CAPÍTULO 7 / TEMA 7 (REVISIÓN)

ORDEN Y RELACIONES │ ¿QUÉ APRENDIMOS?

SUCESIONES

Las sucesiones son secuencias ordenadas de términos que siguen una determinada regla de recurrencia o patrón. Estas pueden ser aritméticas geométricas. Las aritméticas tienen una diferencia con el término anterior en una cantidad constante, por ejemplo, 2, 4, 6, 8,… En cambio, en las geométricas cada término (excepto el primero) es múltiplo del término anterior de la sucesión, por ejemplo, 2, 4, 8, 16, 32,… Las sucesiones se utilizan en las matemáticas, en entidades financieras, en ciencias naturales, en informática y hasta en el arte.

La espiral de Fibonacci se trata de una espiral áurea que podemos construir a partir de los números contenidos en la sucesión de Fibonacci: 1, 2, 3, 5, 8, 13,…

LA RECTA NUMÉRICA

La recta numérica es una representación gráfica unidimensional que nos permite ubicar los números reales (\mathbb{R}), lo cual resulta de gran utilidad para comparar valores o indicar soluciones de intervalos en las inecuaciones. Se caracteriza por poseer el cero centrado y se considera el origen de la recta; hacia la izquierda se ubican los números negativos y a la derecha los positivos. Entre dos números, será mayor el que esté más a la derecha. Existen métodos para representar con precisión algunos números radicales sobre la recta.

Las reglas graduadas son un ejemplo de rectas numéricas. En estas vemos las divisiones de las unidades enteras que equivalen a las décimas.

PLANO CARTESIANO

Es un sistema de representación bidimensional muy utilizado en matemática y otras áreas para la ubicación de puntos en el plano. Su nombre se debe al filósofo y matemático René Descartes, quien propuso su aplicación en el siglo XVII como una base del sistema de coordenadas rectangulares. Está formado por un eje horizontal denominado eje de las abscisas, que tradicionalmente denotamos con la letra x; y un eje vertical llamado eje de las ordenadas, que por lo general representamos con la letra y. Cada eje se comporta como una recta numérica que se prolonga hasta el infinito.

Por lo general, lo mapas contienen ejes de coordenadas que asemejan el plano cartesiano. Las unión de dos coordenadas dan la ubicación de un punto.

FUNCIONES

Son expresiones matemáticas que indican una relación de correspondencia entre un conjunto de partida y un conjunto de llegada. Para que una relación sea considerada función, debe cumplirse que cada elemento del dominio tenga una sola imagen en el conjunto de llegada. Las funciones pueden ser inyectivas, sobreyectivas o biyectivas.

Las funciones también se pueden clasificar de acuerdo con los operadores que contienen sus términos y estas pueden ser polinómicas, trigonométricas, exponenciales, logarítmicas, entre otras.

FUNCIÓN LINEAL

La función lineal es un tipo de función polinómica cuyo mayor grado de exponente es 1. Su representación gráfica es una línea recta que puede ser descrita a partir de la ecuación explícita: y = mx + b, donde m es la pendiente de la recta y b es su ordenada al origen. Si conocemos la función de la recta podemos graficarla por medio una tabla de valores que cumpla con las soluciones de la función.

Estas gráficas representan dos funciones lineales. Las que no pasan por el origen se llaman funciones afines. Con dos puntos como mínimo se puede construir la recta.

PROPORCIONES

Las proporciones son una medida que relaciona a dos razones mediante una constante. El cociente que resulta de dividir una razón de proporción se conoce como constante de proporcionalidad. Dos magnitudes son directamente proporcionales si al aumentar una cantidad, la otra también aumenta; o si al disminuir una cantidad, la otra también disminuye. En cambio, dos magnitudes son inversamente proporcionales si al incrementar el valor de una, el valor de la otra disminuye; o si al disminuir el valor de una, la otra aumenta.

La cantidad de productos que compramos son directamente proporcionales con el precio, ya que a medida que más compramos más dinero pagamos.

CAPÍTULO 2 / TEMA 4

INECUACIÓN

No todas las situaciones que se plantean en matemática tienen una solución puntual o exacta. Existen casos donde la respuesta a un planteamiento viene representada por un intervalo de valores que satisfacen la condición. Esto podemos verlo en las inecuaciones: expresiones matemáticas con un intervalo de números como solución.

la INECUACIÓN y sus elementos

Una inecuación es una expresión matemática que contiene al menos una variable y está caracterizada por incluir símbolos de desigualdad entre los miembros, de manera que su resultado es un conjunto de valores que la variable puede tomar para que se cumpla la desigualdad planteada.

Los elementos de las inecuaciones son los siguientes:

  • Miembros: son las partes de una inecuación que están separadas por el signo de la desigualdad.
  • Términos: son las expresiones literales o numéricas separadas por los signos más (+) o menos (−).
  • Variable: es la letra que representa al conjunto de valores que satisfacen la desigualdad.
  • Símbolo de desigualdad: es el que indica la relación entre los miembros, pueden ser <, >, ≤ o ≥.

Grado de una inecuación

El grado de una inecuación se encuentra indicado por el mayor exponente que tenga la variable. Si el mayor exponente de una inecuación es 3, esta es de tercer grado; si es 2, es de segundo grado; y si no tiene exponente, se entiende que está elevado a la unidad y, por lo tanto, la inecuación es de primer grado.

¿qué son los intervalos?

Los intervalos son los rangos de valores que definen la solución de la inecuación. Estos pueden ser abiertos, cerrados o semiabiertos.

  • Intervalos abiertos: no incluyen los límites del intervalo. Se denotan con paréntesis, por ejemplo (a, b) y en la gráfica se representan con el símbolo ○.
  • Intervalos cerrados: incluyen los límites del intervalo. Se representa con corchetes, por ejemplo [a, b] y en la gráfica se representan con el símbolo ●.
  • Intervalos semiabiertos: incluye uno de los extremos del intervalo. Así que un extremo es abierto y el otro es cerrado, por ejemplo [a, b).

¿Sabías qué?
Los límites de intervalos que incluyen a + o − siempre son abiertos.

– Ejemplo:

Este dibujo muestra todos los números comprendidos entre el 1 y el 7 pero no incluye ni al 1 ni al 7 porque están representados con ○. Cuando los extremos de un intervalo no están incluidos se usan paréntesis y el intervalo se denota como (1,7).

– Otros ejemplos:

  • (−5,1]

  • [1,7]

  • [−5,1)

símbolos de desigualdad

Símbolo Significado Ejemplo Representación en la recta numérica Notación del intervalo
> Mayor que x > 5 (5,+)
< Menor que x < 5 (−,5)
Mayor o igual que x ≥ 5 [5,+)
Menor o igual que x ≤ 5 (−,5]
Las soluciones de las inecuaciones pueden ser intervalos cuyos límites estén completamente definidos y conocidos, por ejemplo, [−2, 19) o bien, por rangos donde alguno o ambos límites incluyen el ∞ (ya sea hacia el valor positivo o negativo). Cuando la solución es (−∞, +∞) en notación de conjunto se dice que pertenece a los reales.

¿CÓMO resolver UNA INECUACIÓN?

El procedimiento es muy similar al que empleamos cuando despejamos ecuaciones. Las reglas son las siguientes:

  1. Todo número que sume en un miembro de la desigualdad, pasa al otro miembro como resta.
  2. Todo número que reste en un miembro de la desigualdad, pasa al otro miembro como suma.
  3. Si en un miembro de la desigualdad hay un número negativo que multiplica a otro, este pasa al otro lado a dividir (con su signo) y el signo de desigualdad se debe invertir.
  4. Si en un miembro de la desigualdad hay un número negativo que divide, pasa al otro lado a multiplicar (con su signo) y el signo de desigualdad se debe invertir.
En la imagen podemos ver cómo se comparan por medio de símbolos de desigualdad dos segmentos de rectas. En este caso, la expresión indica que el segmento que va de A’C tiene una mayor longitud que el segmento AB. No todas las expresiones que contengan desigualdades son inecuaciones, ya que además, se requiere de por lo menos una variable.

– Ejemplo 1:

x-3> 1

Como el número 3 está acompañado del signo negativo, pasa al otro lado del símbolo “mayor que” con el signo positivo.

x> 1+3

Luego resolvemos la suma.

x> 4

La solución de esta inecuación incluye a todos lo números mayores a 4, más no al 4.

Solución: (4,+∞)

En una recta numérica lo representamos así:

Si deseamos comprobar la solución, basta con sustituir la variable con valores mayores a 4. Si satisface la desigualdad, el resultado será correcto.

Recuerda que el intervalo es abierto y por lo tanto no debes tomar en cuenta al número 4. Observa:

x-3> 1

\boldsymbol{4}-3> {\color{Red} \boldsymbol{1> 1}}     No satisface la desigualdad porque 1 = 1.

Si sustituimos por valores mayores a 4, como 5, 6 o 7, la desigualdad sí se cumple. Observa:

\boldsymbol{5}-3> 1\Rightarrow {\color{Blue} \boldsymbol{2> 1}}

\boldsymbol{6}-3> 1\Rightarrow \boldsymbol{{\color{Blue} 3> 1}}

\boldsymbol{7}-3> 1\Rightarrow \boldsymbol{{\color{Blue} 4> 1}}


– Ejemplo 2:

-4x-8\geq -2

Primero unimos los términos semejantes en cada miembro. Los que están como resta pasan al otro lado de la igualdad a sumar.

-4x\geq -2+8

Después resolvemos las operaciones.

-4x\geq 6

Como −4 multiplica a la variable, esta pasa al otro miembro de la inecuación a dividir. Mantenemos el signo negativo e invertimos el signo de la desigualdad.

x\leq -\frac{6}{4}

La solución de esta inecuaçión incluye a todos los números menores o iguales a −6/4.

Solución: (−∞,−6/4]

En la recta numérica lo representamos así:

Comprobamos el resultado con números iguales y menores a −6/4.

-4\left ( \boldsymbol{-\frac{6}{4}} \right )-8\geq -2\Rightarrow 6-8\geq -2\Rightarrow {\color{Blue} \boldsymbol{-2\geq -2}}

-4\left ( \boldsymbol{-\frac{7}{4}} \right )-8\geq -2\Rightarrow 7-8\geq -2\Rightarrow {\color{Blue} \boldsymbol{-1\geq -2}}

-4\left ( \boldsymbol{-\frac{8}{4}} \right )-8\geq -2\Rightarrow 8-8\geq -2\Rightarrow {\color{Blue} \boldsymbol{0\geq -2}}


– Ejemplo 3:

-3x+5> 15+2x

Unimos términos semejantes en cada miembro. Los que están como suma pasan al otro lado de la igualdad a restar.

-3x-2x> 15-5

Resolvemos las operaciones.

-5x> 10

Como −5 multiplica a la variable, este número pasa al otro miembro de la inecuación a dividir. Mantenemos el signo negativo e invertimos el signo de la desigualdad.

x< -\frac{10}{5}

x< -2

La solución incluye a todos los números menores a −2.

Solución: (−∞,−2)

En la recta numérica lo representamos así:

Comprobamos el resultado al sustituir la variable con números menores a −2.

-3(\boldsymbol{-3})+5> 15+2(\boldsymbol{-3})\Rightarrow 9+5> 15-6\Rightarrow {\color{Blue} \boldsymbol{14> 9}}

-3(\boldsymbol{-4})+5> 15+2(\boldsymbol{-4})\Rightarrow 12+5> 15-8\Rightarrow {\color{Blue} \boldsymbol{17>7}}

-3(\boldsymbol{-5})+5> 15+2(\boldsymbol{-5})\Rightarrow 15+5> 15-10\Rightarrow {\color{Blue} \boldsymbol{20>5}}

DIFERENCIA ENTRE ECUACIÓN E INECUACIÓN

Una de las principales diferencias entre las ecuaciones y las inecuaciones se debe a que la primera emplea igualdad entre sus miembros, mientras que la segunda utiliza la desigualdad. Esto quiere decir que la solución de una ecuación representa un valor puntual en la recta real, mientras que en las inecuaciones, las soluciones se expresan mediante intervalos, lo que significa que entre los dos extremos del intervalo hay infinitos números que satisfacen la inecuación.

Las operaciones para despejar las variables en las inecuaciones obedecen las mismas reglas que con las ecuaciones, pero adicionalmente, debemos tener especial atención cuando multiplicamos o dividimos ambos miembros por un número negativo, ya que al hacerlo, debemos cambiar el sentido de la desigualdad.

USOS DE LAS INECUACIONES

Las inecuaciones tienen infinidades de usos, que van desde situaciones cotidianas hasta aplicaciones más avanzadas a nivel universitario como la programación lineal. Casi cualquier situación que implique un valor o intervalo límite dentro de los cuales pueda tomar valor una variable, puede ser formulado a partir de una inecuación. Por ejemplo:

  • Para expresar el tiempo máximo que disponemos para llegar a un lugar.
  • Para representar el saldo disponible en nuestro teléfono celular para realizar llamadas.
  • Para indicar el peso máximo que puede registrar una balanza.
  • Para expresar el límite máximo de velocidad en una autopista.
  • Para expresar costos totales máximos o utilidades mínimas en una empresa.

¡A practicar!

Resuelve las siguientes inecuaciones.

  • 2x-5\leq 5x
Solución

2x-5\leq 5x

2x-5x\leq 5

-3x\leq 5

x\geq -\frac{5}{3}

  • 5x< 3x-5
Solución

5x< 3x-5

5x-3x< -5

2x< -5

x< -\frac{5}{2}

  • 4x+6> 2x-8
Solución

4x+6> 2x-8

4x-2x> -8-6

2x> -14

x> -\frac{14}{2}

x> -7

  • 13x-3x+2-5x\geq -10+2x+6
Solución

13x-3x+2-5x\geq -10+2x+6

13x-3x-5x-2x\geq -10+6-2

3x\geq -6

x\geq -\frac{6}{3}

x\geq -2

  • 5x+6-3x> 34+8x-10
Solución

5x+6-3x> 34+8x-10

5x-3x-8x> 34-10-6

-6x> 18

x< -\frac{18}{6}

x< -3

  • 2\left ( x-3 \right )\leq 4x+2
Solución

2\left ( x-3 \right )\leq 4x+2

2x-6\leq 4x+2

2x-4x\leq 2+6

-2x\leq 8

x\geq -\frac{8}{2}

x\geq -4

RECURSOS PARA DOCENTES

Artículo “Inecuaciones”

En este artículo encontrará información acerca de las inecuaciones, sus elementos y algunos ejemplos.

VER 

Artículo “Inecuaciones con valor absoluto”

Con este recurso podrá ampliar la información sobre las inecuaciones y aplicarla para resolver estos cálculos con valor absoluto.

VER

Artículo “Inecuación de primer grado”

El artículo describe cómo resolver problemas que involucren inecuaciones con variables elevadas a la unidad, es decir, de primer grado.

VER

CAPÍTULO 2 / TEMA 3

ECUACIÓN

Cuando vemos operaciones matemáticas con valores desconocidos es muy probable que estemos frente a ecuaciones. Estas son relaciones equivalentes con dos miembros separados por un símbolo de igualdad. Para saber cuánto valen estos términos desconocidos debemos despejar, es decir, dejar “sola” a la incógnita, lo que se hace por medio de diversos pasos mostrados a continuación.

La ecuación y sus elementos

Una ecuación es una igualdad que posee uno o más términos desconocidos llamados incógnitas. El valor numérico de dichas incógnitas es el único que cumple la igualdad.

Los elementos de toda ecuación son los siguientes:

  • Primer miembro: es el conjunto de términos que se encuentra del lado izquierdo de la igualdad.
  • Segundo miembro: es el conjunto de términos que se encuentra del lado derecho de la igualdad.
  • Términos: son todos los números y letras que conforman la ecuación.
  • Incógnita: es el valor desconocido en la igualdad. En una ecuación puede haber más de una incógnita.

¿Sabías qué?
Si una incógnita aparece sola se sobreentiende que el coeficiente es 1, es decir, que está multiplicada por 1.
Una ecuación es una igualdad establecida que permite determinar alguno de sus elementos respecto a los valores de los demás. Pueden ser literales o numéricas. Son literales cuando por lo menos un elemento conocido está representado por una letra; y son numéricas cuando sus elementos conocidos son números.

Ecuaciones según el grado

El grado de una ecuación es la mayor potencia a la que está elevada la incógnita. Según el grado las ecuaciones pueden ser:

Ecuaciones de primer grado

Son aquellas ecuaciones donde la incógnita está elevada a la primera potencia. También se las conoce como ecuaciones lineales. Por ejemplo:

\boldsymbol{2x+5=3x-1}

Ecuaciones de segundo grado

Son las igualdades cuya incógnita está elevada a la segunda potencia, es decir, al cuadrado. Por ejemplo:

\boldsymbol{2x^{{\color{Red} 2}}+3x=-5x}

Ecuaciones de tercer grado

Son aquellas que contienen la incógnita elevada al cubo en al menos uno de sus términos. Por ejemplo:

\boldsymbol{4x^{{\color{Red} 3}}+3x=5-x^{2}}

¡Es tu turno!

Observa esta ecuación y responde:

\boldsymbol{x^{3}-7x^{2}+4x+12=0}

  • ¿Cuántos términos tiene en el primer miembro?
Solución
Tiene 4 términos.
  • ¿De qué grado es la ecuación?
Solución
La ecuación es de tercer grado.
  • ¿Cuántas incógnitas tiene?
Solución
Tiene una sola incógnita: x.

¿Sabías qué?
Las incógnitas aparecen en las ecuaciones con una letra, generalmente es la x, pero puede ser cualquiera.
Las ecuaciones pueden estar conformadas por una o más incógnitas y su solución no siempre es un número. De hecho, hay ecuaciones que tienen varias soluciones o incluso, hay otras que no tienen solución. En todos los casos, es imprescindible dominar los procedimientos de despejes para poder analizarlas.

REGLAS DE DESPEJE DE ECUACIONES

Para hallar la solución de una ecuación de primer grado debemos despejar la incógnita, esto significa que es necesario dejar a la incógnita “sola” en un miembro de la igualdad. Para esto seguimos las siguientes reglas:

Regla de la suma

Consiste en sumar la misma expresión algebraica en ambos lados de la igualdad, de este modo obtenemos una ecuación equivalente y por ende el mismo resultado. Por ejemplo:

x-8=24

Si sumamos 8 en ambos miembros de la ecuación tenemos:

x-8+\boldsymbol{8}=24+\boldsymbol{8}

Al resolverlo:

x=\boldsymbol{32}

A partir de ese principio, la regla de la suma también se denomina regla de transposición de términos debido a que, para cambiar un término a otro miembro, se tiene que cambiar su signo. Por lo tanto, todo número que se encuentre en forma de suma en un miembro de la igualdad pasa al otro miembro en forma de resta y viceversa.

Entonces, para despejar la incógnita lo único que debemos hacer es pasar el −8 como +8 al segundo miembro de la ecuación.

x-8=24

x=24+8

x=\boldsymbol{32}

Regla del producto

Establece que al multiplicar o dividir por un mismo número en ambos miembros de la ecuación el resultado es una ecuación equivalente de la primera. Por ejemplo:

5x=20

Si dividimos entre 5 ambos miembros de la ecuación tenemos:

\frac{5x}{\boldsymbol{5}}=\frac{20}{\boldsymbol{5}}

Al resolverlo:

x=\boldsymbol{4}

Por medio de esta regla se deduce que los elementos que multiplican pasan al otro lado a dividir y los elementos que dividen pasan al otro lado a multiplicar. En el ejemplo anterior basta con pasar el 5 que multiplica a la incógnita a dividir el segundo miembro de la ecuación.

5x=20

x=\frac{20}{5}

x=\boldsymbol{4}

¿cómo solucionar una ecuación de primer grado?

Las ecuaciones de primer grado o lineales se caracterizan por tener su incógnita elevada a la primera potencia. Los pasos para solucionar este tipo de ecuación son:

  1. Quita los paréntesis en caso de que existieran (a través de la propiedad distributiva u otras operaciones).
  2. Quita los denominadores en caso de que existieran.
  3. Ubica los términos que tienen incógnitas en un miembro y los que no tienen incógnita en otro.
  4. Suma los términos semejantes.
  5. Despeja la incógnita a través de la regla del producto.
  6. Simplifica el resultado obtenido en caso de que sea una fracción.
El valor o los valores de la incógnita de una ecuación que hacen que la igualdad de la misma sea cierta, se denominan solución de la ecuación o raíces de la ecuación. Cuando una ecuación tiene solución, se denomina compatible, en caso contrario, se denomina incompatible. Las ecuaciones que presentan la misma solución son llamadas ecuaciones equivalentes.

– Ejemplo:

5(2x+3)-4x=-3+3(x-4)

Primero eliminamos los paréntesis. Para eso, aplicamos la propiedad distributiva. En el primer caso, multiplicamos 5 por cada término dentro de los paréntesis (2x + 3), en el segundo caso, multiplicamos 3 por cada término dentro de los paréntesis (x − 4).

10x+15-4x=-3+3x-12

Después ubicamos los términos que tienen incógnitas en un mismo miembro y los que no tienen incógnitas en otro. Para lograrlo aplicamos la regla de la suma o de transposición.

10x-4x-3x=-3-12-15

Luego sumamos o restamos los términos semejantes.

3x=-30

Despejamos la incógnita. Para lograrlo, aplicamos la regla del producto por medio de la cual el 3 que multiplica pasa a dividir al otro miembro de la ecuación.

x=\frac{-30}{3}=\boldsymbol{-10}

Observa que simplificamos el resultado al resolver la fracción.

– Otro ejemplo:

5(x+2)=1+\frac{x}{2}

Eliminamos los paréntesis por medio de la propiedad distributiva.

5x+10=1+\frac{x}{2}

Quitamos el denominador al multiplicar todos los términos de la ecuación por ese denominador, en este caso es 2.

2 (5x+10)=2(1+\frac{x}{2})\: \: \Rightarrow \: \: 10x+20=2+\frac{2x}{2}

Luego efectuamos las divisiones correspondientes.

10x+20=2+x

Ubicamos los términos que tienen incógnitas en un mismo miembro y los que no tienen incógnitas en otro. Para lograrlo, aplicamos la regla de la suma o de transposición.

10x-x=2-20

Sumamos o restamos los términos semejantes.

9x=-18

Despejamos la incógnita. Para lograrlo, aplicamos la regla del producto por medio de la cual el 9 que multiplica pasa a dividir al otro miembro de la ecuación.

x=-\frac{18}{9}=\boldsymbol{-2}

¿Cómo comprobar una ecuación?

¡Muy sencillo! Solo tienes que sustituir en la ecuación el valor de la incógnita y resolver. Si la igualdad se cumple, el ejercicio está resuelto correctamente. En caso contrario, debes revisar dónde estuvo el error.

Despejemos esta ecuación:

2x+6=10\: \: \Rightarrow \: \: 2x=10-6\: \: \Rightarrow \: \: 2x=4\: \: \Rightarrow \: \: x=\frac{4}{2}\: \: \Rightarrow \: \: \boldsymbol{x=2}

Como x = 2, sustituimos y comprobamos.

2(2)+6=10\: \: \Rightarrow \: \: 4+6=10\: \: \Rightarrow \: \: \boldsymbol{10=10}

Por lo tanto, como las igualdades se cumplen, la ecuación está despejada correctamente.

APLICACIÓN DE LAS ECUACIONES

Las ecuaciones son aplicables en mucho ámbitos de la vida, por ejemplo, para planificar nuestro dinero o para determinar cantidades por medio de igualdades. En otras áreas del saber, como la física, la química o la economía, las ecuaciones son de gran utilidad, pues sirven para expresar fórmulas y leyes que describen muchos fenómenos.

En general, algunas aplicaciones de las ecuaciones pueden ser:

  • Calcular longitudes, áreas, volúmenes y otras dimensiones de objetos.
  • Expresar cantidades físicas como densidad, peso específico o concentraciones de sustancias.
  • Formular algebraicamente un planteamiento teórico
  • Expresar leyes como la ley de gravitación universal en física o la ley para gases ideales en química.
  • Calcular ganancias y utilidades en el área de finanzas, entre otras aplicaciones.

¡A practicar!

Despeja la incógnita.

  • 2(1+2x)=10
Solución

2(1+2x)=10

2+4x=10

4x=10-2

4x=8

x=\frac{8}{4}

x=\boldsymbol{2}

  • 1-\frac{x}{3}=\frac{5x}{3}
Solución

1-\frac{x}{3}=\frac{5x}{3}

3\left ( 1-\frac{x}{3} \right )=3\left ( \frac{5x}{3} \right )

3-\frac{3x}{3}=\frac{15x}{3}

3-x=5x

5x+x=3

6x=3

x=\frac{3}{6}=\boldsymbol{\frac{1}{2}}

  • 15-6\left ( 2x-4 \right )=8+2\left ( 5x-1 \right )
Solución

15-6\left ( 2x-4 \right )=8+2\left ( 5x-1 \right )

15-12x+24=8+10x-2

15+24-12x=8-2+10x

39-12x=6+10x

12x-10x=6-39

-22x=-33

x=\frac{-33}{-22}=\boldsymbol{\frac{3}{2}}

  • x+\frac{x}{5}=18
Solución

x+\frac{x}{5}=18

5\left ( x+\frac{x}{5} \right )=5\left ( 18 \right )

5x+\frac{5x}{5}=90

5x+x=90

6x=90

x=\frac{90}{6}=\boldsymbol{15}

  • x+\frac{1}{3}=\frac{x}{3}
Solución

x+\frac{1}{3}=\frac{x}{3}

3\left ( x+\frac{1}{3} \right )=3\left ( \frac{x}{3} \right )

3x+\frac{3}{3}=\frac{3x}{3}

3x+1=x

3x-x=-1

2x=-1

x=\boldsymbol{-\frac{1}{2}}

  • x+7=12x-3-8x+1
Solución
x+7=12x-3-8x+1x+7=12x-3+8x+1

x-12x+8x=-3+1-7

-3x=-9

x=\frac{-9}{-3}=\boldsymbol{3}

RECURSOS PARA DOCENTES

Artículo “Ecuaciones y despejes”

Este artículo contiene información complementaria referente al manejo de las ecuaciones y los despejes. También presenta una serie de ejercicios resueltos y propuestos de ecuaciones lineales.

VER

Artículo “Ecuaciones”

Con este recurso podrá complementar la información y los ejemplos sobre ecuaciones de primer grado con una incógnita.

VER