CAPÍTULO 1 / TEMA 1

LECTURA Y CONTEO

LA NECESIDAD DE CONTAR ES CASI TAN ANTIGUA COMO LA EXISTENCIA DE LOS HUMANOS EN LA TIERRA. EL CONTEO Y LOS NÚMEROS SURGIERON POR LA NECESIDAD DEL HOMBRE DE CONTROLAR LA CANTIDAD DE ELEMENTOS QUE ERAN DE SU PROPIEDAD, COMO LOS ALIMENTOS, LOS ANIMALES O LAS TIERRAS.

NO SABEMOS CON EXACTITUD EL ORIGEN DE LOS NÚMEROS, PERO SÍ SABEMOS QUE NO HAN SIDO COMO LOS CONOCEMOS HOY DÍA. CONTAR CUÁNTAS PERSONAS HABÍA EN UNA CUEVA, EXPRESAR A QUÉ DISTANCIA ESTABA EL RÍO O CUÁNTAS FRUTAS SE RECOLECTARON FUERON ALGUNAS DE LAS INQUIETUDES DEL HOMBRE PRIMITIVO Y LA RAZÓN POR LA EMPEZÓ A BUSCAR MÉTODOS PARA EXPRESAR CANTIDADES.

Escritura y lectura de números

NUESTRO SISTEMA DE NUMERACIÓN ES DECIMAL POSICIONAL.

  • ES DECIMAL PORQUE SOLO TIENE DIEZ CIFRAS. CADA CIFRA SE EXPRESA CON UN SÍMBOLO:

0: CERO

1: UNO

2: DOS

3: TRES

4: CUATRO

5: CINCO

6: SEIS

7: SIETE

8: OCHO

9: NUEVE

  • ES POSICIONAL PORQUE CADA CIFRA TIENE UN VALOR DIFERENTE SEGÚN SU POSICIÓN.

POR EJEMPLO, EN EL NÚMERO 111 CADA CIFRA TIENE UNA VALOR DISTINTO. OBSERVA:

  • 1 UNIDAD ES IGUAL A 1 UNIDAD.
  • 1 DECENA ES IGUAL A 10 UNIDADES.
  • 1 CENTENA ES IGUAL A 100 UNIDADES.

 

¿QUÉ ES EL ÁBACO?

EL ÁBACO ES UN INSTRUMENTO DIDÁCTICO ELABORADO EN MADERA QUE SE UTILIZA PARA CONTAR O PARA REALIZAR SUMAS O RESTAS. POR LO GENERAL TIENE DIEZ TIRAS CON ESFERAS DE COLORES QUE SE MUEVEN DE UN LADO A OTRO. VARIAS CULTURAS LO CONSIDERAN UNA HERRAMIENTA DE CÁLCULO UNIVERSAL. ES UN RECURSO MUY DIVERTIDO, ÚTIL Y FÁCIL DE USAR.

¿CÓMO LEER Y ESCRIBIR NÚMEROS DE DOS CIFRAS?

AL TENER EN CUENTA LAS UNIDADES, ES IMPORTANTE COMPRENDER LA COMPOSICIÓN DE LAS DECENAS EXACTAS. ESTAS ESTÁN FORMADAS POR LAS CIFRAS BÁSICAS SEGUIDAS DE UN CERO. SE ESCRIBEN ASÍ:

10: DIEZ

20: VEINTE

30: TREINTA

40: CUARENTA

50: CINCUENTA

60: SESENTA

70: SETENTA

80: OCHENTA

90: NOVENTA

LOS NÚMEROS DEL 0 AL 99

OBSERVA ESTA CUADRÍCULA. LAS UNIDADES ESTÁN CON COLOR ROJO Y LAS DECENAS CON COLOR AZUL.

¿TE ANIMAS A COMPLETARLA?

COMO VES, LAS DECENAS SE MANTIENEN IGUALES Y DE MANERA ORDENADA SE MODIFICA LA UNIDAD.

SI QUEREMOS ESCRIBIR O LEER LOS NÚMEROS DEL 11 AL 19 Y DEL 21 AL 29, ES IMPORTANTE SABER QUE SE NOMBRAN CON UNA SOLA PALABRA. OBSERVA:

11: ONCE

12: DOCE

13: TRECE

14: CATORCE

15: QUINCE

16: DIECISÉIS

17: DIECISIETE

18: DIECIOCHO

19: DIECINUEVE

21: VEINTIUNO

22: VEINTIDÓS

23: VEINTITRÉS

24: VEINTICUATRO

25: VEINTICINCO

26: VEINTISÉIS

27: VEINTISIETE

28: VEINTIOCHO

29: VEINTINUEVE

 

LOS NÚMEROS DEL 31 EN ADELANTE SE NOMBRAN CON TRES PALABRAS, EXCEPTO LAS DECENAS EXACTAS. PARA LEERLOS SIGUE ESTOS PASOS:

  1. LEE EL NOMBRE DE LA DECENA EXACTA SEGUIDA DE LA PALABRA “Y”.
  2. LEE EL NOMBRE DE LA UNIDAD.

 

POR EJEMPLO:

  • ¿CÓMO SE LEE EL NÚMERO 34?

30 SE LEE “TREINTA”.

4 SE LEE “CUATRO”.

POR LO TANTO, EL NÚMERO 34 SE LEE “TREINTA Y CUATRO”.

 

  • ¿CÓMO SE LEE EL NÚMERO 46?

40 SE LEE “CUARENTA”.

6 SE LEE “SEIS”.

POR LO TANTO, EL NÚMERO 46 SE LEE “CUARENTA Y SEIS”.

 

¡A PRACTICAR!

¿CÓMO SE LEEN ESTOS NÚMEROS?

  • 55
SOLUCIÓN

50 SE LEE “CINCUENTA”.

5 SE LEE “CINCO”.

EL NÚMERO 55 SE LEE “CINCUENTA Y CINCO”.

  • 63
SOLUCIÓN

60 SE LEE “SESENTA”.

3 SE LEE “TRES”.

EL NÚMERO 63 SE LEE “SESENTA Y TRES”.

 

NUESTRO SISTEMA NUMÉRICO ESTÁ CONFORMADO POR SOLO DIEZ CIFRAS: 0, 1, 2, 3, 4, 5, 6, 7, 8 Y 9. CON ESTAS PODEMOS CREAR INFINIDAD DE NÚMEROS. LOS NÚMEROS CON UNA CIFRA SE DENOMINAN UNIDADES; CUANDO TIENEN DOS CIFRAS, A LA PRIMERA DE IZQUIERDA A DERECHA SE LA LLAMA DECENA; Y CUANDO TIENEN TRES CIFRAS, A LA PRIMERA DE IZQUIERDA A DERECHA SE LA LLAMA CENTENA.

¿CÓMO LEER Y ESCRIBIR NÚMEROS DE TRES CIFRAS?

AQUELLOS NÚMEROS CON TRES CIFRAS ESTÁN FORMADOS POR UNIDADES, DECENAS Y CENTENAS. LAS CENTENAS EXACTAS SE COMPONEN DE LAS UNIDADES BÁSICAS SEGUIDAS DE DOS CERO. SE ESCRIBEN ASÍ:

100: CIEN

200: DOSCIENTOS

300: TRESCIENTOS

400: CUATROCIENTOS

500: QUINIENTOS

600: SEISCIENTOS

700: SETECIENTOS

800: OCHOCIENTOS

900: NOVECIENTOS

 

PARA ESCRIBIR Y LEER NÚMEROS DE TRES CIFRAS SE SIGUEN LOS SIGUIENTES PASOS:

  1. LEE EL NOMBRE DE LA CENTENA EXACTA.
  2. LEE EL NOMBRE DE LA DECENA EXACTA SEGUIDA DE LA PALABRA “Y”.
  3. LEE EL NOMBRE DE LA UNIDAD.

 

POR EJEMPLO:

  • ¿CÓMO SE LEE EL NÚMERO 548?

500 SE LEE “QUINIENTOS”.

40 SE LEE “CUARENTA”.

8 SE LEE “OCHO”.

POR LO TANTO, EL NÚMERO 548 SE LEE “QUINIENTOS CUARENTA Y OCHO”.

 

  • ¿CÓMO SE LEE EL NÚMERO 612?

600 SE LEE “SEISCIENTOS”.

12 SE LEE “DOCE”.

POR LO TANTO, 612 SE LEE “SEISCIENTOS DOCE”.

 

¡A PRACTICAR!

¿CÓMO SE LEEN ESTOS NÚMEROS?

  • 768
SOLUCIÓN

700 SE LEE “SETECIENTOS”.

60 SE LEE “SESENTA”.

8 SE LEE “OCHO”.

EL NÚMERO 768 SE LEE “SETECIENTOS SESENTA Y OCHO”.

  • 842
SOLUCIÓN

800 SE LEE “OCHOCIENTOS”.

40 SE LEE “CUARENTA”.

2 SE LEE “DOS”.

EL NÚMERO 842 SE LEE “OCHOCIENTOS CUARENTA Y DOS”.

NÚMEROS PARES

LOS NÚMEROS PARES SON AQUELLOS QUE TERMINAN EN 0, 2, 4, 6 Y 8.

¿QUÉ PASA SI TENEMOS NÚMEROS MÁS GRANDES, COMO POR EJEMPLO UN NÚMERO DE DOS O TRES CIFRAS? EN ESE CASO, SOLO DEBEMOS TENER EN CUENTA LA UNIDAD.

58

EL NÚMERO 58 ES PAR PORQUE TERMINA EN 8.

¿SABIAS QUÉ?
PARA DARTE CUENTA QUÉ NÚMEROS SON PARES TAMBIÉN PUEDES CONTAR DE DOS EN DOS. POR EJEMPLO: 12, 14, 16, 18…

EJEMPLOS:

  • 150

EL NÚMERO 150 ES PAR PORQUE TERMINA EN 0.

  • 476

EL NÚMERO 476 ES PAR PORQUE TERMINA EN 6.

NÚMEROS IMPARES

LOS NÚMEROS IMPARES SON AQUELLOS QUE TERMINAN EN 1, 3, 5, 7 Y 9.

PARA DARNOS CUENTA DE ESTO, SI TENEMOS UN NÚMERO DE DOS CIFRAS, SOLO DEBEMOS CONSIDERAR LA UNIDAD.

65

EL NÚMERO 65 ES IMPAR PORQUE TERMINA EN 5.

 

EJEMPLOS:

  • 261

EL NÚMERO 261 ES UN NÚMERO IMPAR PORQUE TERMINA EN 1.

  • 969

EL NÚMERO 969 ES UN NÚMERO IMPAR PORQUE TERMINA EN 9.

 

LOS NÚMEROS PARES E IMPARES

SI VOLVEMOS A LA CUADRÍCULA, LOS NÚMEROS PARES Y LOS NÚMEROS IMPARES COMPARTEN LA MISMA COLUMNA.

COMO PODRÁS VER, EN LAS COLUMNAS CELESTES ESTÁN LOS NÚMEROS PARES QUE TERMINAN EN 0, 2, 4, 6 Y 8 Y EN LAS COLUMNAS AMARILLAS ESTÁN LOS NÚMEROS IMPARES QUE TERMINAN EN 1, 3, 5, 7 Y 9.

EJERCICIOS

1. PIENSA Y RESPONDE.

  • ¿CUÁLES SON LOS NÚMEROS PARES MAYORES QUE 15 Y MENORES QUE 20?
SOLUCIÓN
16 Y 18.
  • ¿CUÁLES SON LOS NÚMEROS IMPARES MENORES QUE 100 PERO MAYORES QUE 90?
SOLUCIÓN
91, 93, 95, 97 Y 99.
  • ¿CUÁLES SON LOS NÚMEROS PARES MAYORES QUE 580 Y MENORES QUE 585?
SOLUCIÓN
582 Y 584.
  • ¿CUÁLES SON LOS NÚMEROS IMPARES MAYORES QUE 440 Y MENORES QUE 445?
SOLUCIÓN
441 Y 443.

2. ESCRIBE LOS SIGUIENTES NÚMEROS EN LETRA.

  • 17
SOLUCIÓN
DIECISIETE.
  • 19
SOLUCIÓN
DIECINUEVE.
  • 24
SOLUCIÓN
VEINTICUATRO.
  • 41
SOLUCIÓN
CUARENTA Y UNO.
  • 57
SOLUCIÓN
CINCUENTA Y SIETE.
  • 269
SOLUCIÓN
DOSCIENTOS SESENTA Y NUEVE.
  • 577
SOLUCIÓN
SETECIENTOS SETENTA Y SIETE.
  • 782
SOLUCIÓN
SETECIENTOS OCHENTA Y DOS.
  • 998
SOLUCIÓN
NOVECIENTOS NOVENTA Y OCHO.

3. ¿ES UN NÚMERO PAR O IMPAR? COMPLETA.

  • 21 ES UN NÚMERO ____.
SOLUCIÓN
IMPAR
  • 45 ES UN NÚMERO ____.
SOLUCIÓN
IMPAR
  • 56 ES UN NÚMERO ____.
SOLUCIÓN
PAR
  • 484 ES UN NÚMERO ____.
SOLUCIÓN
PAR
  • 499 ES UN NÚMERO ____.
SOLUCIÓN
IMPAR
  • 687 ES UN NÚMERO ____.
SOLUCIÓN
IMPAR
  • 225 ES UN NÚMERO ____.
SOLUCIÓN
IMPAR
  • 738 ES UN NÚMERO ____.
SOLUCIÓN
PAR
RECURSOS PARA DOCENTES

Artículo destacado “Situaciones problemáticas”

Este artículo ayudará a afianzar el conteo de números y ejercitar con situaciones problemáticas, números ya abordados.

VER

CAPÍTULO 3 / TEMA 1

¿Qué son las fracciones?

Las fracciones, a diferencia de los números enteros, permiten expresar proporciones de algo. Son útiles en la vida cotidiana y se usan con más frecuencia de lo que piensas. Frases como “un cuarto de kilo” o “un tercio de taza” son algunos ejemplos. En matemática son tan relevantes que forman su propio conjunto de números: los racionales. 

Partes de una fracción

Una fracción resulta de dividir un número entero en partes iguales. En matemática es representada por dos números enteros ,denominados términos, que están separados por una línea horizontal, denominada raya de división o raya fraccionaria.

Los números que componen a una fracción se denominan numerador y denominador. El primero está ubicado en la parte superior de la raya de división y el segundo está en la parte inferior de esta. El numerador indica el número de partes que se han tomado de un entero, mientras que el denominador representa el número de partes en que se ha dividido el entero.

 

Podemos expresar las fracciones con una línea divisoria horizontal o diagonal. En este sentido, a la fracción \frac{1}{2} también la podríamos expresar como 1/2.

Para entender el significado de la fracción anterior imaginemos que una pizza representa el “todo”, es decir, sería el entero que queremos dividir, el denominador de una fracción representa el número de partes que se ha dividido el entero, lo que nos permite concluir que la pizza se ha dividido en dos parte. Por otro lado, el numerador representa el número de partes que se ha tomado, en este ejemplo es 1, lo que quiere decir que 1/2 de pizza sería una de las dos porciones de la pizza.

La expresión 1/2 de pizza sería lo mismo que dividir la pizza en dos partes iguales y tomar una de esas partes. En la cocina se emplean fracciones para hablar de unidades de medición como tazas de ingrediente, por ejemplo: 1/2 de taza de harina, 1/3 de taza de agua, etc. Recuerda que el denominador indica cuántas veces se ha dividido algo en partes iguales (una taza, un litro, una naranja…).
¿Sabías qué?
El denominador de una fracción nunca es igual a cero (0).

VER INFOGRAFÍA

Lectura de fracciones

Como ya sabemos, el denominador indica en cuántas partes se dividió un número entero. Cada una de esas partes recibe un nombre, por ejemplo, si dividimos en dos son medios, si dividimos en tres son tercios, si dividimos en cuatro son cuartos y así hasta el número once, a partir de ese número añadimos el sufijo –avos al número: onceavos, doceavos, treceavos y así sucesivamente.

Esta tabla muestra el nombre de cada una de las partes en las que se puede dividir un entero hasta el cien:

Partes que se divide del entero Nombre
2 Medios
3 Tercios
4 Cuartos
5 Quintos
6 Sextos
7 Séptimos
8 Octavos
9 Novenos
10 Décimos
11 Onceavos
12 Doceavos
13 Treceavos
14 Catorceavos
15 Quinceavos
16 Dieciseisavos
17 Diecisieteavos
18 Dieciochoavos
19 Diecinueveavos
20 Veinteavos
30 Treintavos
40 Cuarentavos
50 Cincuentavos
60 Sesentavos
70 Setentavos
80 Ochentavos
90 Noventavos
100 Centavo

Para leer una fracción primero indicamos el número del numerador y luego las partes en las que está dividido el entero de acuerdo a la tabla anterior. Por ejemplo, \frac{}{}\frac{1}{2} se lee como “un medio”. Observemos otros ejemplos:

a) \frac{2}{3} se lee “dos tercios”.

b) \frac{6}{8} se lee “seis octavos”.

c) \frac{15}{30} se lee “quince treintavos”.

d) \frac{12}{23} se lee “doce veintitresavos”.

e) \frac{32}{40} se lee “treinta y dos cuarentavos”.

f) \frac{97}{100} se lee “noventa y siete centavos”.

¿Sabías qué?
Los centavos también son llamados céntimos.

Origen muy antiguo

Las antiguas civilizaciones como la babilónica, la egipcia y la griega usaban las fracciones en sus cálculos. Cada una tenía una manera particular de expresarlas y no fue sino hasta el siglo XIII cuando el matemático italiano Leonardo Fibonacci difundió el uso de la línea horizontal, símbolo que se emplea en la actualidad para separar el numerador y denominador en una fracción.

Relación de las fracciones y la división

Las fracciones representan porciones de un todo, es por ello que de alguna manera están estrechamente relacionadas con la división. De hecho, toda fracción es una división sin resolver, es decir; \frac{a}{b} es equivalente a a\div b. Por lo tanto, \frac{1}{2} es igual a 1\div 2.

En algunas ocasiones podemos expresar operaciones en forma de fracción, pero también podemos hacerlo como división y resolver la misma.

¿Sabías qué?
Existen fracciones que están formadas por una parte entera y una fraccionaria, a ellas se las conoce como fracciones mixtas.

Aplicación en la vida cotidiana de las fracciones

El ser humano siempre ha tenido la necesidad de contar, medir y repartir; razón por la que inventó los números. Las fracciones no están lejos de esta realidad y son usadas para entender porciones de cosas.

Están presentes en recetas de cocinas, en mediciones de telas y de volúmenes de productos (como en las gaseosas de medio litro o 1/2 L). Hay autos donde los indicadores del nivel de gasolina son expresados en fracciones para saber si el tanque está lleno, tiene la mitad o un cuarto de su capacidada.

Incluso, están presentes en algunas monedas como el dólar, donde existe una denominación llamada “centavo de dólar”, es decir, si el valor de un dólar lo pudiéramos dividir en 100 partes iguales, una de esas partes sería el centavo.

En resumen, las fracciones permiten expresar cantidades cotidianas de manera más sencilla.

Además de sus múltiples aplicaciones en los cálculos matemáticos, las fracciones se emplean en situaciones cotidianas de la vida como lo son las mediciones. También se usan en gráficos que permiten comprender datos de manera más simple. Muchos países del mundo las emplean en sus monedas y ciertos dispositivos usan escalas expresadas en fracciones.
¡A practicar!

1. ¿Cómo se leen las siguientes fracciones?

a) \frac{5}{3}

Solución
Cinco tercios.

b) \frac{1}{100}

Solución
Un centavo.

c) \frac{23}{40}

Solución
Veintitrés cuarentavos.

d) \frac{3}{2}

Solución
Tres medios.

e) \frac{2}{5}

Solución
Dos quintos.

f) \frac{12}{11}

Solución
Doce onceavos.

g) \frac{7}{10}

Solución
Siete décimos.

h) \frac{11}{6}

Solución
Once sextos.

i) \frac{13}{4}

Solución
Trece cuartos.

j) \frac{58}{7}

Solución
Cincuenta y ocho séptimos.

2. ¿Cómo se escriben en número estas fracciones?

a) Nueve décimos.

Solución
\frac{9}{10}

b) Catorce novenos.

Solución
\frac{14}{9}

c) Setenta y tres centavos.

Solución
\frac{73}{100}

d) Ochenta y ocho novenos.

Solución
\frac{88}{9}

RECURSOS PARA DOCENTES

Video “Fracciones decimales”

Este video ayuda a entender la relación entre las fracciones y los números decimales así como la manera en transformar una fracción en decimal.

VER

Artículo “La clasificación de los números”

El presente artículo permite indagar más sobre los diferentes tipos de números y sus características principales.

VER

Enciclopedia “Matemáticas Primaria”

En el presente tomo de la Enciclopedia Matemáticas Primaria tendrás acceso a información más detallada sobre las fracciones, así como la posibilidad de obtener diferentes recursos educativos sobre este tema.

VER