx + b
Donde:
m = pendiente de la recta
b = ordenada en el origen: la recta corta al eje de ordenada en el punto (0, n)
– Ejemplo:
Se ha determinado el pago de agua en una casa. Cada recibo indica que por cada metro cúbico de agua consumida se pagan $ 5, mientras que por la distribución y depuración se pagan $ 10. Con estos datos elaboramos la siguiente tabla:
Agua consumida (m3) = x
0
1
2
3
4
Pago ($) = y
10
15
20
25
30
La expresión algebraica de esta función es f(x) = 5x + 10, cuya gráfica se muestra a continuación:
Observa que la línea recta no pasa por el origen, sino que corta en el punto (0, 10).
ecuación de la recta
La ecuación de la recta es una expresión algebraica que describe una línea recta y relaciona la variación de y con respecto a x, la cual se puede graficar en el plano cartesiano según los componentes en cada uno de los ejes. De manera general la ecuación de una recta se representa así:
y = mx + b
Donde:
y = eje de las ordenadas
x = eje de las abscisas
m = pendiente de la recta
b = punto de intersección de la recta con el eje y
Para determinar la pendiente de la recta usamos la fórmula:
– Ejemplo:
Hallemos la pendiente de la recta que pasa por los puntos A (−1, 1) y B (1, 7).
Primero identificamos los valores de los ejes. Como ya sabemos, los pares ordenados siempre tienen primero la coordenada del eje x y luego de la coma va la coordenada del eje y; entonces:
En el punto A (−1, 1), x1 = −1 y y1 = 1
En el punto B (1, 7), x2 = 1 y y2 = 7
Ahora solo sustituimos en la fórmula general:
Sabemos que la ecuación de esta recta es y = mx + b porque no pasa por el origen, es decir, representa una función afín. También sabemos que la pendiente (m) es 3, por lo tanto, y = 3x + b; así que faltaría hallar el valor de b.
Para calcula b podemos tomar cualquiera de los puntos A o B. Planteamos la ecuación y luego despejamos.
De este modo sabemos que la recta que pasa por los puntos A y B tiene por ecuación:
y = 3x + 4
Pendiente de la recta y = mx
Para un función lineal f(x) = mx, el coeficiente m se llama pendiente y representa el aumento o disminución de la variable dependiente en relación a la variable independiente.
– Ejemplo:
En la función f(x) = −3x, la pendiente es −3.
En la función f(x) = 5x, la pendiente es 5.
En una gráfica, la pendiente de una recta representa la inclinación de la misma respecto del eje x. La podemos hallar al dividir el valor de la variable dependiente entre el valor de la variable independiente.
– Ejemplo:
Esta gráfica muestra tres líneas rectas que pasan por el origen, así que cada una representa a un función lineal de forma f(x) = mx.
Para saber la pendiente de la recta solo debemos fijarnos en cualquiera de sus puntos y hallar su cociente.
Recta a
Recta b
Recta c
Valor de la pendiente
Si m es positiva, significa que la recta es creciente de izquierda a derecha.
Si m es negativa, significa que la recta es decreciente de izquierda a derecha.
Si m es cero, significa que la recta no posee inclinación respecto al eje horizontal, es decir, se trataría de una recta paralela al eje horizontal.
¿cómo Graficar una función lineal?
Dada la ecuación de la recta y = 2x + 3. La pendiente es 2 y el punto de intersección de la recta con el eje y es igual a 3. Para determinar el valor de y es necesario darle valores a x y efectuar la operación correspondiente, de la siguiente manera:
Si x = 1 y = 2(1) + 3 y = 2 + 3 y = 5
Si x = 2 y = 2(2) + 3 y = 4 + 3 y = 7
Si x = 3 y = 2(3) + 3 y = 6 + 3 y = 9
Si x = −1 y = 2(−1) + 3 y = −2 + 3 y = 1
Si x = −2 y = 2(−2) + 3 y = −4 + 3 y = −1
Si x = −3 y = 2(−3) + 3 y = −6 + 3 y = −3
Para obtener una recta bien definida es recomendable utilizar al menos tres puntos. Será de gran ayuda realizar una tabla de valores en la que observes las coordenadas de cada punto como esta:
x
y
Punto
−3
−3
(−3, −3)
−2
−1
(−2, −1)
−1
1
(−1, 1)
1
5
(1, 5)
2
7
(2, 7)
3
9
(3, 9)
Si usamos esta tabla como guía es más sencillo realizar la gráfica de la función.
Nota que la recta se corta en el punto (0, 3), pues b = 3.
¡A practicar!
1. Dadas las siguientes funciones, determina:
a. Pendiente (m)
b. Ordenada al origen (b)
f(x) = 2x − 6
Solución
b = −6
m = 2
f(x) = −x + 4
Solución
b = 4
m = −1
f(x) = 13/5x − 2
Solución
b = −2
m = 13/5
2. Construye una tabla con los siguientes valores de x para cada función.
x = −2, −1, 0, 1, 2, 3
f(x) = −x + 2
Solución
x
y
−2
4
−1
3
0
2
1
1
2
0
3
−1
f(x) = 5x − 3
Solución
x
y
−2
−13
−1
−8
0
−3
1
2
2
7
3
12
f(x) = 3x
Solución
x
y
−2
−6
−1
−3
0
0
1
3
2
6
3
9
f(x) = −2x + 1
Solución
x
y
−2
5
−1
3
0
1
1
−1
2
−3
3
−5
3. Realiza la gráfica de las siguientes funciones:
f(x) = −x + 2
f(x) = −2x + 1
Solución
f(x) = −x + 2
f(x) = −2x + 1
4. Dada la siguiente gráfica, determina:
a. Pendiente de la recta.
b. Ecuación de la recta.
Solución
a. m = −1
b. y = −x + 9
RECURSOS PARA DOCENTES
Artículo “Función Lineal”
En este artículo podrás encontrar ejercicios relacionados con la construcción de gráficas de funciones lineales a partir de su ecuación explícita, además de problemas de enunciados.
Podemos medir muchas cosas como la altura de un edificio, el tiempo que tardamos en llegar a un lugar o el volumen de una pelota. Todo esto es posible gracias a las unidades de medición, que son referencias convencionales de una magnitud física. Las magnitudes más comunes son la longitud, el área, el volumen y el tiempo.
Longitud
Es una magnitud física que permite medir la distancia entre dos puntos, como la distancia que hay entre la casa y la escuela. Una de las unidades de longitud más aceptada es el metro (m). El metro puede multiplicarse varias veces sobre sí mismo para formar unidades mayores o múltiplos y también puede dividirse varias veces en partes iguales para formar unidades más pequeñas de referencia denominadas submúltiplos. Por ejemplo:
El kilómetro (km) es un múltiplo del metro porque equivale a 1.000 veces su tamaño.
El centímetro (cm) es un submúltiplo porque equivale a la centésima parte de un metro.
No es tan reciente
El metro como unidad de medida de longitud se empezó a utilizar durante la Revolución francesa, a finales del siglo XVIII, sin embargo, se oficializó 100 años después cuando la Comisión Internacional de Pesos y Medidas lo definió como la distancia que existía entre dos marcas ubicadas en una barra de platino e iridio. Hoy día, el metro es definido como la distancia recorrida por la luz en el vacío durante 1/299792458 de segundo.
Área o superficie
Es una magnitud que mide la extensión o superficie de una figura, por ejemplo, la superficie total del piso de una casa o de un campo de fútbol. Mientras mayor sea la región encerrada por una figura mayor será su área. Las unidades de medida comúnmente se expresan elevadas al cuadrado como el metro cuadrado (m2), el kilómetro cuadrado (km2) o el centímetro cuadrado (cm2).
Volumen
Es un tipo de magnitud que mide el espacio que ocupa un cuerpo: a mayor volumen, mayor será el espacio que ocupe. Las unidades de medidas más usadas son las elevadas al cubo como el metro cúbico (m3) y el centímetro cúbico (cm3).
Se estima que el volumen total del agua en la Tierra es de 1.386 millones de kilómetros cúbicos (km3).
Tiempo
Es una magnitud física que permite medir la duración o separación de acontecimientos. Gracias al tiempo podemos medir cuánto dura un partido de fútbol o conocer qué pasó al comienzo o al final de una película.
Las medidas de tiempo más usadas son el segundo, el minuto y la hora.
Sistema Internacional de unidades (SI)
Es un sistema que busca la unificación de las unidades de medida usadas en diferentes países. A pesar de que la mayoría de ellos lo han adoptado como sistema de medida oficial, existen algunos que manejan sus propias unidades. Fue creado en 1960, en la XI Conferencia General de Pesas y Medidas celebrada en Francia.
Algunas unidades aceptadas por el Sistema Internacional de Medidas
Magnitud física
Unidad
Símbolo
Longitud
Metro
m
Volumen
Metro cúbico
m3
Área
Metro cuadrado
m2
Tiempo
Segundo
s
Masa
Kilogramo
kg
Temperatura
Kelvin
K
Unidades de medida extranjera
Muy pocos países no han adoptado al Sistema Internacional de Unidades como sistema de medida. De hecho, solo tres naciones no lo han declarado oficial en sus legislaciones: Estados Unidos, Liberia y Myammar.
Las unidades de medidas del Sistema Internacional no han sido las únicas empleadas en la medición. En la actualidad podemos usar otras, como las pulgadas, empleadas particularmente para identificar tornillos y medir pantallas de monitores y celulares.
El petróleo, por ejemplo, se suele medir en barriles y la mayoría de los biberones vienen graduados en onzas. Hay otras unidades de medidas usadas para fines específicos como la hectárea y el acre, empleadas para medir áreas de superficies.
Equivalencias de interés
1 pulgada = 2,54 centímetro
1 barril = 159 litros aproximadamente
1 onza = 28,35 gramos
1 hectárea = 10.000 metros cuadrados
1 acre = 4.046,86 metros cuadrados
Unidades de medidas usadas por los pueblos originarios
Nuestros pueblos originarios no eran la excepción si de medir las cosas se trataba. De hecho, cada una de las grandes civilizaciones precolombinas utilizaban unidades de medidas propias.
Los mayas tenían conocimientos avanzados en el campo de la astronomía, lo que les permitió elaborar su calendario por medio de medidas de tiempo propias. Gracias a esto, ellos podían calcular las estaciones y planificar el tiempo de las cosechas.
En el otro extremo del continente, los incas ya tenían un sistema de numeración propio: los quipus, que les permitieron realizar diversos cálculos matemáticos. En el campo de la medición, esta civilización también empleaba sus propias unidades: por ejemplo, para medir longitudes usaban partes del cuerpo como referencia, como la rikra, que consistía en la distancia de los dos dedos pulgares con los brazos extendidos en sentido horizontal.
El perímetro es el contorno de una figura geométrica. En el caso de los polígonos regulares, el perímetro lo calculamos al multiplicar la cantidad de sus lados por la longitud de uno de estos. Otra forma de calcular el perímetro es a través de la suma de cada uno de los lados de una figura. En cambio, el perímetro del círculo es igual a la multiplicación del número pi por el diámetro de la circunferencia. Existen también figuras compuestas que están formadas por dos o más figuras geométricas, para calcular su perímetro basta con sumar cada uno de los lados.
Ángulos
Uno de los elementos fundamentales para la geometría es el ángulo, el cual está formado por un par de semirrectas denominadas lados que tienen un origen común o vértice. Uno de los sistemas más usados para medir ángulos es el sistema sexagesimal, en el que medimos los ángulos en grados, minutos y segundos. De acuerdo a su tamaño, los ángulos pueden clasificarse en agudos, rectos, obtusos y llanos. Los agudos son mayores a 0° pero menores a 90°, los rectos miden 90°, los obtusos son mayores a 90° pero menores de 180° y los llanos miden siempre 180°.
Área
Para calcular superficies usamos el área, que es la extensión comprendida por una figura. Para cada figura plana existe una fórmula que permite determinar su área. En el Sistema Internacional de Unidades se emplea el metro cuadrado (m2) como unidad de medida de área, pero también podemos usar otras unidades derivadas, como el centímetro cuadrado (cm2) o el milímetro cuadrado (mm2). Podemos obtener el área de las figuras compuestas al descomponerlas en figuras geométricas más simples, para luego sumar las áreas de cada una.
Sistemas de referencia
Uno de los sistemas de referencias más usados es el sistema cartesiano, el cual está formado por dos ejes en el plano: uno horizontal denominado eje X o de las abscisas y otro vertical denominado eje Y o de las ordenadas. Para representar un punto en el plano cartesiano necesitamos sus coordenadas en el eje X y en el eje Y: la intersección de ambas coordenadas constituye su ubicación. Por otro lado, las figuras pueden experimentar transformaciones isométricas, es decir, cambios de posición y orientación que no afectan su forma. Estas transformaciones son: traslación, rotación y simetría.
Cuadriláteros
Un cuadrilátero es un polígono de cuatro lados, y aunque se pueden clasificar en varios grupos, comparten elementos en común: tienen cuatro ángulos, la suma de estos es siempre igual 360° y tienen dos diagonales que dividen al cuadrado en triángulos. De manera general, los cuadriláteros son clasificados como paralelogramos, trapecios y trapezoides. Los paralelogramos tienen sus lados opuestos paralelos y pueden ser cuadrados, rombos y rectángulos. Los trapecios tienen dos de sus lados paralelos y los trapezoides no tienen ningún lado paralelo.
Capacidad y volumen
El volumen es el espacio que ocupa un objeto mientras que la capacidad indica la cantidad que un objeto puede contener dentro de él. Todos los objetos tienen volumen pero no todos tienen capacidad. En el caso de los sólidos y los líquidos mientras mayor sea su volumen, mayor espacio van a ocupar. No es lo mismo el volumen de un grano de arroz que el de un edificio. Algunas unidades de volumen son el metro cúbico (m3), el centímetro cúbico (cm3) y milímetro cúbico (mm3), entre otras. El litro es una medida de capacidad que equivale a 1.000 cm3.
La circunferencia
La circunferencia es una curva plana con todos sus puntos ubicados a la misma distancia del origen o centro. No debe ser confundida con el círculo que corresponde al área contenida dentro de ella, es decir, la circunferencia es el perímetro del círculo. Presenta ciertos elementos como el radio, el diámetro, la tangente, la cuerda, el arco y la semicircunferencia. Uno de los instrumentos usados para su trazado es el compás.
Son convencionalismos adoptados por el ser humano para medir la posición y otras magnitudes físicas. Se usan para hallar cuerpos celestes en el espacio y son la base para determinar nuestra ubicación en el planeta. También permiten establecer comparaciones y transformaciones entre las figuras representadas.
Ejes de coordenadas
El sistema de coordenadas cartesianas es uno de los sistemas de referencias usados para ubicar puntos en el espacio. En este caso específicamente se explicarán estas coordenadas orientadas al plano, es decir, en dos dimensiones.
El plano donde ubicamos los puntos se denomina plano cartesiano y está formado por los siguientes elementos:
Eje X: es también denominado eje de las abscisas, y se encuentra ubicado dentro del plano en forma horizontal.
Eje Y: es conocido también como eje de las ordenadas y está ubicado en sentido vertical dentro del plano.
Origen: es el punto de intersección entre los ejes de coordenadas X e Y.
¿Sabías qué?
El nombre de las coordenadas cartesianas proviene de la persona que las empleó por primera vez: René Descartes.
Un punto está definido por un par de números que hacen referencia a su posición respecto al eje X y al eje Y. Estos puntos son denominados coordenadas cartesianas y permiten graficarlo.
Para hacerlo, dividimos los ejes en segmentos con la misma longitud y a cada uno le asignamos el valor de un número entero. A la derecha del origen, escribimos los números de menor a mayor, esos serán los valores del eje X. Arriba del origen escribimos los números que le siguen al cero de menor a mayor, esos serán los valores del eje Y:
¿Sabías qué?
Los números negativos se representan a la izquierda del origen (eje X) y debajo del origen (eje Y).
Para ubicar un punto en el plano necesitamos las coordenadas de cada eje, que de ahora en adelante llamaremos coordenada en X y coordenada en Y para hacer mención a cuál eje se refieren. La coordenada X determina cuán a la derecha del origen está ubicado el punto; mientras que la coordenada Y, cuán arriba del origen está el punto.
La manera más frecuente de representar un punto es a través de paréntesis, y dentro indicamos la coordenada X y la coordenada Y, separadas por una coma:
El punto desde dónde se empieza a contar es en el origen porque se encuentra en la coordenada (0,0) lo que quiere decir que está a 0 posiciones de la derecha y a 0 posiciones hacia arriba.
Por ejemplo:
El punto A (3,2) se encuentra a tres posiciones a la derecha y a dos posiciones hacia arriba. Si lo queremos graficar, cada coordenada debe estar representada en el respectivo eje y el punto de intersección de ambas sería el punto A:
Cuando algunas de las coordenadas del punto sea igual a cero, significa que el punto se encuentra sobre el eje al cual corresponde la coordenada diferente de cero. Por ejemplo, el punto B (0,3) indica que se movió cero posiciones a la derecha y tres posiciones hacia arriba, por lo tanto se ubica sobre el eje Y que es el que tiene la coordenada diferente de cero:
Ejes de simetrías
La simetría es una relación proporcionada entre las partes que componen un todo. Así, por ejemplo, decimos que una imagen es simétrica cuando su forma no cambia si es girada o volteada. Para que exista simetría entre dos objetos, ambos deben ser del mismo tamaño y de la misma forma y uno debe estar en una orientación diferente a la del primero.
El eje de simetría es una línea imaginaria que divide al dibujo en dos partes idénticas pero con diferente orientación. Los ejes de simetría pueden ser horizontales, verticales o inclinados.
De acuerdo a la figura geométrica, algunas pueden presentar uno o más ejes de simetría. Otras, en cambio, no presentan ninguno. Cuando una figura no es simétrica se denomina asimétrica.
Por ejemplo, no todos los triángulos tienen ejes de simetría, todo depende de su tipo. Si son equiláteros tienen tres ejes de simetría; si son isósceles tienen dos ejes de simetría, y si son escalenos no tienen ningún eje de simetría.
Transformaciones isométricas
Las transformaciones isométricas son los cambios de posición u orientación que experimenta una figura sin alterar su forma.
Traslación
Es un tipo de transformación isométrica donde se mueven todos los puntos de una figura en una misma dirección, sentido y longitud.
Rotación
También es conocida como giro. Es una transformación isométrica en la que la figura se mueve alrededor de un punto sin alterar su forma. El movimiento es determinado por un ángulo de rotación y puede ser en sentido de las agujas del reloj o en sentido contrario.
La simetría como transformación isométrica
La simetría entre dos objetos es un tipo de transformación isométrica porque a cada punto del objeto o figura se lo asocia a otro conocido como imagen. Cada punto está a una misma distancia del otro respecto al eje de simetría. Este tipo de transformación también se conoce como reflexión.
¡A practicar!
1. ¿Cuál es la posición de estos números?
a)
Solución
C (4,3)
b)
Solución
D (1,2)
c)
Solución
E (5,0)
d)
Solución
F (4,5)
e)
Solución
G (3,3)
2. ¿A cuál de los siguientes puntos corresponde la coordenada (6,3)?
Solución
Corresponde al punto K (6,3).
3. ¿Cuál de estas figuras no es simétrica?
a)
b)
c)
d)
Solución
d) No es simétrica porque no tiene ningún eje de simetría.
4. ¿A qué tipo de transformación isométrica corresponde la gráfica?
Solución
Traslación.
RECURSOS PARA DOCENTES
Artículo “Simetrías”
Este artículo explica qué es una simetría, sus tipos y su relación con los ejes. También incluye algunos ejemplos de simetría.
Este artículo explica qué es el plano cartesiano, sus características y divisiones por cuadrante. También incluye ejemplos sobre como ubicar puntos en este sistema.
Las fracciones, a diferencia de los números enteros, permiten expresar proporciones de algo. Son útiles en la vida cotidiana y se usan con más frecuencia de lo que piensas. Frases como “un cuarto de kilo” o “un tercio de taza” son algunos ejemplos. En matemática son tan relevantes que forman su propio conjunto de números: los racionales.
Partes de una fracción
Una fracción resulta de dividir un número entero en partes iguales. En matemática es representada por dos números enteros ,denominados términos, que están separados por una línea horizontal, denominada raya de división o raya fraccionaria.
Los números que componen a una fracción se denominan numerador y denominador. El primero está ubicado en la parte superior de la raya de división y el segundo está en la parte inferior de esta. El numerador indica el número de partes que se han tomado de un entero, mientras que el denominador representa el número de partes en que se ha dividido el entero.
Podemos expresar las fracciones con una línea divisoria horizontal o diagonal. En este sentido, a la fracción también la podríamos expresar como 1/2.
Para entender el significado de la fracción anterior imaginemos que una pizza representa el “todo”, es decir, sería el entero que queremos dividir, el denominador de una fracción representa el número de partes que se ha dividido el entero, lo que nos permite concluir que la pizza se ha dividido en dos parte. Por otro lado, el numerador representa el número de partes que se ha tomado, en este ejemplo es 1, lo que quiere decir que 1/2 de pizza sería una de las dos porciones de la pizza.
¿Sabías qué?
El denominador de una fracción nunca es igual a cero (0).
Como ya sabemos, el denominador indica en cuántas partes se dividió un número entero. Cada una de esas partes recibe un nombre, por ejemplo, si dividimos en dos son medios, si dividimos en tres son tercios, si dividimos en cuatro son cuartos y así hasta el número once, a partir de ese número añadimos el sufijo –avos al número: onceavos, doceavos, treceavos y así sucesivamente.
Esta tabla muestra el nombre de cada una de las partes en las que se puede dividir un entero hasta el cien:
Partes que se divide del entero
Nombre
2
Medios
3
Tercios
4
Cuartos
5
Quintos
6
Sextos
7
Séptimos
8
Octavos
9
Novenos
10
Décimos
11
Onceavos
12
Doceavos
13
Treceavos
14
Catorceavos
15
Quinceavos
16
Dieciseisavos
17
Diecisieteavos
18
Dieciochoavos
19
Diecinueveavos
20
Veinteavos
30
Treintavos
40
Cuarentavos
50
Cincuentavos
60
Sesentavos
70
Setentavos
80
Ochentavos
90
Noventavos
100
Centavo
Para leer una fracción primero indicamos el número del numerador y luego las partes en las que está dividido el entero de acuerdo a la tabla anterior. Por ejemplo, se lee como “un medio”. Observemos otros ejemplos:
a) se lee “dos tercios”.
b) se lee “seis octavos”.
c) se lee “quince treintavos”.
d) se lee “doce veintitresavos”.
e) se lee “treinta y dos cuarentavos”.
f) se lee “noventa y siete centavos”.
¿Sabías qué?
Los centavos también son llamados céntimos.
Origen muy antiguo
Las antiguas civilizaciones como la babilónica, la egipcia y la griega usaban las fracciones en sus cálculos. Cada una tenía una manera particular de expresarlas y no fue sino hasta el siglo XIII cuando el matemático italiano Leonardo Fibonacci difundió el uso de la línea horizontal, símbolo que se emplea en la actualidad para separar el numerador y denominador en una fracción.
Relación de las fracciones y la división
Las fracciones representan porciones de un todo, es por ello que de alguna manera están estrechamente relacionadas con la división. De hecho, toda fracción es una división sin resolver, es decir; es equivalente a . Por lo tanto, es igual a .
En algunas ocasiones podemos expresar operaciones en forma de fracción, pero también podemos hacerlo como división y resolver la misma.
¿Sabías qué?
Existen fracciones que están formadas por una parte entera y una fraccionaria, a ellas se las conoce como fracciones mixtas.
Aplicación en la vida cotidiana de las fracciones
El ser humano siempre ha tenido la necesidad de contar, medir y repartir; razón por la que inventó los números. Las fracciones no están lejos de esta realidad y son usadas para entender porciones de cosas.
Están presentes en recetas de cocinas, en mediciones de telas y de volúmenes de productos (como en las gaseosas de medio litro o 1/2 L). Hay autos donde los indicadores del nivel de gasolina son expresados en fracciones para saber si el tanque está lleno, tiene la mitad o un cuarto de su capacidada.
Incluso, están presentes en algunas monedas como el dólar, donde existe una denominación llamada “centavo de dólar”, es decir, si el valor de un dólar lo pudiéramos dividir en 100 partes iguales, una de esas partes sería el centavo.
En resumen, las fracciones permiten expresar cantidades cotidianas de manera más sencilla.
¡A practicar!
1. ¿Cómo se leen las siguientes fracciones?
a)
Solución
Cinco tercios.
b)
Solución
Un centavo.
c)
Solución
Veintitrés cuarentavos.
d)
Solución
Tres medios.
e)
Solución
Dos quintos.
f)
Solución
Doce onceavos.
g)
Solución
Siete décimos.
h)
Solución
Once sextos.
i)
Solución
Trece cuartos.
j)
Solución
Cincuenta y ocho séptimos.
2. ¿Cómo se escriben en número estas fracciones?
a) Nueve décimos.
Solución
b) Catorce novenos.
Solución
c) Setenta y tres centavos.
Solución
d) Ochenta y ocho novenos.
Solución
RECURSOS PARA DOCENTES
Video “Fracciones decimales”
Este video ayuda a entender la relación entre las fracciones y los números decimales así como la manera en transformar una fracción en decimal.
En el presente tomo de la Enciclopedia Matemáticas Primaria tendrás acceso a información más detallada sobre las fracciones, así como la posibilidad de obtener diferentes recursos educativos sobre este tema.