CAPÍTULO 7 / TEMA 7 (REVISIÓN)

ORDEN Y RELACIONES │ ¿QUÉ APRENDIMOS?

SUCESIONES

Las sucesiones son secuencias ordenadas de términos que siguen una determinada regla de recurrencia o patrón. Estas pueden ser aritméticas geométricas. Las aritméticas tienen una diferencia con el término anterior en una cantidad constante, por ejemplo, 2, 4, 6, 8,… En cambio, en las geométricas cada término (excepto el primero) es múltiplo del término anterior de la sucesión, por ejemplo, 2, 4, 8, 16, 32,… Las sucesiones se utilizan en las matemáticas, en entidades financieras, en ciencias naturales, en informática y hasta en el arte.

La espiral de Fibonacci se trata de una espiral áurea que podemos construir a partir de los números contenidos en la sucesión de Fibonacci: 1, 2, 3, 5, 8, 13,…

LA RECTA NUMÉRICA

La recta numérica es una representación gráfica unidimensional que nos permite ubicar los números reales (\mathbb{R}), lo cual resulta de gran utilidad para comparar valores o indicar soluciones de intervalos en las inecuaciones. Se caracteriza por poseer el cero centrado y se considera el origen de la recta; hacia la izquierda se ubican los números negativos y a la derecha los positivos. Entre dos números, será mayor el que esté más a la derecha. Existen métodos para representar con precisión algunos números radicales sobre la recta.

Las reglas graduadas son un ejemplo de rectas numéricas. En estas vemos las divisiones de las unidades enteras que equivalen a las décimas.

PLANO CARTESIANO

Es un sistema de representación bidimensional muy utilizado en matemática y otras áreas para la ubicación de puntos en el plano. Su nombre se debe al filósofo y matemático René Descartes, quien propuso su aplicación en el siglo XVII como una base del sistema de coordenadas rectangulares. Está formado por un eje horizontal denominado eje de las abscisas, que tradicionalmente denotamos con la letra x; y un eje vertical llamado eje de las ordenadas, que por lo general representamos con la letra y. Cada eje se comporta como una recta numérica que se prolonga hasta el infinito.

Por lo general, lo mapas contienen ejes de coordenadas que asemejan el plano cartesiano. Las unión de dos coordenadas dan la ubicación de un punto.

FUNCIONES

Son expresiones matemáticas que indican una relación de correspondencia entre un conjunto de partida y un conjunto de llegada. Para que una relación sea considerada función, debe cumplirse que cada elemento del dominio tenga una sola imagen en el conjunto de llegada. Las funciones pueden ser inyectivas, sobreyectivas o biyectivas.

Las funciones también se pueden clasificar de acuerdo con los operadores que contienen sus términos y estas pueden ser polinómicas, trigonométricas, exponenciales, logarítmicas, entre otras.

FUNCIÓN LINEAL

La función lineal es un tipo de función polinómica cuyo mayor grado de exponente es 1. Su representación gráfica es una línea recta que puede ser descrita a partir de la ecuación explícita: y = mx + b, donde m es la pendiente de la recta y b es su ordenada al origen. Si conocemos la función de la recta podemos graficarla por medio una tabla de valores que cumpla con las soluciones de la función.

Estas gráficas representan dos funciones lineales. Las que no pasan por el origen se llaman funciones afines. Con dos puntos como mínimo se puede construir la recta.

PROPORCIONES

Las proporciones son una medida que relaciona a dos razones mediante una constante. El cociente que resulta de dividir una razón de proporción se conoce como constante de proporcionalidad. Dos magnitudes son directamente proporcionales si al aumentar una cantidad, la otra también aumenta; o si al disminuir una cantidad, la otra también disminuye. En cambio, dos magnitudes son inversamente proporcionales si al incrementar el valor de una, el valor de la otra disminuye; o si al disminuir el valor de una, la otra aumenta.

La cantidad de productos que compramos son directamente proporcionales con el precio, ya que a medida que más compramos más dinero pagamos.

CAPÍTULO 7 / TEMA 5

FUNCIÓN LINEAL

Cuando dos magnitudes se relacionan de manera directamente proporcional pueden representarse como una función de expresión algebraica y = mx + b. Estas funciones pueden identificarse rápidamente por medio de su gráfica, pues en el plano cartesiano siempre estarán representadas con una línea recta ascendente o descendente.

GRÁFICA DE UNA FUNCIÓN

Si conocemos la función matemática que relaciona a dos variables, podemos construir su gráfica, o al menos una aproximación de ella. Para esta tarea solo calculamos, a partir de la función, una serie de puntos que cumplan con la solución. Debemos tener en cuenta que cuantos más puntos utilicemos para graficar una función, mayor precisión obtendremos.

Algunas funciones matemáticas tienen gráficas características en el plano cartesiano, por ejemplo:

Funciones lineales

f(x) = mx + b

Funciones potenciales

f(x) = x2

 

Funciones exponenciales

f(x) = 2x

 

 

Funciones irracionales

f(x) = √x

 

Funciones racionales

f(x) = 1/x

 

Funciones trigonométricas

f(x) = sen x

Las funciones lineales se denominan de esta manera ya que su gráfica característica en el plano cartesiano se representa como una recta. Para trazar de forma correcta esta línea, basta con que conozcamos dos puntos en el plano. Por lo general se determinan si calculamos los cortes con los ejes o por medio de la ecuación de la recta.

¿Qué es una función lineal?

Una función lineal es una función cuya gráfica es igual a una línea recta que pasa por el origen de coordenadas. Su expresión algebraica es la siguiente:

f(x) = mx

Donde:

m = constante de proporcionalidad o pendiente de la recta

¿Sabías qué?
Las funciones lineales también son llamadas “funciones de proporcionalidad directa”.

– Ejemplo:

Un tren tiene una velocidad media de 160 km/h. La relación entre la distancia y el tiempo se puede observa en la siguiente tabla:

Tiempo (h) = x 0 1 2 3 4
Distancia (km) = y 0 160 320 480 640

Por medio de esta tabla vemos que las dos magnitudes (tiempo y distancia) son directamente proporcionales porque a medida que una aumenta, la otra también lo hace. Si realizamos una gráfica entre estas dos magnitudes nos resulta una línea recta como esta:

Nota que la recta pasa por el origen (0, 0) y va en aumento, por lo tanto, la recta es continua y creciente. La constante de proporcionalidad es 160, así que la expresión algebraica de esta función es:

f(x) = 160x

Función afín

Una función afín es un tipo de función lineal que no pasa por el origen de coordenadas. Su expresión algebraica es:

f(x) = mx + b

Donde:

m = pendiente de la recta

b = ordenada en el origen: la recta corta al eje de ordenada en el punto (0, n)

– Ejemplo:

Se ha determinado el pago de agua en una casa. Cada recibo indica que por cada metro cúbico de agua consumida se pagan $ 5, mientras que por la distribución y depuración se pagan $ 10. Con estos datos elaboramos la siguiente tabla:

Agua consumida (m3) = x 0 1 2 3 4
Pago ($) = y 10 15 20 25 30

La expresión algebraica de esta función es f(x) = 5x + 10, cuya gráfica se muestra a continuación:

Observa que la línea recta no pasa por el origen, sino que corta en el punto (0, 10).

La función de costo lineal se usa frecuentemente en las operaciones de las pequeñas empresas. El costo es el total de dinero necesario para producir q unidades de un producto. La función se representa con la expresión C(q) que incluye tanto a los costos fijos (independientes) como a los costos variables (dependientes).

ecuación de la recta

La ecuación de la recta es una expresión algebraica que describe una línea recta y relaciona la variación de y con respecto a x, la cual se puede graficar en el plano cartesiano según los componentes en cada uno de los ejes. De manera general la ecuación de una recta se representa así:

y = mx + b

Donde:

y = eje de las ordenadas

x = eje de las abscisas

m = pendiente de la recta

b = punto de intersección de la recta con el eje y

 

Para determinar la pendiente de la recta usamos la fórmula:

m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}

– Ejemplo:

Hallemos la pendiente de la recta que pasa por los puntos A (−1, 1) y B (1, 7).

Primero identificamos los valores de los ejes. Como ya sabemos, los pares ordenados siempre tienen primero la coordenada del eje x y luego de la coma va la coordenada del eje y; entonces:

En el punto A (−1, 1), x1 = −1 y y1 = 1

En el punto B (1, 7), x2 = 1 y y2 = 7

Ahora solo sustituimos en la fórmula general:

m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{7-1}{1-(-1)}=\frac{6}{2}=\boldsymbol{3}

Sabemos que la ecuación de esta recta es y = mx + b porque no pasa por el origen, es decir, representa una función afín. También sabemos que la pendiente (m) es 3, por lo tanto, y = 3x + b; así que faltaría hallar el valor de b.

Para calcula b podemos tomar cualquiera de los puntos A o B. Planteamos la ecuación y luego despejamos.

A(-1, \: 1): y=3x+b\rightarrow 1=3(-1)+b\rightarrow \boldsymbol{b=4}

B(1,\: 7):y=3x+b\rightarrow 7=3(1)+b\rightarrow \boldsymbol{b=4}

De este modo sabemos que la recta que pasa por los puntos A y B tiene por ecuación:

y = 3x + 4

Pendiente de la recta y = mx

Para un función lineal f(x) = mx, el coeficiente m se llama pendiente y representa el aumento o disminución de la variable dependiente en relación a la variable independiente.

– Ejemplo:

  • En la función f(x) = −3x, la pendiente es −3.
  • En la función f(x) = 5x, la pendiente es 5.

En una gráfica, la pendiente de una recta representa la inclinación de la misma respecto del eje x. La podemos hallar al dividir el valor de la variable dependiente entre el valor de la variable independiente.

m =\frac{y}{x}

– Ejemplo:

Esta gráfica muestra tres líneas rectas que pasan por el origen, así que cada una representa a un función lineal de forma f(x) = mx.

Para saber la pendiente de la recta solo debemos fijarnos en cualquiera de sus puntos y hallar su cociente.

Recta a Recta b Recta c
m=\frac{6}{-6}=\boldsymbol{-1} m=\frac{-2}{-2}=\boldsymbol{1} m=\frac{4}{6}=\boldsymbol{\frac{2}{3}}
f(x)=-x f(x)=x f(x)=\frac{2}{3}x

Valor de la pendiente

  • Si m es positiva, significa que la recta es creciente de izquierda a derecha.
  • Si m es negativa, significa que la recta es decreciente de izquierda a derecha.
  • Si m es cero, significa que la recta no posee inclinación respecto al eje horizontal, es decir, se trataría de una recta paralela al eje horizontal.
Una función lineal es una función polinómica de primer grado, es decir, el mayor exponente de x es 1. Para expresar cualquier tipo de recta, pase o no por el origen, se utiliza la ecuación explícita de la recta: y = mx + b. Donde y es la variable dependiente, x es la variable independiente, m es la pendiente y b es la ordenada al origen.

¿cómo Graficar una función lineal?

Dada la ecuación de la recta y = 2x + 3. La pendiente es 2 y el punto de intersección de la recta con el eje y es igual a 3. Para determinar el valor de y es necesario darle valores a x y efectuar la operación correspondiente, de la siguiente manera:

Si x = 1
y = 2(1) + 3
y = 2 + 3
y = 5
Si x = 2
y = 2(2) + 3
y = 4 + 3
y = 7
Si x = 3
y = 2(3) + 3
y = 6 + 3
y = 9
Si x = −1
y = 2(−1) + 3
y = −2 + 3
y = 1
Si x = −2
y = 2(−2) + 3
y = −4 + 3
y = −1
Si x = −3
y = 2(−3) + 3
y = −6 + 3
y = −3

Para obtener una recta bien definida es recomendable utilizar al menos tres puntos. Será de gran ayuda realizar una tabla de valores en la que observes las coordenadas de cada punto como esta:

x y Punto
−3 −3 (−3, −3)
−2 −1 (−2, −1)
−1 1 (−1, 1)
1 5 (1, 5)
2 7 (2, 7)
3 9 (3, 9)

Si usamos esta tabla como guía es más sencillo realizar la gráfica de la función.

Nota que la recta se corta en el punto (0, 3), pues b = 3.

¡A practicar!

1. Dadas las siguientes funciones, determina:

a. Pendiente (m)

b. Ordenada al origen (b)

  • f(x) = 2x − 6
Solución

b = −6

m = 2

  • f(x) = −x + 4
Solución

b = 4

m = −1

  • f(x) = 13/5x − 2
Solución

b = −2

m = 13/5

 

2. Construye una tabla con los siguientes valores de x para cada función.

x = −2, −1, 0, 1, 2, 3

  • f(x) = −x + 2
Solución
x y
−2 4
−1 3
0 2
1 1
2 0
3 −1
  • f(x) = 5x − 3
Solución
x y
−2 −13
−1 −8
0 −3
1 2
2 7
3 12
  • f(x) = 3x
Solución
x y
−2 −6
−1 −3
0 0
1 3
2 6
3 9
  • f(x) = −2x + 1
Solución
x y
−2 5
−1 3
0 1
1 −1
2 −3
3 −5

 

3. Realiza la gráfica de las siguientes funciones:

  • f(x) = −x + 2
  • f(x) = −2x + 1
Solución

f(x) = −x + 2

f(x) = −2x + 1

 

4. Dada la siguiente gráfica, determina:

a. Pendiente de la recta.

b. Ecuación de la recta.

Solución

a. m = −1

b. y = −x + 9

RECURSOS PARA DOCENTES

Artículo “Función Lineal”

En este artículo podrás encontrar ejercicios relacionados con la construcción de gráficas de funciones lineales a partir de su ecuación explícita, además de problemas de enunciados.

VER

Artículo “Aplicaciones de la función lineal”

Este artículo explica los conceptos de proporción, así como detalla el análisis y las aplicaciones de las funciones lineales.

VER

Artículo “Función lineal”

Este contenido ofrece una breve descripción de las características de una función lineal a partir de la ecuación explícita de la recta.

VER

CAPÍTULO 7 / TEMA 3

PLANO CARTESIANO

El plano cartesiano fue propuesto por René Descartes en el siglo XVII y desde entonces ha sido una herramienta empleada en múltiples áreas del conocimiento. Su uso radica principalmente en la ubicación de puntos en el plano y en el análisis de figuras geométricas.

¿QUÉ ES EL PLANO CARTESIANO?

El plano cartesiano es una representación gráfica de dos rectas numéricas que se intersecan de forma perpendicular, por lo que forman cuatro cuadrantes como se muestra:

En cada cuadrante del plano cartesiano podemos ubicar infinitos puntos, los cuales se definen mediante un par ordenado expresado de esta manera: (coordenada en x, coordenada en y).

VER INFOGRAFÍA

El plano cartesiano es un sistema de ejes de coordenadas muy útiles para ubicar e identificar puntos en un plano. Este sistema se aplica en radares y mapas a nivel mundial, razón por la que actualmente podemos localizar cualquier persona o ciudad de forma rápida solo con ver una cuadrícula en un mapamundi o con un simple botón en el celular.

ELEMENTOS DEL PLANO CARTESIANO

El plano cartesiano está formado por un eje horizontal denominado eje de las abscisas, que tradicionalmente denotamos con la letra x; y un eje vertical llamado eje de las ordenadas, que por lo general representamos con la letra y. Cada eje se comporta como una recta numérica que se prolonga hasta el infinito.

Ambos ejes se intersecan a 90 grados en el origen (0, 0). Hacia la derecha del eje x están las coordenadas positivas y a la izquierda, las negativas. En el eje y tenemos las coordenadas positivas hacia arriba y las negativas hacia abajo. Además, debemos mostrar una escala sobre los ejes como se muestra a continuación.

Los ejes son la base para la construcción del plano cartesiano, el cual se forma con la intersección del eje x y el eje y en el origen. El eje x se llama también eje de las abscisas y el eje y, eje de las ordenadas. El par de número que resulta de la unión de dos datos de cada eje se llama par ordenado. Estos se escriben separados por una coma dentro de paréntesis.

UBICACIÓN DE PUNTOS EN EL PLANO

Los puntos a ubicar en el plano cartesiano deben venir expresados en pares ordenados, es decir, un valor que indique las coordenadas en x e y que tendrá dicho punto. Convencionalmente, el primer valor corresponde al eje x y el segundo al eje y. Por ejemplo, el par ordenado (−6, 5) significa que el punto se encuentra a 6 unidades a la izquierda del origen (0) y 5 unidades por encima del origen. Vemos los siguientes ejemplos:

  • Ubiquemos el punto (4, −3)

Al igual que en la recta numérica, podemos representar la escala de los números enteros de uno en uno. Ubicamos el primer valor que se indica en el par ordenado sobre el eje x, es decir, 4. Luego localizamos el segundo número del par ordenado, o sea, −3 en el eje y.

A continuación, trazamos dos líneas guías: una vertical que pase por la coordenada de x, y una horizontal que pase por la coordenada de y. A estas líneas se les conocen como proyecciones ortogonales. El lugar donde ambas líneas se intersecan es la ubicación del punto. Sin embargo, es frecuente que el plano cartesiano se dibuje sobre una hoja cuadriculada o papel milimetrado, de modo que ya se tengan todas las líneas guías y sea más fácil la ubicación del punto.

 

Uso de la escala

Puedes seleccionar una escala conveniente en los ejes para que puedas ubicar de manera sencilla los puntos; por ejemplo, si deseas ubicar el punto de coordenadas (1.500, −4.500), no resulta práctico que hagamos un plano y que contemos de 1 en 1 hasta 4.500 divisiones. En ese caso, podemos tomar cada división equivalente a 500 unidades.

  • Ubiquemos el punto (−1,5, 2)

El procedimiento a seguir para ubicar número decimales es el mismo que en el ejemplo anterior, sin embargo, tomaremos una escala diferente. Como las coordenadas a ubicar en el plano son −1,5 y 2; podemos asignarle a cada división un valor de 0,5 unidades como se muestra a continuación:

¿Sabías qué?
Se dice que las primeras ideas del plano cartesiano le surgieron a René Descartes a muy temprana edad mientras observaba una mosca en el techo y se preguntaba cómo podía indicar su posición en el plano a partir de dos coordenadas.
  • Ubiquemos el punto (8, 4)

Aplicamos de nuevo el mismo procedimiento, pero en esta ocasión, como se trata de números más elevados, tomaremos la escala de 2 en 2 unidades; es decir, que cada división, equivale a 2 unidades.

EMPLEO DEL PLANO CARTESIANO

Aunque en matemática es común que utilicemos el plano cartesiano para representar puntos, vectores o funciones al relacionar dos variables espaciales (posición en x y posición en y), el empleo del plano cartesiano no se limita solo a eso. En física, por ejemplo, se suele utilizar para relacionar la posición y el tiempo, o el comportamiento del voltaje en función de la resistencia. En geografía, puede ser aplicado para observar el crecimiento demográfico a lo largo del tiempo. En finanzas, por otra parte, es de utilidad para representar las ganancias de una empresa en función de sus ventas.

El plano cartesiano es muy utilizado para representar funciones que relacionan dos variables, e incluso podemos graficar varias funciones sobre un mismo diagrama, lo cual nos permite identificar puntos de corte entre las curvas, simetrías, proporciones y otras características que tal vez no resultan tan evidentes a partir de las ecuaciones.

 

Diagramas en el plano

Estos diagramas pueden tener diversas aplicaciones, por ejemplo, de izquierda a derecha en la imagen observamos: 1) la representación de un número complejo como un par ordenado, 2) una campana gaussiana estudiada en estadística en distribuciones normales o 3) la superposición de tres gráficas que pueden ser ondas de vibraciones.

¡A practicar!

1. Ubica los siguientes puntos en el plano cartesiano:

a) (0,5, −2)

Solución

b) (5, −5)

Solución

c) (−12, 8)

Solución

d) Dada la siguiente gráfica, indica el par ordenado del siguiente punto en el plano cartesiano:

Solución
(10, −16)
RECURSOS PARA DOCENTES

Artículo “Plano cartesiano”:

Este artículo ofrece información sobre los elementos que conforman el plano cartesiano, así como también la explicación para ubicar puntos en coordenadas rectangulares.

VER

Artículo “Ejes cartesianos”

En este artículo encontrarás el contenido relacionado con la representación puntos en el plano cartesiano, así como actividades lúdicas con aplicaciones del plano cartesiano.

VER

CAPÍTULO 4 / TEMA 5 (REVISIÓN)

GEOMETRÍA DE LAS FORMAS | ¿qué aprendimos?

EL PUNTO Y LA LÍNEA

EL PUNTO ES EL ENTE FUNDAMENTAL DE LA GEOMETRÍA. UNA SUCESIÓN INFINITA DE PUNTOS FORMA UNA LÍNEA. SEGÚN LAS DIRECCIÓN QUE TENGAN ESTOS PUNTOS LAS LÍNEAS PUEDEN SER RECTAS, COMO LAS DEL BORDE DE UNA PANTALLA DE CELULAR; O PUEDEN SER CURVAS, COMO EL BORDE UN GLOBO. CUANDO EL PUNTO DE INICIO Y FIN SON EL MISMO EN UNA LÍNEA, DECIMOS QUE LA LÍNEA ES CERRADA, PERO SI ESTOS PUNTOS NO COINCIDEN, LA LÍNEA ES ABIERTA.

CUANDO OBSERVAMOS UN PAISAJE PODEMOS VER MUCHAS LÍNEAS FORMADAS POR LA NATURALEZA.

FIGURAS PLANAS

LAS FIGURAS PLANAS SOLO TIENEN DOS DIMENSIONES: ALTO Y ANCHO. EXISTEN DOS TIPOS DE FIGURAS PLANAS, LAS POLIGONALES Y LOS CÍRCULOS. LAS PRIMERAS ESTÁN FORMADAS POR LÍNEAS POLIGONALES CERRADAS, COMO UN CUADRADO O RECTÁNGULO. LAS SEGUNDAS ESTÁN FORMADAS POR LÍNEAS CURVAS CERRADAS, COMO EL CÍRCULO. TODOS LOS PUNTOS QUE CORRESPONDEN A LA LÍNEA CURVA SE ENCUENTRAN A LA MISMA DISTANCIA DEL CENTRO DE FIGURA. ESTA LÍNEA QUE DELIMITA AL CÍRCULO SE LLAMA CIRCUNFERENCIA.

UNA LUPA TIENE FORMA DE CÍRCULO.

FIGURAS TRIDIMENSIONALES

LAS FIGURAS TRIDIMENSIONALES OCUPAN UN LUGAR EN EL ESPACIO Y TIENEN TRES DIMENSIONES: ALTO, LARGO Y ANCHO. LAS FIGURAS TRIDIMENSIONALES TAMBIÉN SON LLAMADAS CUERPOS GEOMÉTRICOS Y EXISTEN DOS TIPOS: LOS POLIEDROS Y LOS CUERPOS REDONDOS. LOS PRIMEROS ESTÁN CONFORMADOS POR CARAS PLANAS COMO EL PRISMA Y LA PIRÁMIDE; Y LOS SEGUNDOS TIENEN SUPERFICIES CURVAS, COMO EL CILINDRO, LA ESFERA Y EL CONO.

LOS CUERPOS GEOMÉTRICOS NO SE PUEDEN TRAZAR EN UNA REGIÓN DEL PLANO SINO QUE SE CONSTRUYEN PARA QUE TENGAN SUS DIMENSIONES REALES.

POSICIÓN Y DESPLAZAMIENTO

LOS CUERPOS GEOMÉTRICOS, LOS PUNTOS, LAS FIGURAS Y LOS OBJETOS TIENEN UNA DETERMINADA POSICIÓN EN EL ESPACIO, PERO LA POSICIÓN NO SIEMPRE ES LA MISMA. DOS DE LOS MOVIMIENTOS MÁS COMUNES SON LA TRASLACIÓN Y LA ROTACIÓN. POR OTRO LADO, ES POSIBLE UBICAR CADA PUNTO EN EL ESPACIO GRACIAS A LOS EJES CARTESIANOS, UN CONJUNTO DE LÍNEAS QUE SE CRUZAN PARA DARNOS LAS COORDENADAS O POSICIÓN DE UN PUNTO.

LA ROTACIÓN Y LA TRASLACIÓN DE ELEMENTOS GEOMÉTRICOS SE ASEMEJAN A LOS MOVIMIENTOS QUE REALIZA LA TIERRA.

CAPÍTULO 4 / TEMA 4

POSICIÓN Y DESPLAZAMIENTO

CASI TODOS LOS CUERPOS ESTÁN EN MOVIMIENTO Y POR LO TANTO, SU POSICIÓN EN EL ESPACIO CAMBIA. JUSTO AHORA PODEMOS ESTAR FRENTE A LA COMPUTADORA, PERO LUEGO PODEMOS ESTAR EN OTRA CASA O CIUDAD. LOS EJES CARTESIANOS AYUDAN A UBICAR PUNTOS EN UN PLANO Y SI LOS USAMOS EN UN MAPA, TAMBIÉN NOS SIRVEN PARA UBICAR PERSONAS Y LUGARES DEL MUNDO.

RELACIONES ESPACIALES

PARA UBICAR ELEMENTOS EN EL ESPACIO USAMOS LAS RELACIONES ESPACIALES. ESTAS NO INDICAN LA POSICIÓN DE ALGO O ALGUIEN RESPECTO A OTRA COSA. POR LO GENERAL SE UTILIZAN LAS SIGUIENTES EXPRESIONES:

ARRIBA

ABAJO

IZQUIERDA

DERECHA

OBSERVA ESTA IMAGEN. ¿QUÉ POSICIÓN TIENEN LOS OBJETOS RESPECTO A OTROS? EJEMPLO:  – LOS LIBROS ESTÁN ARRIBA DE LA REPISA.                                 – LA PANTALLA DE LA COMPUTADORA ESTÁ DEBAJO DE LOS LIBROS.                               – EL RELOJ ESTÁ A LA DERECHA DE LA PANTALLA DE LA COMPUTADORA.                         – LA LÁMPARA ESTÁ A LA IZQUIERDA DE LOS MARCADORES. HAY MÁS RELACIONES ESPACIALES, ¡DESCÚBRELAS!

¡ES TU TURNO!

OBSERVA DE NUEVO LA IMAGEN Y RESPONDE:

  • ¿EN QUÉ POSICIÓN ESTÁ LA PANTALLA DE LA COMPUTADORA RESPECTO A LA MESA?
    SOLUCIÓN
    LA PANTALLA DE LA COMPUTADORA ESTÁ ARRIBA DE LA MESA.
  • ¿EN QUÉ POSICIÓN ESTÁ LA LÁMPARA RESPECTO A LA REPISA?
    SOLUCIÓN
    LA LÁMPARA ESTÁ ABAJO DE LA REPISA.
  • ¿EN QUÉ POSICIÓN ESTÁN LOS MARCADORES RESPECTO A LA LÁMPARA?
    SOLUCIÓN
    LOS MARCADORES ESTÁN A LA DERECHA DE LA LÁMPARA.

¿cómo GRAFICAR LA POSICIÓN DE ELEMENTOS?

PODEMOS GRAFICAR Y UBICAR LA POSICIÓN DE CUALQUIER PUNTO EN UN PLANO POR MEDIO DE EJES DE COORDENADAS EN UN DIAGRAMA CARTESIANO.

LOS EJES CARTESIANOS SON DOS LÍNEAS QUE SE CRUZAN, UNA TIENE UNA ORIENTACIÓN VERTICAL, LLAMADA “Y”, Y LA OTRA UNA ORIENTACIÓN HORIZONTAL, LLAMADA “X“. EN CONJUNTO, DAN A CONOCER LA POSICIÓN DE UN PUNTO EN EL PLANO.

– EJEMPLO:

ESTA ES UNA CUADRÍCULA CON EJES COORDENADOS. CUANDO UN DATO DEL EJE X SE CRUZA CON UNA DATO DEL EJE Y TENEMOS LAS COORDENADAS O UBICACIÓN DEL OBJETO.

¿CÓMO ESCRIBIR LAS COORDENADAS DE UN PUNTO?

PARA ESCRIBIR LAS COORDENADAS PRIMERO VEMOS LAS DEL EJE X Y LUEGO LAS DEL EJE Y. LOS DOS NÚMEROS SE SEPARAN CON UNA COMA Y SE ENCIERRA ENTRE PARÉNTESIS. ENTONCES, LAS COORDENADAS DE LAS FIGURAS EN EL DIAGRAMA CARTESIANO ANTERIOR SON LAS LAS SIGUIENTES:

FIGURA COORDENADAS
ESTRELLA (3, 5)
LUNA (1, 3)
CORAZÓN (6, 2)

– EJEMPLO 2:

CADA PUNTO TIENE UNA LETRA. UBIQUEMOS LAS COORDENADAS DE CADA PUNTO.

PUNTO COORDENADAS
A (4, 2)
B (1, 1)
C (2, 3)
D (5, 6)
E (1, 6)
F (0, 4)

¿SABÍAS QUÉ?
CUANDO UN PUNTO ESTÁ UBICADO DIRECTAMENTE SOBRE UN EJE, QUIERE DECIR QUE EL VALOR DEL OTRO EJE ES CERO, POR EJEMPLO (0, 4) SIGNIFICA QUE EL DATO DEL EJE X ES 0 Y EL DEL EJE Y ES 4.

¡ES TU TURNO!

OBSERVA DE NUEVO LA CUADRÍCULA. COMPLETA LA TABLA CON LAS COORDENADAS DE LOS PUNTOS.

SOLUCIÓN
PUNTO COORDENADAS
A (4, 2)
B (1, 1)
C (2, 3)
D (5, 6)
E (1, 6)
F (0, 4)
G (0, 5)
H (6, 4)
I (3, 5)

TRASLACIÓN

LA TRASLACIÓN ES UN MOVIMIENTO EN EL QUE CADA PUNTO DE LA FIGURA SIGUE UNA MISMA DIRECCIÓN. LA FIGURA GEOMÉTRICA TRASLADADA NO GIRA NI CAMBIA DE TAMAÑO.

ROTACIÓN

LA ROTACIÓN ES UN MOVIMIENTO O GIRO ALREDEDOR DE UN CENTRO DE ROTACIÓN.

MOVIMIENTOS DE LA TIERRA

NUESTRO PLANETA REALIZA TANTO EL MOVIMIENTO DE ROTACIÓN COMO EL DE TRASLACIÓN. CUANDO ROTA O GIRA SOBRE SU PROPIO EJE SE PRODUCE EL DÍA Y LA NOCHE. CUANDO SE TRASLADA ALREDEDOR DEL SOL SE CUMPLE UN AÑO O 365 DÍAS.

LOS MAPAS Y SU IMPORTANCIA

LOS EJES DE COORDENADAS TAMBIÉN LOS VEMOS EN LOS MAPAS. GRACIAS A ELLAS PODEMOS LOCALIZAR CUALQUIER CIUDAD O PERSONA EN EL MUNDO. LOS EJES DE COORDENADAS PERMITEN QUE CADA UBICACIÓN EN NUESTRO PLANETA SEA ESPECIFICADA CON NÚMEROS, LETRAS Y SÍMBOLOS. POR EJEMPLO, LA LATITUD DE LOS MAPAS DETERMINA EL EJE X Y LA LONGITUD DETERMINA EL EJE Y.

ESTE ES UN MAPAMUNDI, TAMBIÉN CONOCIDO COMO PLANISFERIO. EN ÉL VEMOS TODA LA SUPERFICIE DE NUESTRO PLANETA COMO UN PLANO. ESTE MAPA MUESTRA DOS TIPOS DE LÍNEAS: UNAS HORIZONTALES QUE REPRESENTAN LA LATITUD; Y UNAS VERTICALES QUE REPRESENTAN LA LONGITUD. ASÍ COMO EN UNA CUADRÍCULA, LA UNIÓN DE LOS DATOS NOS INFORMA LAS COORDENADAS DE UN PUNTO.

¡A PRACTICAR!

1. OBSERVA LA CUADRÍCULA. EN ELLA SE VEN LOS RECORRIDOS QUE PUEDE HACER EL PERRO HASTA SU HUESO, HASTA SU DUEÑO O HASTA SU CASA. RESPONDE LAS PREGUNTAS.

  • ¿CÓMO ES EL RECORRIDO DEL PERRO HASTA SU HUESO?
    SOLUCIÓN
    5 ESPACIOS HACIA ARRIBA Y UN ESPACIO A LA DERECHA.
  • ¿CÓMO ES EL RECORRIDO DEL PERRO HASTA SU DUEÑO?
    SOLUCIÓN
    3 ESPACIOS HACIA ARRIBA Y 3 ESPACIOS A LA DERECHA.
  • ¿CÓMO ES EL RECORRIDO DEL PERRO HASTA SU CASA?
    SOLUCIÓN
    5 ESPACIOS A LA DERECHA Y UN ESPACIO HACIA ARRIBA.
  • ¿CÓMO ES EL RECORRIDO DEL DUEÑO HASTA EL PERRO?
    SOLUCIÓN
    3 ESPACIOS A LA IZQUIERDA Y 3 ESPACIOS HACIA ABAJO.
  • ¿CUÁLES SON LAS COORDENADAS DEL PERRO?
    SOLUCIÓN
    (1, 1)
  • ¿CUÁLES SON LAS COORDENADAS DEL HUESO?
    SOLUCIÓN
    (2, 6)
  • ¿CUÁLES SON LAS COORDENADAS DEL DUEÑO?
    SOLUCIÓN
    (4, 4)
  • ¿CUÁLES SON LAS COORDENADAS DE LA CASA DEL PERRO?
    SOLUCIÓN
    (6, 2)
RECURSOS PARA DOCENTES

Artículo “Simetrías”

Con este recurso se podrá ampliar la información sobre los movimientos en el plano

VER

CAPÍTULO 5 / TEMA 1

CUADRÍCULA

Es posible que hayas visto rectas verticales y horizontales en algún mapa. Esta red de líneas se llama cuadrícula y sirve para ubicar un punto de manera sencilla. Las cuadrículas tienen varios usos: cuando sus líneas se cruzan forman una coordenada y gracias a ella podemos saber exactamente, por ejemplo, la posición de una persona en el mundo o la posición de un planeta en el espacio.

¿QUÉ ES UNA CUADRÍCULA?

Una cuadrícula es un conjunto de líneas verticales y horizontales que funcionan como sistema de referencia y permiten ubicar elementos en un espacio. Cada línea puede tener asignado un número o una letra.

El tablero de ajedrez es un ejemplo de una cuadrícula porque está formado por líneas rectas perpendiculares. En este caso, cada cuadro dentro de la cuadrícula tiene un número y una letra asignada, los cuales comunican al jugador la posición exacta de la pieza dentro del tablero. La posición se nombra como una coordenada, por ejemplo, posición (C,5).

¿qué son las COORDENADAS?

Las coordenadas son un conjunto de valores que permiten localizar un punto en un espacio determinado. En un plano, las coordenadas están dadas por dos ejes: el eje X y el eje Y.

Ejes de coordenadas

Son las rectas rectas perpendiculares que se cortan en un punto denominado origen de coordenadas. Juntas forman el sistema de coordenadas.

  • El eje horizontal se llama eje de abscisas y es conocido normalmente como eje X.
  • El eje vertical se llama eje de ordenadas y es conocido normalmente como eje Y.

– Ejemplo:

 

En este sistema de coordenadas observamos que:

  • El eje Y está representado por números.
  • El eje X está representado por letras.
  • El origen de las coordenadas es denotado por (0,0).
  • La estrella está en un cuadro que corresponde a la posición D del eje X y a la posición 4 del eje Y.
¿Sabías qué?

Al tipo de localización que describe exactamente la posición de un objeto o una persona a través de un sistema de coordenadas geográficas se lo llama localización absoluta.

¿Cómo se escriben las coordenadas?

Existe una manera sencilla de escribir las coordenadas de un punto en el plano, para esto debemos seguir los siguientes pasos:

  1. Ubicar el dato del eje horizontal o eje X.
  2. Ubicar el dato del eje vertical o eje Y.
  3. Separar ambos datos con una coma.
  4. Colocarlos dentro de paréntesis.

Observa el ejemplo anterior. En ese sistema de coordenadas la estrella ocupa el cuadro que coincide con el punto D del eje X y el punto 4 del eje Y. Por lo tanto, las coordenadas de la estrella son (D,4).

 

– Ejemplo:

Esta cuadrícula tiene coordenadas por cuadros. Los del eje X tienen letras y los del eje Y tienen números. ¿Cuáles son las coordenadas de las figuras?

Figura Coordenadas
Corazón (C,5)
Círculo (E,4)
Rayo (A,1)

¡A practicar!

Completa la tabla y escribe las coordenadas de las demás figuras.

Solución
Figura Coordenadas
Corazón (C,5)
Círculo (E,4)
Rayo (A,1)
Cuadrado (A,5)
Luna (C,4)
Sol (B,2)
Nube (E,2)
Triángulo (B,3)

¿Sabías qué?

Al ubicar un punto en una cuadrícula, siempre tomaremos primero la referencia horizontal del eje X y luego la vertical del eje Y.

Las coordenadas geográficas nos permiten saber cualquier ubicación en la Tierra por medio de una combinación de números y letras. En este sistema, las líneas horizontales representan a los paralelos que determinan la latitud, mientras que las líneas verticales representan a los meridianos que determinan la longitud.

VER INFOGRAFÍA

 

También podemos hallar puntos en una posición precisa si asignamos valores a las líneas.

– Ejemplo:

Esta cuadrícula tiene coordenadas con letra en el eje X y coordenadas con números en el eje Y. ¿Cuáles son las coordenadas de los punto de colores?

Color del punto Coordenada
Azul (F,3)
Naranja (B,2)
Rosa (D,5)

¡A practicar!

Completa la tabla y escribe las coordenadas de los demás puntos.

Solución
Color del punto Coordenada
Azul (F,3)
Naranja (B,2)
Rosa (D,5)
Verde (0,4)
Rojo (0,0)
Morado (B,6)
Amarillo (E,1)

GPS: un gran invento

Uno de los mejores inventos de nuestros tiempos ha sido el GPS, cuyas siglas en español significan “Sistema de Posicionamiento Global”. Este sistema brinda servicios de posicionamiento y navegación a todos sus usuarios a nivel mundial. Su funcionamiento se basa en un sistema de coordenadas geográficas llamado WGS que puede ubicar cualquier punto en el planeta.

¿Sabías qué?
Las coordenadas cartesianas son un sistema para localizar un punto en el plano. René Descartes fue el primer matemático que las utilizó de manera formal, de ahí el nombre de “cartesianas”.

¿PARA QUÉ SIRVE LA CUADRICULA?

Desde la elaboración de planos y dibujos a escalas en hojas cuadriculadas, hasta la localización de estrellas en la galaxia. La unión de rectas perpendiculares nos ayuda a distinguir la posición de cualquier objeto.

Cuando conforman un sistema de coordenadas, las cuadrículas son comunes en los planos de los museos, los parques de diversiones, o incluso de los barrios. También se emplean en los mapas de las ciudades o de los países, los planisferios o incluso los globos terráqueos y en el GPS de los teléfonos móviles y los medios de transporte.

¡A practicar!

  1. Ubica en un cuadrícula las siguientes coordenadas:
  • (A,3)
  • (B,7)
  • (C,2)
  • (D,6)
  • (E,1)
  • (F,5)
Solución

2) Observa la siguiente cuadrícula e indica las coordenadas que están pintadas.

Solución

Azul: (A,6) (A,7) (B,6) (B,7)

Rojo: (F,5) (F,6) (F,7) (G,6)

Morado: (B,3) (C,1) (C,2) (C,3)

Amarillo: (E,1) (E,2) (E,3) (F,1) (F,3) (G,1)

RECURSOS PARA DOCENTES

Artículo “Ejes cartesianos”

Este artículo te permitirá ampliar la información acerca del sistema de representación de ejes cartesianos.

VER 

Artículo “Líneas imaginarias del planeta Tierra”

Este artículo brinda información para los estudiantes, así como material para el docente, relacionada a la ubicación geográfica a partir de coordenadas.

VER

CAPÍTULO 5 / TEMA 8 (REVISIÓN)

Geometría y mediciones | ¿Qué aprendimos?

Perímetro

El perímetro es el contorno de una figura geométrica. En el caso de los polígonos regulares, el perímetro lo calculamos al multiplicar la cantidad de sus lados por la longitud de uno de estos. Otra forma de calcular el perímetro es a través de la suma de cada uno de los lados de una figura. En cambio, el perímetro del círculo es igual a la multiplicación del número pi por el diámetro de la circunferencia. Existen también figuras compuestas que están formadas por dos o más figuras geométricas, para calcular su perímetro basta con sumar cada uno de los lados.

El perímetro tiene múltiples aplicaciones en disciplinas como la arquitectura y también se usa en el ámbito militar.

Ángulos

Uno de los elementos fundamentales para la geometría es el ángulo, el cual está formado por un par de semirrectas denominadas lados que tienen un origen común o vértice. Uno de los sistemas más usados para medir ángulos es el sistema sexagesimal, en el que medimos los ángulos en grados, minutos y segundos. De acuerdo a su tamaño, los ángulos pueden clasificarse en agudos, rectos, obtusos y llanos. Los agudos son mayores a 0° pero menores a 90°, los rectos miden 90°, los obtusos son mayores a 90° pero menores de 180° y los llanos miden siempre 180°.

El transportador es uno de los instrumentos más usados para medir ángulos.

Área

Para calcular superficies usamos el área, que es la extensión comprendida por una figura. Para cada figura plana existe una fórmula que permite determinar su área. En el Sistema Internacional de Unidades se emplea el metro cuadrado (m2) como unidad de medida de área, pero también podemos usar otras unidades derivadas, como el centímetro cuadrado (cm2) o el milímetro cuadrado (mm2). Podemos obtener el área de las figuras compuestas al descomponerlas en figuras geométricas más simples, para luego sumar las áreas de cada una.

El conocimiento del área puede ser aplicado para calcular cuántas baldosas son necesarias para cubrir una superficie.

Sistemas de referencia

Uno de los sistemas de referencias más usados es el sistema cartesiano, el cual está formado por dos ejes en el plano: uno horizontal denominado eje X o de las abscisas y otro vertical denominado eje Y o de las ordenadas. Para representar un punto en el plano cartesiano necesitamos sus coordenadas en el eje X y en el eje Y: la intersección de ambas coordenadas constituye su ubicación. Por otro lado, las figuras pueden experimentar transformaciones isométricas, es decir, cambios de posición y orientación que no afectan su forma. Estas transformaciones son: traslación, rotación y simetría.

Los sistemas de referencia son usados por el ser humano para medir las posiciones y las magnitudes de las cosas.

Cuadriláteros

Un cuadrilátero es un polígono de cuatro lados, y aunque se pueden clasificar en varios grupos, comparten elementos en común: tienen cuatro ángulos, la suma de estos es siempre igual 360° y tienen dos diagonales que dividen al cuadrado en triángulos. De manera general, los cuadriláteros son clasificados como paralelogramos, trapecios y trapezoides. Los paralelogramos tienen sus lados opuestos paralelos y pueden ser cuadrados, rombos y rectángulos. Los trapecios tienen dos de sus lados paralelos y los trapezoides no tienen ningún lado paralelo.

El campo de fútbol tiene forma de rectángulo que es un tipo de cuadrilátero.

Capacidad y volumen

El volumen es el espacio que ocupa un objeto mientras que la capacidad indica la cantidad que un objeto puede contener dentro de él. Todos los objetos tienen volumen pero no todos tienen capacidad. En el caso de los sólidos y los líquidos mientras mayor sea su volumen, mayor espacio van a ocupar. No es lo mismo el volumen de un grano de arroz que el de un edificio. Algunas unidades de volumen son el metro cúbico (m3), el centímetro cúbico (cm3) y milímetro cúbico (mm3), entre otras. El litro es una medida de capacidad que equivale a 1.000 cm3.

A pesar de estar muy relacionadas, no se deben confundir las medidas de volumen con las de capacidad.

La circunferencia

La circunferencia es una curva plana con todos sus puntos ubicados a la misma distancia del origen o centro. No debe ser confundida con el círculo que corresponde al área contenida dentro de ella, es decir, la circunferencia es el perímetro del círculo. Presenta ciertos elementos como el radio, el diámetro, la tangente, la cuerda, el arco y la semicircunferencia. Uno de los instrumentos usados para su trazado es el compás.

Los antiguos griegos empleaban la recta y la circunferencia como figuras básicas en sus cálculos.

CAPÍTULO 4 / TEMA 7 (REVISIÓN)

GEOMETRÍA | ¿QUÉ APRENDIMOS?

UBICACIÓN ESPACIAL

La ubicación espacial nos sirve para conocer dónde estamos con respecto a todo lo que nos rodea, de este modo podemos señalar con facilidad nuestra ubicación. Términos como arriba, abajo, derecha, izquierda, delante y detrás son de gran utilidad para el desarrollo del sentido de la orientación. Si deseamos ubicar puntos en un plano podemos usar los ejes de coordenadas: un conjunto de líneas verticales y horizontales que nos brindan los datos necesarios para saber la posición exacta de un objeto en una cuadrícula.

En esta imagen, los crayones están dentro de un recipiente, el cuaderno está sobre la mesa y los bolígrafos están al lado del cuaderno.

CUERPOS GEOMÉTRICOS

Los cuerpos geométricos poseen tres dimensiones: alto, largo y ancho. Estos cuerpos pueden ser poliedros, tales como el cubo, la pirámide y el prisma; también pueden ser cuerpos redondos, como la esfera, el cono y el cilindro. Los elementos que los componen son las caras, las aristas y los vértices. Las caras de los cuerpos geométricos son figuras planas.

Las pirámides de Egipto fueron construidas con forma de pirámide cuadrangular porque simbolizaban los rayos del Sol.

ELEMENTOS GEOMÉTRICOS

El punto, la recta, el rayo y el segmento son elementos geométricos. El punto indica una posición, el rayo posee un origen y se extiende hacia el infinito, el segmento tiene un principio y un final, y la recta es una sucesión de puntos que siguen una misma dirección. Por otro lado, dos rectas pueden ser paralelas cuando no se cortan en ningún punto; perpendiculares cuando al cortarse forman cuatro ángulos rectos y oblicuas cuando al cortarse no forman ángulos rectos.

Los cables de electricidad representan rectas paralelas. Al verlos dan la ilusión de tres rectas que no se tocan entre sí.

ángulos

El ángulo es una porción comprendida entre dos lados con un origen en común llamado vértice. Según sus medidas el ángulo puede ser convexo, nulo, agudo, recto, obtuso, cóncavo, llano y completo. Según su posición existen ángulos adyacentes, consecutivos y opuestos por el vértice. Para estimar la medida de un ángulo es preferible usar medidas de referencia que ya conocemos, como ángulos de 45° y 90°.

Las escuadras son instrumentas de medidas que también nos ayudan a estimar ángulos, por ejemplo, esta escuadra tiene un ángulo recto (90 grados) y dos ángulos de 45 grados.

perímetro

El perímetro es el contorno de una figura. Para averiguar el perímetro de polígonos regulares multiplicamos la cantidad de lados por la longitud del lado. En cambio, para polígonos no regulares el perímetro lo calculamos al sumar todos los lados de la figura. Conocer cuánto mide el perímetro de una figura te ayudará a saber cuánto material se utilizó para alambrar una cancha de fútbol y en otros múltiples usos.

A lo largo de la historia los perímetros de muchos castillos fueron amurallados para defender el territorio.

transformaciones isométricas

Una transformación isométrica es el cambio de posición que sufre una figura. Estas transformaciones pueden ser por rotación, por traslación o por reflexión. La rotación se refiere al giro alrededor de un punto fijo; la traslación consiste en mover todos los puntos de una figura en la misma dirección, sentido y distancia; y la reflexión no es más que el reflejo de la figura respecto de un eje de simetría. Estas transformaciones no cambian ni la forma ni el tamaño de las figuras.

El planeta Tierra presenta varios movimientos, dos de ellos son la traslación y la rotación.

CAPÍTULO 5 / TEMA 4

Sistemas de referencia

Son convencionalismos adoptados por el ser humano para medir la posición y otras magnitudes físicas. Se usan para hallar cuerpos celestes en el espacio y son la base para determinar nuestra ubicación en el planeta. También permiten establecer comparaciones y transformaciones entre las figuras representadas.

Ejes de coordenadas

El sistema de coordenadas cartesianas es uno de los sistemas de referencias usados para ubicar puntos en el espacio. En este caso específicamente se explicarán estas coordenadas orientadas al plano, es decir, en dos dimensiones.

El plano donde ubicamos los puntos se denomina plano cartesiano y está formado por los siguientes elementos:

  • Eje X: es también denominado eje de las abscisas, y se encuentra ubicado dentro del plano en forma horizontal.
  • Eje Y: es conocido también como eje de las ordenadas y está ubicado en sentido vertical dentro del plano.
  • Origen: es el punto de intersección entre los ejes de coordenadas X e Y.

 

Los ejes de coordenadas permiten ubicar puntos, gráficos o figuras dentro del plano cartesiano. Al tratarse de dos ejes: el de las abscisas o eje X y el de las ordenadas o eje Y, se requieren de dos coordenadas para ubicar un punto, es decir, un punto está definido dentro del plano si, y solo si, se conocen sus coordenadas en el eje X y en el eje Y.

 

¿Sabías qué?
El nombre de las coordenadas cartesianas proviene de la persona que las empleó por primera vez: René Descartes.

VER INFOGRAFÍA

¿Cómo graficar un punto en el plano cartesiano?

Un punto está definido por un par de números que hacen referencia a su posición respecto al eje X y al eje Y. Estos puntos son denominados coordenadas cartesianas y permiten graficarlo.

Para hacerlo, dividimos los ejes en segmentos con la misma longitud y a cada uno le asignamos el valor de un número entero. A la derecha del origen, escribimos los números de menor a mayor, esos serán los valores del eje X. Arriba del origen escribimos los números que le siguen al cero de menor a mayor, esos serán los valores del eje Y:

¿Sabías qué?
Los números negativos se representan a la izquierda del origen (eje X) y debajo del origen (eje Y).

Para ubicar un punto en el plano necesitamos las coordenadas de cada eje, que de ahora en adelante llamaremos coordenada en X y coordenada en Y para hacer mención a cuál eje se refieren. La coordenada X determina cuán a la derecha del origen está ubicado el punto; mientras que la coordenada Y, cuán arriba del origen está el punto.

La manera más frecuente de representar un punto es a través de paréntesis, y dentro indicamos la coordenada X y la coordenada Y, separadas por una coma:

\left ( Coordenada \, X,\, Coordenada\, Y \right )

El punto desde dónde se empieza a contar es en el origen porque se encuentra en la coordenada (0,0) lo que quiere decir que está a 0 posiciones de la derecha y a 0 posiciones hacia arriba.

Por ejemplo:

El punto A (3,2) se encuentra a tres posiciones a la derecha y a dos posiciones hacia arriba. Si lo queremos graficar, cada coordenada debe estar representada en el respectivo eje y el punto de intersección de ambas sería el punto A:

Cuando algunas de las coordenadas del punto sea igual a cero, significa que el punto se encuentra sobre el eje al cual corresponde la coordenada diferente de cero. Por ejemplo, el punto B (0,3) indica que se movió cero posiciones a la derecha y tres posiciones hacia arriba, por lo tanto se ubica sobre el eje Y que es el que tiene la coordenada diferente de cero:

Ejes de simetrías

La simetría es una relación proporcionada entre las partes que componen un todo. Así, por ejemplo, decimos que una imagen es simétrica cuando su forma no cambia si es girada o volteada. Para que exista simetría entre dos objetos, ambos deben ser del mismo tamaño y de la misma forma y uno debe estar en una orientación diferente a la del primero.

La forma de una mariposa es un ejemplo de simetría: si trazamos una línea imaginaria de forma vertical en el centro de la mariposa (eje de simetría), obtendríamos dos imágenes iguales pero con diferente orientación. Nuestros cuerpos también son simétricos: esto se debe a que contamos con la misma cantidad de miembros a cada lado.

El eje de simetría es una línea imaginaria que divide al dibujo en dos partes idénticas pero con diferente orientación. Los ejes de simetría pueden ser horizontales, verticales o inclinados.

 

De acuerdo a la figura geométrica, algunas pueden presentar uno o más ejes de simetría. Otras, en cambio, no presentan ninguno. Cuando una figura no es simétrica se denomina asimétrica.

Por ejemplo, no todos los triángulos tienen ejes de simetría, todo depende de su tipo. Si son equiláteros tienen tres ejes de simetría; si son isósceles tienen dos ejes de simetría, y si son escalenos no tienen ningún eje de simetría.

Transformaciones isométricas

Las transformaciones isométricas son los cambios de posición u orientación que experimenta una figura sin alterar su forma.

Traslación

Es un tipo de transformación isométrica donde se mueven todos los puntos de una figura en una misma dirección, sentido y longitud.

Rotación

También es conocida como giro. Es una transformación isométrica en la que la figura se mueve alrededor de un punto sin alterar su forma. El movimiento es determinado por un ángulo de rotación y puede ser en sentido de las agujas del reloj o en sentido contrario.

La simetría como transformación isométrica

La simetría entre dos objetos es un tipo de transformación isométrica porque a cada punto del objeto o figura se lo asocia a otro conocido como imagen. Cada punto está a una misma distancia del otro respecto al eje de simetría. Este tipo de transformación también se conoce como reflexión.

 

¡A practicar!

1. ¿Cuál es la posición de estos números?

a)

Solución
C (4,3)

b) 

Solución
D (1,2)

c) 

Solución
E (5,0)

d) 

Solución
F (4,5)

e) 

Solución
G (3,3)

2. ¿A cuál de los siguientes puntos corresponde la coordenada (6,3)?

Solución

Corresponde al punto K (6,3).

3. ¿Cuál de estas figuras no es simétrica?

a) 

b)

c)

d)

Solución
d) No es simétrica porque no tiene ningún eje de simetría.

4. ¿A qué tipo de transformación isométrica corresponde la gráfica?

Solución
Traslación.

RECURSOS PARA DOCENTES

Artículo “Simetrías”

Este artículo explica qué es una simetría, sus tipos y su relación con los ejes. También incluye algunos ejemplos de simetría.

VER

Artículo “Plano cartesiano”

Este artículo explica qué es el plano cartesiano, sus características y divisiones por cuadrante. También incluye ejemplos sobre como ubicar puntos en este sistema.

VER

 

CAPÍTULO 4 / TEMA 1

uBICACIÓN ESPACIAL

La ubicación espacial nos sirve para conocer dónde estamos con respecto a otras personas, objetos o lugares; de modo que podamos señalar con facilidad nuestra ubicación. Esta nos permite desarrollar el sentido de la orientación y nos ayuda a no perdernos, por ejemplo, cuando vamos a la escuela.

relaciones espaciales

Para decir dónde nos encontramos podemos utilizar términos como “arriba”, “abajo”, “delante”, “detrás”, “al lado”, “a la izquierda” y “a la derecha”. Si usamos este tipo de expresiones para comunicar nuestra ubicación o la de un objeto será mucho más fácil que nos encuentren a nosotros o al objeto.

Observa a los niños en el parque, ¿qué posición tienen respecto a los objetos?

– María está arriba del tobogán.   – Laura está abajo de la cometa.                                       – La pelota está delante de los niños.                                         – El tobogán está detrás del arenero.                                       – El subibaja está a la derecha del arenero.                               – El tobogán está a la izquierda de las hamacas.                           – Sofía está al lado del tobogán.                                     – La arena está adentro del balde.                                         – Juan está detrás de la hamaca.

ubicación en un plano

Para ubicar un punto en el plano nos podemos mover en cuatro direcciones: arriba (↑), abajo (↓), a la izquierda (←) y a la derecha (→). Veamos cómo funciona:

Un grupo de piratas a bordo de un barco recorre los océanos en busca de tesoros. Necesitan orientarse con precisión para llegar a la tierra de las joyas. El capitán del barco marcó el recorrido en su mapa. Para ir del punto A al punto B se movió de la siguiente manera: tres (3) lugares hacia abajo y un (1) lugar a la izquierda.

¡A practicar!

Observa el mapa anterior y responde las preguntas:

  • ¿Cuál es el recorrido desde el punto C al punto D?
    Solución
    2 lugares hacia abajo y 4 lugares a la izquierda.
  • ¿Cuál es el recorrido desde el punto E al punto F?
    Solución
    3 lugares hacia abajo y 2 lugares a la derecha.
  • ¿Y del punto G al punto H?
    Solución
    3 lugares hacia arriba y 1 lugar a la derecha.
  • Si quisiera volver del punto D al punto al C, ¿cuál sería el recorrido?
    Solución
    4 lugares a la derecha y 2 lugares hacia arriba.
  • ¿Y para volver del punto H al G?
    Solución
    1 lugar a la izquierda y 3 lugares hacia abajo.
  • ¿El recorrido para volver del punto F al punto E es: 2 lugares a la derecha y 3 lugares hacia arriba?
    Solución
    No. El recorrido es: 2 lugares a la izquierda y 3 lugares hacia arriba.

¿Qué son las coordenadas?

Son las líneas horizontales y verticales que en conjunto dan conocer la posición de un punto en el plano. Estas líneas también se llaman ejes y un dato de cada una forma una coordenada. Observa cómo se escriben:

Si queremos ubicar el punto C en este plano seguimos los siguientes pasos:

  1. Nos movemos 3 lugares hacia la derecha (→) en la línea horizontal (eje x ) a partir del 0.
  2. Nos movemos 6 lugares hacia arriba (↑) en la línea vertical (eje y).

Por lo tanto, las coordenadas del punto C se escriben: (3,6).

¿Sabías qué?

Las coordenadas siempre se escriben con el mismo orden: primero el eje x (horizontal) y luego el eje y (vertical).

¡A practicar!

  • ¿En qué coordenadas está el punto E?
    Solución
    (4,1)
  • ¿En qué coordenadas está el punto B?
    Solución
    (1,4)
  • ¿El punto D está en las coordenadas (1,0)?
    Solución
    No. El punto D está en las coordenadas (0,1).

¡Otros tipos de coordenadas!

Hallar puntos en un plano es una actividad recurrente en diversas ciencias y profesiones. Por ejemplo, los astrónomos usan este sistema para conocer la posición de las estrellas, planetas y otros cuerpos celestes; de la misma forma, los marinos lo emplean para conocer las coordenadas geográficas y así llegar de un punto a otro del planeta, también lo usan para comunicarse con los diferentes puertos.

Con los avances tecnológicos, las coordenadas de cualquier lugar son más fáciles de conocer, por eso, a través de aplicaciones en celulares, tabletas y computadoras miles de personas se localizan en todo el mundo.

¿Sabías qué?
René Descartes utilizó por primera vez los ejes de coordenadas. Los usó para saber las distintas posiciones en las que se iba a posar una mosca en el techo de la casa en la que vivía.

ubicación en una cuadrícula

Una cuadrícula puede estar formada por números o por letras y nos permite encontrar elementos que están en ella por medio de coordenadas.

La siguiente cuadrícula representa un barrio. En las coordenadas (D,4) está la casa.

¡A practicar!

Encuentra las coordenadas de los otros lugares del barrio.

  • ¿En qué coordenadas está el parque?
    Solución
    (B,3)
  • ¿En qué coordenadas está la escuela?
    Solución
    (C,2)
  • ¿En qué coordenadas está el bombero?
    Solución
    (A,1)

¡Es tu turno!

Ubica en qué coordenadas te gustaría que hubiese un kiosco.

¡Juega la batalla naval con familia y amigos!

Con una cuadrícula como la que acabamos de conocer, pero con más filas y columnas, puedes jugar un juego llamado la batalla naval o hundir la flota. El objetivo del juego es hundir el barco del jugador contrario.

Cada jugador tendrá diez barcos en total: un barco que ocupe cuatro cuadrados, dos barcos que ocupen tres cuadrados, tres barcos que ocupen dos cuadrados y cuatro barcos que ocupen un cuadrado. Una vez que inicie el juego, cada jugador dará tres coordenadas como las que aprendimos anteriormente, por ejemplo (A,2), (C,5) y (E,7). Si en alguna de ellas no está el barco del jugador contrario este dirá “agua” y si está dirá “barco hundido”.

Ganará el jugador que hunda todos los barcos contrarios.

¡Practiquemos!

Observa con atención la siguiente cuadrícula llena de frutas y verduras. Responde las preguntas.

  1. ¿En qué posición se encuentran las bananas con respecto a los kiwis?
    Solución
    Las bananas se encuentran a la izquierda de los kiwis.
  2. Las uvas se encuentran ________ del morrón. 
    Solución
    arriba
  3. ¿En qué coordenadas está la sandía?
    Solución
    (C,1)
  4. ¿En qué posición se encuentra el durazno con respecto a los ajos?
    Solución
    El durazno se encuentra a la derecha de los ajos.
  5. El coco se encuentra ________ de la sandía.
    Solución
    abajo
  6. ¿En qué coordenadas están las uvas?
    Solución
    (A,2)
  7. ¿En qué posición se encuentra el tomate con respecto a las bananas?
    Solución
    El tomate se encuentra arriba de las bananas.
  8. Las frutillas se encuentran a la ________ del durazno.
    Solución
    derecha
  9. ¿En qué coordenadas están las bananas?
    Solución
    (B,3)
  10. ¿En qué coordenadas están las frutillas?
    Solución
    (C,4)

RECURSOS PARA DOCENTES

Artículo “Plano Cartesiano”

Este recurso le permitirá tener un conocimiento más amplio sobre los planos cartesianos: plano formado por dos rectas numéricas perpendiculares entre sí.

VER

Artículo “Ejes cartesianos”

Con este artículo podrá profundizar sobre el uso de los ejes cartesianos en la ubicación de puntos en el plano.

VER