CAPÍTULO 3 / TEMA 6 (REVISIÓN)

FRACCIONES Y PORCENTAJES | REVISIÓN

LAS FRACCIONES Y SUS USOS

En toda fracción podemos distinguir dos partes principales: el numerador y el denominador, ambos se encuentran separados por una línea horizontal. El denominador indica en cuántas partes se divide la unidad y el numerador señala cuántas de esas partes se han de tomar. Las fracciones se pueden clasificar en propias, impropias y aparentes. Las fracciones propias son aquellas en las que el numerador es menor que el denominador y representan un número menor a uno. Las fracciones impropias son la que tienen el numerador mayor que el denominador y representan a un número mayor a uno. Las fracciones aparentes son aquellas cuyo numerador es múltiplo de su denominador.

Además de la raya horizontal también podemos representar a las fracciones con una raya diagonal “/” o con el símbolo de las divisiones “÷”.

FRACCIONES EQUIVALENTES

Decimos que dos o más fracciones son equivalentes cuando todas ellas representan a la misma cantidad. Las fracciones equivalentes se pueden obtener por medio de dos métodos: amplificación y simplificación. Para obtener fracciones equivalentes por amplificación debemos multiplicar al numerador y al denominador de la fracción por un mismo número, distinto de cero. Para obtenerlas por simplificación, debemos dividir al numerador y al denominador de la fracción por un mismo número, distinto de cero y que sea un divisor común entre ambos. Es importante recordar que las fracciones equivalentes se pueden utilizar para sumar y restar fracciones heterogéneas (que tienen distinto denominador).

Media sandía se puede expresar como 1/2, 2/4, 4/8, 8/16, 16/32… Todas ellas son fracciones equivalentes que indican la mitad de un entero.

OPERACIONES CON FRACCIONES

La suma y resta de fracciones depende del tipo de estas. En las fracciones homogéneas (mismo denominador) se suman o restan los numeradores y se conserva el mismo denominador. En las fracciones heterogéneas (diferente denominador) se debe multiplicar el numerador de la primera fracción por el denominador de la segunda y el resultado se suma o se resta al producto del numerador de la segunda fracción por el denominador de la primera, el número obtenido es el numerador de la fracción resultante; luego se multiplican ambos denominadores y el número obtenido corresponderá al denominador de la fracción resultante. Para la multiplicación se multiplican los numeradores y denominadores de forma lineal. Para la división, se debe multiplicar en forma de cruz: el numerador de la primera fracción por el denominador de la segunda es igual al numerador de la fracción resultante y el numerador de la segunda fracción por el denominador de la primera es igual al denominador de la fracción resultante.

Algunas fracciones se pueden simplificar, es decir, pueden expresarse en fracciones equivalentes más sencillas

FRACCIONES MIXTAS

Una fracción mixta o número mixto es una forma de representar a una cantidad  compuesta por una parte entera y una parte fraccionaria. Para graficarla, dividimos al entero en tantas partes como indique el denominador de la parte fraccionaria. Luego, pintamos tantos enteros (completos) como indique el número entero de la fracción mixta. Por último, dibujamos otro entero y pintamos tantas partes de este como indique el numerador de la fracción mixta. Para transformar una fracción mixta a una fracción convencional, lo que se realiza es sumar la parte entera con la parte fraccionaria. Siempre se debe obtener una fracción impropia.

En este caso la parte entera de la fracción mixta es 2, y la parte fraccionaria es 1/3. Se lee “dos enteros y un tercio”.

PORCENTAJES

Un porcentaje, al igual que una fracción, es una forma de indicar una parte de un todo. Un porcentaje siempre representa a una fracción decimal cuyo denominador es 100. El símbolo que utilizamos para indicar un porcentaje es %. Para calcular el porcentaje de una cantidad conocida se multiplican ambos valores y se divide entre 100. Para convertir cualquier fracción a porcentaje, debemos dividir el numerador con el denominador, y luego multiplicar dicho resultado por cien. Por otro lado, para convertir un porcentaje a fracción, simplemente colocamos el porcentaje en el numerador y 100 como denominador, posteriormente se realiza una simplificación.

Los porcentajes se utilizan para indicar descuentos y recargos. También se utilizan en la estadística y en la economía.

CAPÍTULO 3 / TEMA 5

PORCENTAJES

Los porcentajes son expresiones matemáticas que sirven para relacionar dos cantidades. Se emplean en diferentes situaciones como, por ejemplo, los descuentos. Están estrechamente relacionados con los números fraccionales, porque se emplean para representar una fracciones de denominador igual a 100. 

¿qUÉ ES UN PORCENTAJE?

Un porcentaje, al igual que una fracción, es una forma de indicar una parte de un todo. Los porcentajes se utilizan a diario, por ejemplo, en los siguientes casos:

  • El 30 % de los vuelos proviene de Europa.
  • El 40 % de las personas en la fiesta eran hombres y el 60 % eran mujeres.
  • El 60 % de la población mundial tiene acceso a Internet.

Esto quiere decir que:

  • De cada 100 vuelos, 30 proviene de Europa.
  • De cada 100 personas que había en la fiesta, 40 eran hombres y 60 eran mujeres.
  • De cada 100 personas, 60 tienen acceso a Internet.

Como vemos, el número 100 está presente en todos los casos como referencia. Esto sucede porque el porcentaje representa a una fracción decimal cuyo denominador es 100. Entonces, el número que utilizamos para indicar el porcentaje corresponde al numerador, y el denominador es siempre 100:

  • 20 % = 20/100
  • 60 % = 60/100
  • 33 % = 33/100
Un porcentaje, al igual que una fracción, es una forma de indicar una parte de un todo. Los porcentajes representan una fracción decimal cuyo denominador es 100. Se utiliza frecuentemente en la estadística para distinguir a ciertas porciones del total con respecto a otras. Por ejemplo, en esta imagen vemos un gráfico que divide al total en cuatro partes,  la porción más grande representa el 45 %, mientras que las otras representan el 20 %, el 10 % y el 25 % del total.

Símbolo de porcentaje

El símbolo que utilizamos para indicar un porcentaje es “%” y se lee “por ciento“. Podemos observar algunos ejemplos a continuación:

  • 100 % = “cien por ciento”.
  • 80 % = “ochenta por ciento”.
  • 44 % = “cuarenta y cuatro por ciento”.
  • 30 % = “treinta por ciento”.
El símbolo que utilizamos para indicar un porcentaje es %. Cuando un número está acompañado de dicho símbolo se trata de una expresión de este tipo. Por ejemplo, 100 % se lee “cien por ciento”. Los porcentajes también se utilizan en la economía para indicar los aumentos de precios, el crecimiento de las acciones de una empresa y la inflación de un país.

¿Sabías qué?
El agua constituye el 98 % de un melón, el 80 % de un pez y el 70 % de un ser humano.

Cálculo de porcentaje

Para calcular el porcentaje de una cantidad dada se deben seguir los siguientes pasos:

  1. Multiplicar el porcentaje por la cantidad conocida.
  2. Dividir el resultado obtenido entre cien.
  3. Escribir el resultado final.

Por ejemplo:

1. Calcular el 30 % de  60.

Para calcula cuánto es el 30 % de 60 se deben multiplicar ambos números y luego dividir el resultado entre cien de la siguiente forma:

\frac{30\times 60}{100}=\frac{1.800}{100}=18

En este caso el 30 % de 60 es 18.

2. ¿Cuánto es el 20 % de $ 150?

\frac{20\times 150}{100}=\frac{3.000}{100}=30

El 20 % de $ 150 son $ 30.

¿Cómo determinar qué porcentaje se aplicó?

Hay ocasiones en las que necesitamos calcular cuál es el porcentaje aplicado. Esto es muy útil cuando se va a realizar una compra. Por ejemplo, si un pantalón tiene un precio de $ 120 y el descuento es de $ 12, ¿Cuál es el porcentaje de descuento que se le aplicó?

En este caso se debe multiplicar el descuento por 100 y luego dividir el resultado entre el precio del pantalón que es $ 120:

\frac{12\times 100}{120}=\frac{1.200}{120} = 10\, %

El porcentaje de descuento en este caso fue del 10 %, es decir,  $ 12 representa el 10 % de $ 120.

Relación de porcentaje y fracción

Tanto los porcentajes como las fracciones son formas de representar una parte de un todo. Entonces, podemos convertir un porcentaje en una fracción y viceversa.

Convertir fracción a porcentaje

Para convertir cualquier fracción a porcentaje, debemos dividir el numerador con el denominador, y luego multiplicar dicho resultado por cien. Al número obtenido le agregamos siempre el símbolo de porcentaje (%) para indicar que nos referimos a un porcentaje. Por ejemplo, si convertimos 3/5 en porcentaje tenemos que:

Convertir porcentaje a fracción

En este caso, debemos colocar el porcentaje en el numerador de la fracción y agregar 100 como denominador. Luego, simplificamos hasta obtener una fracción irreducible. Por ejemplo, para convertir 20 % a fracción:

La fracción 20/100 se puede simplificar a 1/5 al dividir tanto al numerador como al denominador entre 5.

Los porcentajes y las fracciones son formas de representar una parte de un total. Entonces, podemos convertir tanto los porcentaje a fracciones como las fracciones a porcentajes. Los porcentajes son muy utilizados en las ofertas, para indicar el descuento sobre el total. Mientras mayor sea el porcentaje, mayor será el descuento.

¡A practicar!

1. ¿Cuánto es el 15 % de 300?

a) 150
b) 45
c) 100
d) 30

SOLUCIÓN
b) \frac{15\times 300}{100}=\frac{4.500}{100}=45

2. Convierte los siguientes porcentajes en fracciones.

a) 25 %
b) 35 %
c) 40 %
d) 90 %

SOLUCIÓN

a) \frac{1}{4}

b) \frac{7}{20}

c) \frac{2}{5}

d) \frac{9}{10}

3. Convierte las siguientes fracciones a porcentaje.

a) \frac{4}{5}

b) \frac{1}{2}

c) \frac{7}{50}

d) \frac{1}{4}

RESPUESTAS

a) 80 %
b) 50 %
c) 14 %
d) 25 %

RECURSOS PARA DOCENTES

Artículo “Porcentajes”

En este artículo se explican las características de los porcentajes y los diferentes métodos para calcularlos, como la regla de tres simple.

VER

Artículo “Porcentaje y proporcionalidad. Descuentos y recargos”

En este artículo se explican algunas aplicaciones de los porcentajes, como los descuentos y las recargas.

VER

 

CAPÍTULO 5 / TEMA 6

Aplicación de la geometría

La geometría se encuentra inmersa dentro de diferentes ciencias y situaciones de la vida. Muchos desarrollos de la actualidad no se habrían logrado sin los aportes de la geometría. La astronomía, la computación y la cartografía son algunos de los muchos campos donde la geometría es empleada. 

Cálculo de área de una superficie

Para el cálculo de superficies usamos las fórmulas de área de las principales figuras geométricas. Las principales fórmulas son las siguientes:

Nombre Figura Área
Cuadrado \boldsymbol{A = l^{2}}

 

Donde:

A = área

l = lado

Rectángulo \boldsymbol{A = a\times b}

 

Donde:

A = área

a = altura

b = base

Triángulo \boldsymbol{A = \frac{b\times h}{2}}

 

Donde:

A = área

b = base

h = altura

Rombo \boldsymbol{A = \frac{D\times d}{2}}

 

Donde:

A = área

D = diagonal mayor

d = diagonal menor

Paralelogramo \boldsymbol{A = b\times h}

 

Donde:

A = área

b = base

h = altura

Trapecio \boldsymbol{A = \left (\frac{a+ b}{2} \right )\times h}

 

Donde:

a = base menor

b = base mayor

h = altura

Círculo \boldsymbol{A = \pi \times r^{2}}

 

Donde:

A = área

π = número pi

r = radio

Polígono regular \boldsymbol{A = \frac{n\times b\times Ap}{2}}

 

Donde:

A = área

n = número de lados regulares

b = longitud de un lado

Ap = apotema

Las figuras compuestas

Una figura compuesta es aquella que está formada por dos o más figuras geométricas más simples. Para calcular el área de estas figuras se suelen calcular las áreas de las figuras más simples por separado y la sumatoria de estas será el área total de la figura. Por otra parte, para el cálculo de perímetro suelen usarse ecuaciones trigonométricas, y teoremas como el de Pitágoras para calcular las longitudes de los lados de la figura.

Ejercicios

– Una cancha de fútbol mide 105 metros de largo y 68 metros de ancho. ¿Cuántos metros cuadrados de césped artificial se necesitarían para cubrir toda la cancha?

Es un problema de área porque al calcular los metros cuadrados de césped artificial que se necesitan, se calcula la superficie. Como todos sabemos, una cancha de fútbol tiene una forma rectangular, por lo tanto se debe aplicar la fórmula del rectángulo:

A = a\times b
A = 105\, m\times 68\, m
A = \mathbf{7.140\, m^{2}}

Por lo tanto, para cubrir toda la cancha se necesitarían 7.140 m2 de césped artificial.


– La siguiente figura muestra el plano de una casa. ¿Cuántos metros cuadrados de cerámica se necesitan para cubrir el piso?

El piso de la casa forma una figura compuesta. Por lo tanto, antes de resolver el problema debemos separarlo en formas geométricas más simples:

La figura 1 corresponde a un rectángulo y la figura 2 a un cuadrado (ya que sus cuatro lados miden lo mismo). El área total del piso será igual a:

A_{t} = A_{1}+A_{2}

Donde:

At = área total del piso

A1 = área de la figura 1

A2 = área de la figura 2

Por lo tanto, para calcular el problema tenemos que resolver las áreas por separado:

En la figura 1 se cumple que:

A_{1} = a\times b

A_{1} = 13\, m\times 5\, m

A_{1} = 65\, m^{2}

En la figura 2 se cumple que:

A_{2} = l^{2}

A_{2} = (10\, m)^{2}

A_{2} = 100\, m^{2}

Al reemplazar los valores de A1 y A2 se tiene que:

A_{t} = 65\, m^{2}+100\, m^{2}

A_{t} = \mathbf{165\, m^{2}}

Por lo tanto, el piso de la casa necesita 165 m2 de cerámica para cubrirlo.

¿Sabías qué?
La hectárea (ha) es una medida de área que equivale a 10.000 m2.

Cálculo de volumen de un cuerpo

Todo cuerpo ocupa un lugar en el espacio. Se denomina volumen. Como ya sabemos, los principales cuerpos geométricos se calculan a través de fórmulas:

Nombre Figura Fórmula de volumen
Cubo \boldsymbol{V=l^{3}}

 

 

Donde:

V = volumen

l = lado

Prisma \boldsymbol{V = A_{b}\times h}

 

 

Donde:

V = volumen

Ab = área basal

h = altura

Pirámide \boldsymbol{V = \frac{A_{b}\times h}{3}}

 

 

Donde:

V = volumen

Ab = área basal

h = altura

Cilindro \boldsymbol{V =\pi \times r^{2}\times h}

 

 

Donde:

V = volumen

π = número pi (3,14…)

r = radio

h = altura

Cono \boldsymbol{V =\frac{\pi \times r^{2}\times h}{3}}

 

 

Donde:

V = volumen

π = número pi (3,14…)

r = radio

h = altura

Esfera \boldsymbol{V =\frac{4}{3}\times \pi \times r^{3}}

 

 

Donde:

V = volumen

π = número pi (3,14…)

r = radio

En el caso de las pirámides y los primas, las formas de sus bases pueden ser diferentes.

Estas ecuaciones pueden aplicarse a figuras similares para resolver diferentes problemas.

Ejercicios

– Calcula el volumen de la Gran Pirámide de Guiza, cuya base es un cuadrado de aproximadamente 230 m cada lado y de altura mide aproximadamente 186 m.

La fórmula para calcular el volumen de una pirámide es la siguiente:

V = \frac{A_{b}\times h}{3}

Lo primero es calcular el valor de Ab que es el área de la base. En este caso, su base es un cuadrado de 230 metros de cada lado. Por lo tanto:

A_{b} = l^{2}

A_{b} = (230\, m)^{2}

A_{b} = 52.900 \, m^{2}

Reemplazamos el valor del área de la base y el de la altura (que es 186 m) en la fórmula:

V = \frac{52.900\, m^{2}\times 186\, m}{3}

V = \frac{9.839.400\, m^{3}}{3}

V = \mathbf{3.279.800\, m^{3}}

El volumen aproximado de la pirámide de Guiza es de 3.279.800 m3 (si se considera la pirámide como un cuerpo rígido sin cámaras interiores).


– Calcula el volumen de una canica de 2 centímetros de diámetro.

La forma de una canica es igual a la de una esfera por lo tanto se utiliza la siguiente ecuación:

V =\frac{4}{3}\times \pi \times r^{3}

El problema nos dice que el diámetro de la canica es de 2 cm, pero la fórmula está expresada en función del radio. Como ya sabemos, el radio es la mitad del diámetro, por lo tanto, el radio de la canica es de 1 cm.

V =\frac{4}{3}\times \3,14 \times (1\, cm)^{3}

V =\frac{4}{3}\times \3,14 \times 1\, cm^{3}

V =\mathbf{4,18\, cm^{3}}

La leyenda de la corona

Hay una leyenda popular que cuenta cómo el rey Hieron II de Siracusa le encomendó al reconocido matemático griego Arquímedes que comprobara si la corona que había mandado a hacer era de oro puro o no. Arquímedes pasó mucho tiempo sin resolver el misterio y estaba frustrado hasta que un día, al meterse a la bañera, se percató que el agua que se desplazaba tenía el mismo volumen de su cuerpo. Enseguida dio un salto al tiempo que decía la frase “¡Eureka!”.

Posteriormente le demostró al rey que el volumen desplazado por la corona debía ser el mismo que el desplazado por un lingote de oro puro de la misma masa. Cuando realizó el experimento, la cantidad de agua desplazada no fue la misma y concluyó que la corona no era de oro puro.

Otros usos

Desde su aparición, la geometría ha permitido al ser humano destacarse en varios campos como la arquitectura, la escultura, la pintura y, por su puesto, en las ciencias aplicadas como la física o la química. Disciplinas como la ingeniería aplican la geometría para el cálculo de ángulo y otras medidas. La química emplea la geometría para entender las estructuras moleculares, la agrupación de los átomos y la forma de los cristales de algunos compuestos, entre otros usos.

En el ámbito de la cartografía y la agronomía, se aplica la geometría para determinar áreas, calcular perímetros y planos de terrenos. La astronomía y la computación son otras áreas que emplean conocimientos geométricos.

La geometría y la arquitectura

La arquitectura clásica no habría podido lograr obras de singular belleza o armonía sin hacer uso de conocimientos geométricos. En la actualidad, los arquitectos emplean la geometría para lograr estructuras que se vean bien estéticamente, que permitan un ahorro de materiales y un mejor aprovechamiento de los espacios.

¡A practicar!

1. Una fábrica de quesos compró una granja de 14.300 m2. ¿Cuáles son las medidas de la granja?

a) 150 m × 100 m
b) 130 m × 110 m
c) 40 m × 10 m
d) 280 m × 100 m

Solución
b) 130 m × 110 m

2. Un tablero de ajedrez mide 44 cm de alto y 44 cm de ancho, ¿cuál es el área del tablero?

a) 88 cm2
b) 1.936 cm2
c) 4.404 cm2
d) 3.854 cm2

Solución
b) 1.936 cm2

3. Una empresa inmobiliaria trabaja con propiedades que no superan los 20.000 m2. ¿Cuál de las siguientes propiedades no cumple con este requisito de la empresa inmobiliaria?

a) Casa de playa de 155 m de ancho por 84 m de alto.
b) Departamento en la ciudad de 18 m de ancho por 14 m de alto.
c) Cabaña en la montaña de 320 m de ancho por 124 m de alto.
d) Chalet de 24 m de ancho por 20 m de alto.

Solución
c) Cabaña en la montaña de 320 m de ancho por 124 m de alto. El área de esta propiedad es de 39.680 m2, por lo tanto, supera los 20.000 m2 aceptados por la inmobiliaria.

4. Una pelota de fútbol tiene 22 cm de diámetro, ¿cuál es su volumen?

a) 2026,34 cm3
b) 44 cm3
c) 220 cm3
d) 5.572,45 cm3

Solución
d) 5.572,45 cm3

5. Una lata de tomates es cilíndrica y tiene una altura de 9 cm y un radio de 3 cm, ¿cuál es su volumen?

a) 384,35 cm3
b) 127,17 cm3
c) 954.44 cm3
d) 506,58 cm3

Solución
c) 254.34 cm3

RECURSOS PARA DOCENTES

Artículo “Los números ocultos en el universo”

El artículo trata de mostrar cómo la mayoría de los fenómenos del universo pueden explicarse a través de los números. También explica algunas formas geométricas que podemos encontrar en nuestro planeta.

VER

Enciclopedia “Nana y Enriqueta en el país de las matemáticas”

En este tomo, se platean los principales elementos de la geometría de una manera didáctica y sencilla. También se dan ejemplos y aplicaciones de la geometría.

VER

Artículo “Superficies de figuras geométricas”

El artículo plantea el cálculo de superficie de las principales figuras geométricas. También resuelve una serie de ejercicios y muestra al final algunos problemas propuestos.

VER

CAPÍTULO 5 / TEMA 4

Cuerpos geométricos

Uno de los objetos de estudio de la geometría son los cuerpos geométricos. Una pelota de fútbol, un cono de helado o un dado son algunos objetos cotidianos que podemos asociar con estos cuerpos, los cuales se caracterizan por ocupar volumen en el espacio y estar formados con figuras geométricas.

Principales cuerpos geométricos

Los cuerpos geométricos son infinitos y cada uno posee características propias. Los más comunes son el cubo, el prisma, la pirámide, el cilindro, el cono y la esfera. Ellos se clasifican en poliedros y cuerpos redondos.

  • Los poliedros son cuerpos geométricos. Todas sus caras son planas. Estos, a su vez, pueden ser regulares si sus caras son todas iguales o irregulares cuando son diferentes. Un ejemplo de poliedro es el cubo.
  • Los cuerpos redondos son cuerpos geométricos con al menos una cara curva, como sucede con el cilindro.

VER INFOGRAFÍA

¿Sabías qué?
Al cubo también se lo denomina hexaedro regular.

Elementos de los cuerpos geométricos

En la mayoría de los cuerpos geométricos se pueden identificar los siguientes elementos.

  • Cara: corresponde a cada una de las superficies planas que delimitan al cuerpo geométrico. Pueden ser caras basales, las que sirven de apoyo (base) al cuerpo en el plano, o caras laterales, que corresponden a las de los costados.
  • Vértice: es el punto en el que se juntan tres o más caras.
  • Arista: es el segmento de línea que se forma cuando dos caras se juntan.
La esfera y sus curiosidades

La esfera es un cuerpo geométrico que no posee ni caras, ni aristas ni vértice. Y se caracteriza porque todos los puntos de su superficie están a la misma distancia del centro.

Volumen de cuerpos geométricos

De acuerdo a su tipo, cada cuerpo geométrico tiene características propias que permiten calcular su volumen a través de fórmulas.

Nombre Figura Fórmula de volumen
Cubo \boldsymbol{V=l^{3}}

 

Donde:

V = volumen

l = lado

Prisma \boldsymbol{V = A_{b}\times h}

 

Donde:

V = volumen
Ab = área basal

h = altura

Pirámide \boldsymbol{V = \frac{A_{b}\times h}{3}}

 

Donde:

V = volumen

Ab = área basal

h = altura

Cilindro \boldsymbol{V =\pi \times r^{2}\times h}

 

Donde:

V = volumen

π = número pi (3,14…)

r = radio

h = altura

Cono \boldsymbol{V =\frac{\pi \times r^{2}\times h}{3}}

 

Donde:

V = volumen

π = número pi (3,14…)

r = radio

h = altura

Esfera \boldsymbol{V =\frac{4}{3}\times \pi \times r^{3}}

 

Donde:

V = volumen

π = número pi (3,14…)

r = radio

h = altura

VER INFOGRAFÍA

– Calcula el volumen de este cubo.

Un cubo se caracteriza porque todos sus lados miden lo mismo, de manera que al conocer solo la medida de un lado se puede aplicar la fórmula:

V=l^{3}

V=(3\, cm)^{3}

V=\mathbf{27\, cm^{3}}

Calcula el volumen del siguiente cilindro.

Según la fórmula, los únicos datos que se necesitan son el radio del cilindro y su altura. De la imagen se obtienen los datos:

V =\pi \times r^{2}\times h

V =\pi \times (2\, cm)^{2}\times 6\, cm

En este caso observa que el radio está elevado al cuadrado, por lo tanto, al resolver esa potencia las unidades también se verán afectadas, por lo que quedarán centímetros cuadrados:

V =\pi \times 4\, cm^{2}\times 6\, cm

El número pi (π) es un número irracional, por lo cual es infinito. Para efectos de estos cálculos, usaremos solamente 2 de sus decimales, es decir, lo aproximamos a 3,14.

V =3,14 \times 4\, cm^{2}\times 6\, cm

Al resolver este producto se obtiene el volumen del cilindro.

V =\mathbf{75,36\, cm^{3}}

¿Sabías qué?
Cuando se usan múltiplos o submúltiplos del metro, el volumen siempre se expresa en unidades cúbicas: m3, cm3, mm3, km3, etc.
Los prismas son poliedros cuyos lados laterales son paralelogramos y con dos caras paralelas e iguales denominadas bases. Reciben su nombre de acuerdo a la forma de su base, por ejemplo, si su base es un triángulo, se denomina prisma triangular, si es un pentágono se denomina prisma pentagonal y así sucesivamente. Un paralelepípedo es un prisma cuya base es un paralelogramo.

Construcción de cuerpos geométricos

Los cuerpos geométricos tienen volumen y, por lo tanto, se pueden representar en tres dimensiones: largo, alto y ancho. Las imágenes a continuación son patrones que puedes usar para construir los cuerpos geométricos más comunes:

Cubo

Prisma rectangular

Pirámide

Cilindro

Cono

La construcción de cuerpos geométricos, además de su gran utilidad al momento de representar a estas figuras, permite trasladar estos conocimientos a otras áreas como la arquitectura y la ingeniería, en las cuales se realizan diseños a escalas. Conocer las diferentes fórmulas de cálculo y volumen de las figuras es fundamental para realizar operaciones más avanzadas.

¡A practicar!

1. Calcula el volumen de los siguientes cuerpos geométricos.

a)

      *La base es un rectángulo.

Solución
V = 133,33 cm3

b)

Solución
V = 64 cm3

c)

Solución
V = 904,32 cm3

d) 

Solución
V = 33,49 cm3

e)

Solución
V = 96 cm3

f)

Solución
V = 62,8 cm3

RECURSOS PARA DOCENTES

Artículo “Poliedros irregulares”

El artículo explica qué es un poliedro y qué caracteriza a los irregulares. También hace una breve explicación de los sólidos platónicos y muestra algunos ejemplos.

VER

Infografía “Cuerpos redondos”

La infografía explica de manera sencilla qué es un cuerpo redondo, sus características y su presencia en la vida cotidiana.

VER

Artículo “Volumen de figuras geométricas”

En este artículo destacado se explica qué es el volumen y cómo calcularlo en los diferentes cuerpos geométricos. También se plantean una serie de problemas resueltos y de ejercicios planteados.

VER

CAPÍTULO 5 / TEMA 3

Polígonos

Podemos observar polígonos en múltiples objetos de nuestro alrededor. Estos son muy diversos y los hay con lados y ángulos iguales o desiguales entre sí. Son elementos fundamentales de la geometría y su conocimiento es esencial en diversos campos del conocimiento, como la ingeniería o la arquitectura.

¿Qué es un polígono?

En geometría, un polígono es una figura geométrica plana delimitada por un número finito de segmentos rectos.

¿Sabías qué?
La palabra “polígono” proviene del griego antiguo que quiere decir “muchos ángulos”.

Los polígonos presentan los siguientes elementos:

  • Lados: son los segmentos rectos que conforman al polígono.
  • Vértices: son los puntos en común entre dos lados consecutivos.
  • Diagonales: son los segmentos que unen a dos lados no consecutivos de un polígono.
  • Ángulos interiores: están formados por dos lados consecutivos en el interior del polígono.
  • Ángulos exteriores: están formados en el exterior del polígono entre un lado y la prolongación de otro lado consecutivo.

Polígonos regulares y sus tipos

Un polígono regular tiene lados con la misma longitud. Se caracterizan también porque sus ángulos internos y externos también son iguales. Otra característica es que poseen la misma cantidad de ejes de simetrías que de lados. Las diagonales en este tipo de polígonos tienen la misma longitud y siempre son interiores.

Polígono Número de lados Número de diagonales Medida de cada ángulo interno Medida de cada ángulo externo
Triángulo equilátero 3 0 60° 120°
Cuadrado 4 2 90° 90°
Pentágono 5 5 108° 72°
Hexágono 6 9 120° 60°
Heptágono 7 14 128,57° 51,43°
Octágono 8 20 135° 45°
Eneágono 9 27 140° 40°
Decágono 10 35 144° 36°
Endecágono 11 44 147,27° 32,73°
Dodecágono 12 54 150° 30°

VER INFOGRAFÍA

El círculo y los polígonos

Todo polígono regular puede estar circunscrito en una circunferencia, lo que quiere decir que cada uno de sus vértices corresponde a un punto de la circunferencia. Mientras más lados tenga el polígono, más se va a aproximar a la forma de la circunferencia. Por esta razón, se asocia a la circunferencia (de forma informal) a un polígono de infinitos lados.

Área de polígonos regulares

Para medir el área de los polígonos es necesario conocer las definiciones de perímetro y apotema.

  • Perímetro: es la suma de los lados que forman una figura geométrica. En el caso de los polígonos regulares, se calcula al multiplicar el número de lados por la longitud de uno de sus lados.

P= n\times L

Donde:

P: perímetro
n: número de lados del polígono regular.
L: longitud de uno de los lados del polígono.

  • Apotema: es la distancia perpendicular desde el centro de un polígono hasta uno de sus lados.

El área de un polígono regular se define como el producto de su perímetro por la apotema (a) dividido entre dos.

A = \frac{P\times a}{2}

Donde:

A: área

P: perímetro

a: apotema

 

– Ejemplo:

Calcular el área de un pentágono cuyos lados miden 6 cm y su apotema es de 4,13 cm.

Lo que debemos hacer es calcular primero el perímetro para luego sustituir en la fórmula junto con la apotema para calcular el área.

P= n\times L
P= 5\times 6\, cm
P= 30\, cm

El perímetro del apotema es 30 cm, al sustituir en la fórmula de área nos queda:

A = \frac{30\, cm\times 4,13\,cm }{2}

A = \frac{123,9\,cm^{2} }{2}

A = \mathbf{61,95\, cm^{2}}

El área del pentágono es de 61,95 cm2.

¿Sabías qué?
El Departamento de Defensa de los Estados Unidos es un edificio en forma de Pentágono que mide 140.000 metros cuadrados aproximadamente.
Debido a sus características geométricas, todo polígono regular puede estar inscrito o circunscrito a una circunferencia. Un polígono inscrito tiene todos sus vértices contenidos en la circunferencia. Por otro lado, un polígono circunscrito posee todos sus lados tangentes a la circunferencia. En ambos casos, el centro del polígono coincide con el centro de la circunferencia.

Polígonos irregulares y sus tipos

En los polígonos irregulares se pueden cumplir algunas de estas condiciones:

– Tener sus lados con igual longitud pero sus ángulos internos diferentes.
– Tener sus ángulos de igual medida pero sus lados con diferente longitud.
– Tener sus lados con diferente longitud y sus ángulos internos con diferente medida.

Ejemplos de polígonos irregulares

  • Rombo

El rombo tiene los cuatro lados con igual longitud pero sus cuatro ángulos internos son diferentes: solo los ángulos opuestos de este polígono son iguales. Por eso se trata de un polígono irregular.

  • Rectángulo (no cuadrado)

Es un cuadrilátero con sus cuatro ángulos iguales (90°), pero sus lados tienen diferente longitud entre sí. Solo los lados paralelos comparten la misma longitud.

  • Triángulo (no equilátero)

Todo triángulo con un ángulo interior diferente de 60 grados es un polígono irregular.

Triángulos regulares e irregulares

Según sus lados, los triángulos se clasifican en equiláteros, isósceles y escalenos. Los equiláteros son los únicos triángulos que cumplen con las características de un polígono regular. Los triángulos escalenos son aquellos en los que las longitudes de sus lados y la medida de sus ángulos internos son diferentes, por lo tanto no son polígonos regulares. Por otra parte, los triángulos isósceles al contar solo con dos lados y dos ángulos iguales tampoco son considerados como polígonos regulares.

Perímetro de polígonos

Calculamos el perímetro de los polígonos regulares a través de la fórmula planteada anteriormente:

P= n\times L

En cambio, en los polígonos irregulares, cuyos lados generalmente son diferentes, esta ecuación no siempre aplica. Para lo cual debemos sumar de forma separada las longitudes de cada uno de los lados.

P= L_{1}+L_{2}+L_{3}+...+L_{n}

Por ejemplo, para calcular el perímetro del siguiente triángulo isósceles simplemente sumamos cada una de las longitudes de sus lados.

P= 60\,\, cm+60\,\, cm+40\,\, cm

P= \mathbf{160\,\, cm}

El perímetro de este triángulo irregular es de 160 cm.

 

¡A practicar!

1. Determina el perímetro y el área de los siguientes polígonos regulares según los datos mostrados.

a) Un eneágono regular cuyos lados miden 7 cm y su apotema 9,62 cm.

Solución
P = 63 cm
A = 303,03 cm2

b) Un pentágono regular cuyos lados miden 6 cm y su apotema 4,13 cm.

Solución
P = 30 cm
A = 61,95 cm2

c) Un heptágono regular cuyos lados miden 8 cm y su apotema 8,31.

Solución
P = 56 cm
A = 232,68 cm2

d) Un triángulo regular (equilátero) cuyos lados miden 5 cm y su apotema 1,44 cm.

Solución
P= 15 cm
A = 10,8 cm2

e) Un decágono regular cuyos lados miden 3 cm y su apotema 4,62 cm.

Solución
P= 30 cm
A = 69,3 cm2

f) Un dodecágono regular cuyos lados miden 4 cm y su apotema 7,46 cm.

Solución
P= 48 cm
A = 179,04 cm2

g) Un hexágono regular cuyos lados miden 7 cm y su apotema 6,06 cm.

Solución
P= 42 cm
A = 127,26 cm2

h) Un octágono regular cuyos lados miden 2 cm y su apotema 2,41 cm.

Solución
P= 16 cm
A = 19,28 cm2

i) Un endecágono regular cuyos lados miden 3 cm y su apotema 5,11 cm.

Solución
P= 33 cm
A = 84,315 cm2

j) Un cuadrado cuyos lados miden 4 cm y su apotema 2 cm.

Solución
P= 16 cm
A = 16 cm2

 

2. ¿A qué polígono con una apotema de 4,33 cm le corresponde un área de 64,95 cm2.

a) Un decágono de 2 cm de lado.
b) Un hexágono de 5 cm de lado.
c) Un pentágono de 7 cm de lado.
d) Un octágono de 4 cm de lado.

Solución
b) Un hexágono de 5 cm de lado.

 

3. ¿Qué polígono irregular tiene sus lados de igual longitud pero sus ángulos internos son diferentes?

a) Círculo
b) Cuadrado
c) Rectángulo
d) Rombo

Solución
d) Rombo

RECURSOS PARA DOCENTES

Artículo “Perímetro de los polígonos”

Este artículo define qué es un polígono, cuáles son sus clasificaciones y cómo se calcula su el perímetro. También plantea una serie de ejercicios para resolver.

VER

Artículo “Cuadriláteros”

Este recurso explica los diferentes tipos de cuadriláteros que existen y sus características principales.

VER

Micrositio “Tarjetas Educativas – Geometría y medidas”

En este micrositio se puede encontrar una serie de tarjetas interactivas que resumen los elementos principales de la geometría, como los polígonos y sus principales características.

VER

CAPÍTULO 5 / TEMA 1

Elementos geométricos

El punto, la recta y el plano representan los cimientos de la geometría. Seguramente, muchos otros conceptos no podrían ser definidos sin ellos y por tal motivo son tan importantes. Cada uno está relacionado: infinitos puntos forman una recta, infinitos puntos y rectas forman un plano e infinitos puntos, rectas y planos forman el espacio.

El punto

El punto es el objeto más pequeño del espacio, por tanto no tiene longitud, área o volumen. Es adimensional, lo que quiere decir que no tiene dimensiones.

Una de las funciones del punto es describir la posición en un sistema de coordenadas como el cartesiano.

¿Sabías qué?
Los puntos se nombran con letras mayúsculas del abecedario, por ejemplo: A, B, C, D, etc.

Entes fundamentales de la geometría

Se denominan así a los entes que por sí solos no tienen definición y se comprenden a partir de las características de elementos similares. La mayoría de las personas tiene noción de lo que cada uno representa. Los entes fundamentales en la geometría son el punto, la recta y el plano.

La recta y sus tipos

Una recta es un tipo de línea que se extiende en una misma dirección y está formada por infinitos puntos. Por esta razón, la recta tiene longitud pero no anchura. En geometría, las rectas se suelen denominar con letras minúsculas.

De acuerdo a su posición en el plano, las rectas pueden ser paralelas, perpendiculares y secantes.

¿Sabías qué?
Entre dos puntos, solamente existe una recta que los une.

Rectas paralelas

Son rectas que no tienen ningún punto en común, es decir, nunca se interceptan. Para la construcción de este tipo de rectas se emplean la regla, la escuadra y el compás. En el siguiente ejemplo la recta a es paralela a la recta b.

Un ejemplo de rectas paralelas son los lados opuestos de un cuadrilátero como el cuadrado.

VER INFOGRAFÍA

Rectas secantes

Son aquellas que se interceptan en un punto en común y forman cuatro ángulos internos. Las rectas c y d son secantes.

Un ejemplo de rectas secantes son dos calles que se interceptan en un punto en común.

Rectas perpendiculares

Son aquellas rectas secantes que al cortarse forman cuatro ángulos iguales, específicamente rectos (de 90°). Estas rectas dividen al plano en cuatro regiones. Las rectas e y f son perpendiculares entre sí.

Un ejemplo de rectas perpendiculares son los ejes del plano cartesiano.

La recta es un tipo de línea pero no es la única, existen líneas curvas, quebradas y mixtas. Además de su empleo en la geometría, los diferentes tipos de líneas son recursos usados por artistas plásticos y diseñadores gráficos en sus trabajos para proporcionar expresividad gráfica, dinamismo y movimiento. También son útiles para crear planos y texturas.

Otros conceptos relacionados

Semirrecta

Todo punto que pertenece a una línea recta la divide en dos partes denominadas semirrectas. Las semirrectas también son llamadas rayos y contienen infinitos puntos como la recta. La diferencia es que una recta no tiene origen y una semirrecta sí lo tiene.

Segmento

Corresponde a la parte de una recta que se encuentra delimitada entre dos de sus puntos, cada uno de ellos es denominado extremo. Los segmentos se escriben a través de la escritura sin espacio de sus extremos y con una raya horizontal en la parte superior. En el siguiente ejemplo, la figura corresponde al segmento \overline{PQ}.

El plano

Es un ente ideal que posee dos dimensiones (bidimensional). Se suele representar con letras del alfabeto griego. En geometría, un plano queda definido cuando se cumplen algunas de las siguientes condiciones:

  • Tres puntos no alineados.
  • Dos rectas que son paralelas.
  • Dos rectas secantes.

Un plano contiene infinitas rectas y puntos. En el siguiente ejemplo se puede observar un ejemplo de plano.

Otro ejemplo de plano sería la parte superior de una mesa.

Con el propósito de facilitar su gráfica y simplificar su visualización, los planos suelen representarse como una figura delimitada con bordes irregulares. Sin embargo, un plano contiene infinitos puntos, por lo tanto, al igual que sucede con la recta, sería imposible representarlo completamente, así que se muestra una pequeña porción de su superficie.

El plano cartesiano

Es un sistema de coordenadas desarrollado por el célebre matemático René Descartes en el siglo XVII. Permite asignar ubicación a cualquier punto del plano. Este sistema cuenta con dos ejes numerados que permiten localizar las coordenadas de los puntos. Un eje vertical denominado eje Y o de las ordenadas muestra las coordenadas en Y de un punto, y un eje horizontal denominado eje X o de las abscisas indica las coordenada en X de un punto.

¡A practicar!

1. Observa la siguiente imagen y responde qué tipo de rectas son las indicadas.

a) Las rectas e y h.

Solución
Secantes.

b) Las rectas d y g.

Solución
Secantes perpendiculares.

c) Las rectas e y f.

Solución
Paralelas.

d) Las rectas h y f.

Solución
Secantes.

2. De acuerdo al contenido explicado responde las siguientes preguntas.

a) ¿Cuántos puntos no alineados definen a un plano?

Solución
3

b) ¿Qué diferencia tiene una recta de una semirrecta?

Solución
La semirrecta tiene un origen y la recta no.

c) ¿De qué medida son los ángulos formados por dos rectas perpendiculares?

Solución
90°

d) ¿En cuántos puntos se intersectan dos rectas paralelas?

Solución
En ningún punto.

e) ¿Cuáles entes fundamentales de la geometría suelen nombrarse con letras del alfabeto griego?

Solución
Los planos.

f) ¿Cómo se denominan a los puntos que forman un segmento?

Solución
Extremos.

g) ¿Qué tipo de ente fundamental de la geometría tiene longitud pero no anchura?

Solución
La recta.

h) ¿Qué tipo de ente fundamental de la geometría no tiene dimensiones?

Solución
El punto.

i) ¿Con qué otro nombre se denominan las semirrectas?

Solución
Rayos.

j) ¿Quién inventó el sistema cartesiano?

Solución
René Descartes.

RECURSOS PARA DOCENTES

Artículo “Determinación de rectas y puntos notables de los triángulos”

El artículo explica cuáles son las rectas y puntos notables que presentan los triángulos y qué características geométricas poseen.

VER

Micrositio “Tarjetas educativas – Geometría y medidas”

En este micrositio podrá encontrar una variedad de tarjetas que resumen los elementos principales de la geometría como el punto, la recta y las principales figuras geométricas.

VER

Artículo “Las rectas en el plano”

El artículo explica la clasificación de las rectas según su posición en el plano y muestra cómo graficar cada una de ellas mediante el uso de regla, escuadra y compás.

VER

CAPÍTULO 6 / TEMA 1

Recursos para representar datos

Hay veces en las que los datos por sí solos no nos proporcionan ninguna información, pero al representarlos de manera gráfica podemos comprender mejor lo que significan. Por esta razón, en matemática y en estadística se suelen usar gráficos, diagramas y tablas para mostrar los valores. 

Pictogramas

Son gráficos que emplean dibujos para representar los datos. Estos recursos visuales permiten una rápida comprensión de los datos porque usan símbolos o imágenes.

En matemática se pueden representar en varias formas:

Gráfico de barras con pictogramas

Gráfico de tablas con pictogramas

En ambos ejemplos se representa el número de goles que han hecho Juan, David, Tobías y Mario. Cada imagen de referencia representa los goles de cada uno. De esta forma, Juan metió 5 goles, David 3 goles, Tobías 4 goles y Mario 1 gol.

En este caso es fácil observar que la persona que hizo más goles fue Juan y quien hizo menos fue Mario. No hacen faltan los números ni contar porque los datos se ven fácilmente a través del gráfico.

¿Sabías qué?
A los pictogramas también se los denomina gráficos de imágenes.

VER INFOGRAFÍA

Tablas

Las tablas son otro recurso usado para representar datos. Por lo general, en las tablas se usan datos cualitativos y datos cuantitativos. Los datos cualitativos indican las características de algo, como nombre, tamaño o color. Los datos cuantitativos expresan la cantidad.

En el caso del ejemplo anterior del número de goles, podemos representarlo en formato de tabla de la siguiente manera:

Nombre Número de goles
Juan 5
David 3
Tobías 4
Mario 1

Los datos cualitativos son los nombres y los datos cuantitativos son el número de goles.

Observa que en una tabla los datos se organizan en filas y columnas, las filas son las hileras horizontales y las columnas son las hileras de datos verticales de una tabla.

Por ejemplo, si queremos saber el número de goles que hizo Tobías debemos ubicar su nombre y luego movernos en esa fila hasta la columna de número de goles, de esa manera sabemos que Tobías hizo 4 goles.

La estadística y los gráficos

La estadística es una rama de la matemática que estudia la recolección, análisis e interpretación de datos con el propósito de establecer comparaciones que permitan entender el problema que se estudia. Los gráficos y tablas son tan importantes para la estadística como lo son el plano, la recta y el punto para la geometría.

Gráficos de barra

Son un tipo de diagrama que permite la representación de datos a través de columnas, por eso también se los conocen como gráficos de columnas. La longitud de cada barra o columna es completamente proporcional al valor que representan. Es por ello que se suelen representar con una escala numérica como referencia.

Seguimos con el mismo ejemplo del número de goles, pero esta vez representado en un gráfico de barras:

Observa que los tamaños de las barras son proporcionales a la cantidad que representa. La barra más grande es la del valor más grande y la más chica corresponde al valor más pequeño. Si queremos saber cuál es el valor representado por la gráfica solo tenemos que fijarnos en el tope de la barra y leer el número que indica la escala.

Los gráficos estadísticos además de proporcionar una rápida y fácil comprensión de los datos, también permiten realizar un mejor análisis. Muchas empresas emplean gráficos con el propósito de realizar proyecciones o estimaciones. En los medios de comunicación es frecuente observar gráficos para representar encuestas o resultados electorales.

¿Qué importancia tiene representar los datos gráficamente?

Imagina que se obtienen los datos de todos los vuelos internacionales que se hicieron en un país en los últimos veinte años, en efecto, serían demasiados números para interpretar, y si se quisieran comparar esos datos a simple vista no sería nada sencillo. Es por ello que se emplean gráficos, no solo para facilitar la comprensión sino también para organizar los datos de una manera más clara.

Las computadoras y muchos otros equipos como las calculadoras modernas, permiten realizar gráficos de manera sencilla. Gracias a los gráficos es posible realizar promedios, proyecciones y análisis. Por esto y más, son una herramienta muy útil en la actualidad.

Las economías de los países, el valor de las acciones en la bolsa y el precio del petróleo son algunos parámetros que suelen ser representados en gráficos para una rápida comprensión. Los gráficos son herramientas visuales que permiten organizar los datos de una manera más clara. Es común que el tipo de gráfico dependa del tipo de datos que se deseen representar.

¡A practicar!

1. Observa la siguiente imagen que muestra los trofeos que ganó una escuela y responde las siguientes preguntas.

a) ¿Qué tipo de gráfico es?

Solución
Pictograma.

b) ¿Cuántos trofeos obtuvo la escuela en el año 2020?

Solución
2

c) ¿En qué año la escuela obtuvo el mayor número de trofeos ?

Solución
2019

d) ¿En qué año la escuela obtuvo únicamente un trofeo?

Solución
2018

 

2. El siguiente gráfico muestra los libros prestados en una biblioteca durante una semana. Observa el gráfico y responde las preguntas.

a) ¿Qué tipo de libro se prestó más en esa semana?

Solución
Biología.

b) ¿Cuántas novelas se prestaron?

Solución
2

c) ¿Cuántos libros de arte se prestaron?

Solución
4

d) ¿De qué tipo de libro la biblioteca prestó solo 3 libros?

Solución
Idiomas.

 

3. Observa la siguiente tabla que muestra los animales en una granja y responde las preguntas.

Animales Cantidad en una granja
Vaca 5
Perro 2
Gato 1
Caballo 3
Gallina 10
Oveja 15

a) ¿De cuál animal hay más cantidad en la granja?

Solución
Oveja.

b) ¿Cuántas gallinas hay?

Solución
10

c) ¿Cuántos perros hay?

Solución
2

d) ¿De cuál animal hay menos cantidad en la granja?

Solución
Gato.

 

RECURSOS PARA DOCENTES

Artículo “Gráficos estadísticos”

Este artículo describe los principales gráficos usados en la estadística para representar datos. También explica las principales características de cada uno.

VER

Artículo “Estadística”

Este artículo expone una breve reseña del objeto de estudio de la estadística como rama de la matemática, y de igual forma explica cómo es el proceso de recolección y análisis de datos.

VER

Artículo “Estadística: tabla de valores”

Este artículo explica las características de una tabla de valores y sus aplicaciones en la estadística, y proporciona unos ejemplos para comprender el texto.

VER

CAPÍTULO 5 / TEMA 7

La circunferencia

Una de las curvas más estudiadas en la geometría es, sin duda, la circunferencia. Tiene características únicas y ha sido pieza fundamental en invenciones humanas como la rueda. Para trazar esta figura usamos el compás, y su longitud está determinada por un número muy particular: el número pi.

¿Qué es una circunferencia?

Es la curva plana y cerrada cuyos puntos equidistan del centro; es decir, están a la misma distancia del centro de la circunferencia.

Los griegos y la circunferencia

Sin lugar a duda, los antiguos griegos tuvieron una gran influencia en el perfeccionamiento de la geometría. Para ellos, la línea recta y la circunferencia eran muy importantes en sus construcciones matemáticas, lo que permitió que realizaran increíbles descubrimientos para su época. Por ejemplo, Eratóstene de Cirene, que vivió entre 276 y 194 a. C., fue la primera persona en calcular la circunferencia de la Tierra.

Elementos de la circunferencia

En la circunferencia se pueden observar los siguientes elementos:

Centro: es el punto en torno al cual equidistan todos los puntos de la curva.

Radio: es un segmento de recta que une el centro de la circunferencia con cualquiera de sus puntos.

Diámetro: es un segmento de recta que une a dos puntos de la circunferencia y pasa por el centro de la misma. Su longitud es igual al doble del radio.

Cuerda: es un segmento de recta que une a dos puntos de la circunferencia sin pasar por el centro.

Arco: es una porción de la circunferencia que se encuentra limitada por una cuerda.

Semicircunferencia: es la porción de circunferencia limitada por el diámetro. Equivale a la mitad de la circunferencia.

Posiciones de una recta en relación a la circunferencia

Recta tangente: es la recta que comparte un mismo y único punto con la circunferencia.

Recta secante: es la recta que comparte dos puntos con la circunferencia.

Recta exterior: es la recta que no comparte ningún punto con la circunferencia.

¿Sabías qué?
La circunferencia de la tierra mide cerca de 40.000 km de longitud.

Diferencia entre círculo y circunferencia

Es posible que confundamos los conceptos de círculo y circunferencia porque están muy relacionados entre sí, pero se trata de dos términos diferentes. El círculo es una figura plana que corresponde al área contenida dentro de una circunferencia. La circunferencia, por su parte, representa el perímetro del círculo, es decir, es la línea que forma el contorno de la figura.

VER INFOGRAFÍA

El círculo es una figura que presenta diferentes elementos, como el semicírculo, los sectores circulares y los segmentos circulares. El primero es el área comprendida entre el diámetro y una semicircunferencia; el segundo consiste en las regiones comprendidas entre dos radios y el arco que estos forman; y el tercero se trata de los segmentos que se forman entre una cuerda y su arco.

Trazado de circunferencias

El compás es el instrumento por excelencia para trazar circunferencias y su origen es muy antiguo. Un compás consta de los siguientes elementos principales:

  1. Un mango.
  2. Una punta metálica.
  3. Una punta trazadora.
  4. Dos brazos regulables.

El uso de esta herramienta es relativamente sencillo. Para trazar una circunferencia con un compás lo primero que debemos hacer es conocer el radio de la circunferencia y trazarlo con la ayuda de una regla. Luego posicionamos la punta metálica en uno de los extremos del segmento y luego abrimos los brazos hasta que la punta trazadora esté ubicada en el otro extremo del segmento. Finalmente, con ayuda del mango, trazamos la circunferencia.

Circunferencias a nuestro alrededor

Un anillo o un aro son ejemplos de circunferencias, pero hay muchos más. Al ser una circunferencia el contorno de un círculo, la observamos en los bordes de las ruedas de los autos, en un molde para hacer una torta o un pastel y hasta incluso en juguetes como los platos voladores.

Las circunferencias han sido elementos fundamentales en el desarrollo de la geometría y con ello también han permitido a los seres humanos realizar grandes invenciones como la rueda.

La circunferencia es el contorno de una de las figuras más comunes: el círculo. Es frecuente observarlas en platos, ruedas, pasteles, diseños y pinturas. Han permitido realizar cálculos y aproximaciones, como el descubrimiento del número pi que relaciona la longitud de la circunferencia con su radio y que ha tenido numerosas aplicaciones prácticas.

 

¡A practicar!

  1. Además del centro, ¿qué elementos de la circunferencia observas?

a) 

Solución
Diámetro.

b)

Solución
Arco.

c)

Solución
Cuerda.

d)

Solución
Radio.

2. ¿Cuál de las siguientes rectas es una tangente?

a) 

b) 

c) 

d) 

Solución
c)  Es tangente porque solo comparte un punto en común con la circunferencia.

 

RECURSOS PARA DOCENTES

Artículo “Circunferencia”

El siguiente artículo explica de forma resumida qué es una circunferencia y los diferentes elementos que la integran como el radio, la cuerda, el diámetro, etc.

VER

Artículo “Ángulos en la circunferencia”

Este artículo relaciona los conceptos de ángulo y circunferencia, así como también explica sus características.

VER

CAPÍTULO 5 / TEMA 6

Volumen y capacidad

El volumen y la capacidad son dos conceptos que empleamos a diario. A veces necesitamos medir la cantidad de agua para una receta y otras veces necesitamos saber cuánto puede contener un molde para tortas. En el primer caso hablamos de volumen y en el segundo de capacidad. A pesar de estar relacionados, cada magnitud emplea distintas unidades de medida para los cálculos.

Cálculo de volumen de cubos

Así como en área empleamos cuadrados como referencia para medir una superficie, en la medición del volumen empleamos cubos como referencia.

El volumen es el espacio ocupado por un objeto. Por ejemplo, si una caja tiene un volumen de 200 cm3 (centímetros cúbicos) quiere decir que está formado por 200 cubos que miden 1 cm en cada lado, cada uno.

Para comprender mejor el concepto de volumen, debemos aprender cómo calcularlo en cubos. La fórmula es la siguiente:

V=a\times a\times a

Donde:

V = volumen.

a = longitud de los lados del cubo.

La fórmula de volumen también puede expresarse como V=a^{3}

– Ejemplo:

Calcula el volumen del siguiente cubo:

Como es un cubo, cada lado mide 3 cm y hay que aplicar la fórmula de volumen, es decir, multiplicar la longitud de un lado tres veces:

V = 3\, cm\times 3\, cm\times3\, cm = \mathbf{27\, cm^{3}}

Observa que la unidad centímetro se multiplicó tres veces, por lo tanto, al final se expresa en cm3.

VER INFOGRAFÍA

¿Sabías qué?
Un cubo tiene tres dimensiones: alto, ancho y profundidad.
Cuando medimos, relacionamos una cantidad con una unidad de medida base, en otras palabras, medir es un proceso de comparación. El volumen es una característica muy importante de los cuerpos porque permite saber cuánto ocupa el mismo en el espacio. Los científicos suelen medir volúmenes de muestras en sus diferentes estudios y ensayos a través de equipos especializados.

Comparación de volúmenes

Todos los objetos ocupan un lugar en el espacio, por lo tanto tienen volumen. Ese espacio ocupado depende de las características del material, por eso, para realizar comparaciones entre objetos usamos medidas de volumen.

Cuanto mayor sea el lugar que ocupe un cuerpo en el espacio, mayor será su volumen. Por ejemplo, el volumen que ocupa un grano de arroz no es igual al volumen que ocupa un edificio.

Observa las siguientes figuras:

Imaginemos que cada cubo equivale a 1 cm3, ¿cuántos cubos de 1 cm3 tiene la figura 1?, ¿y la figura 2?, ¿cuál figura tiene mayor volumen?

  • La figura 1 tiene 5 cubos de 1 cm3, así que su volumen es de 5 cm3.
  • La figura 2 tiene 15 cubos de 1 cm3, así que su volumen es de 15 cm3.

La figura 2 tiene mayor volumen que la figura 1 y, por lo tanto, ocupa mayor espacio.

Otras unidades de volumen

La unidad empleada por el Sistema Internacional de Unidades es el metro cúbico (m3), sin embargo, esta unidad tiene múltiplos y submúltiplos que en situaciones cotidianas suelen emplearse, por ejemplo, el milímetro cúbico (mm3), el decímetro cúbico (dm3), el centímetro cúbico (cm3), etc.

También existen otras unidades de volumen como pulgada cúbica (pulg3) y pie cúbico (pie3).

El litro y las unidades de capacidad

La capacidad es la propiedad que tienen los objeto de contener a otras sustancias dentro de él. Por ejemplo, es común ver en el supermercado diferentes productos con envases en los que hay cierto volumen en su interior, ya sea de gaseosas, aceites o detergentes. El litro (L) es la medida de capacidad que vemos en las etiquetas de estos artículos.

Al ocupar un lugar en el espacio, todos los objetos tienen volumen pero no todos tienen capacidad. Por ejemplo, un objeto sólido como una barra de metal, tiene volumen pero no tiene capacidad.

Relación entre capacidad y volumen

La capacidad que tiene un recipiente es equivalente al volumen del objeto. De este modo, si construimos un cubo de 10 cm en cada lado y lo llenamos con agua en su interior, notaremos que la capacidad de ese cubo es igual a 1 litro ya que su volumen es igual a 1.000 cm3.

Recordemos que:

V=10 \, cm\times 10 \, cm\times 10 \, cm = 1.000\,\, cm^{3}

1\: L = 1.000\: cm^{3}

Algunas equivalencias útiles

  • 1 litro es igual a 2 medios litros.

1\: L = \left ( \frac{1}{2}+\frac{1}{2} \right )\: L

 

  • 1 litro es igual a 4 cuartos de litro.

1\: L = \left ( \frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4} \right )\: L

 

  • Medio litro es igual a 2 cuartos de litro.

\frac{1}{2}\: L = \left ( \frac{1}{4}+\frac{1}{4} \right )\: L

 

¡A practicar!

  1. Calcula el volumen de los siguientes cubos.

a)

Solución
V = 2 x 2 x 2 = 8 cm3.

b)

Solución
V = 1 x 1 x 1 = 1 cm3.

c)

Solución
V = 4 x 4 x 4 = 64 cm3.

d)

Solución
V = 5 x 5 x 5 =125 cm3.

2. ¿Cuál de los siguientes cubos tiene un volumen igual a 343 cm3?

a) 

b) 

c) 

d) 

Solución
b) Porque V = 7\, cm\times 7\, cm\times7\, cm = \mathbf{343\, cm^{3}}.

 

RECURSOS PARA DOCENTES

Video “Volumen de los cuerpos sólidos”

Este video muestra cómo se forman los cuerpos geométricos y explica las diferentes fórmulas de volumen en cada caso.

VER

Artículo “Volumen y capacidad: aplicaciones”

Este artículo explica las diferentes unidades de medición de volumen, al igual que las diferentes situaciones en las que puedes aplicarlo.

VER

Artículo “Sistemas de medición”

En este artículo destacado se explica qué es un sistema de medición, sus aplicaciones y los diferentes tipos de instrumentos para medir algunas unidades.

VER

CAPÍTULO 5 / TEMA 5

Cuadriláteros

Vemos cuadriláteros en todas partes: desde la cara de un dado hasta una hoja de papel. Estas figuras geométricas son polígonos de cuatro lados con múltiples aplicaciones en la geometría. Se caracterizan por su diversidad y de acuerdo a ciertos criterios se pueden clasificar como paralelogramos, trapecios y trapezoides.

Características de los cuadriláteros

La palabra “cuadrilátero” proviene del latín y quiere decir “que tiene cuatro lados”. Entonces, los cuadriláteros son polígonos con cuatro lados que forman entre sí cuatro ángulos. Estas características permiten clasificarlos en varios tipos.

Curiosidades de los cuadriláteros

1. Presentan cuatro lados, cuatro vértices y cuatro ángulos.

2. Todo cuadrilátero tiene dos diagonales.

3. Las dos diagonales del cuadrilátero dividen al mismo en cuatro triángulos.

4. También se denominan cuadrángulo y tetrágono (ambas hacen mención a sus cuatro ángulos y lados).

¿Sabías qué?
La suma de los ángulos interiores de cualquier cuadrilátero siempre es igual a 360°.

VER INFOGRAFÍA

Ángulos

Un ángulo es la porción de plano comprendida entre dos semirrectas que tienen un origen común. Existen muchos tipos, algunos son:

  • Ángulo agudo: que tiene una amplitud menor a 90° pero mayor a 0°.
  • Ángulo recto: que tiene una amplitud igual a 90°.
  • Ángulo obtuso: que tiene una amplitud mayor a 90° pero menor a 180°.
  • Ángulo oblicuo: que no es recto. Los ángulos agudos y obtusos son ejemplo de ángulos oblicuos.

Clasificación de los cuadriláteros

La forma de un campo de fútbol no es igual a la forma de un campo de béisbol, pero en ambos casos hablamos de cuadriláteros. Este tipo de figuras se clasifica en tres grandes grupos: paralelogramos, trapecios y trapezoides.

Paralelogramos

Son cuadriláteros que presentan dos pares de lados paralelos. Los lados opuestos de todo cuadrilátero tienen la misma longitud. Se clasifican en:

Cuadrilátero Nombre Características
Cuadrado – Todos sus lados son iguales.

– Sus ángulos internos son iguales y miden 90° (ángulo recto).

Rectángulo

– Sus lados contiguos (lados que están juntos) no son iguales, pero sus lados opuestos sí lo son.

– Sus ángulos interiores son iguales y miden 90° (ángulo recto).

Rombo

– Todos sus lados son iguales.

– Sus ángulos interiores son agudos (menores a 90°).

 

Romboide

– Sus lados contiguos son desiguales.

– Sus ángulos opuestos son iguales.

– De sus cuatro ángulos interiores siempre hay un par de ángulos mayor que el otro.

¿Sabías qué?
Los ángulos opuestos de un paralelogramo son congruentes, es decir, tienen la misma medida.

Trapecios

Son cuadriláteros en los que solo dos de sus lados son paralelos, estos lados son llamados bases y siempre hay una de mayor longitud, denominada base mayor; y otra de menor longitud, denominada base menor. Se clasifican en:

Cuadrilátero Nombre Características
Trapecio rectángulo

– Dos de sus ángulos interiores son iguales a 90°, es decir, son rectos.

 

Trapecio isósceles

– Sus lados no paralelos tienen la misma medida.

– Presentan dos ángulos agudos del mismo valor en una de las bases y dos ángulos obtusos del mismo valor sobre la otra base.

 

Trapecio escaleno – Ninguno de sus lados tiene la misma longitud.

– Ninguno de sus ángulos es recto.

Trapezoides

Son cuadriláteros que no poseen ninguno de sus lados paralelos.

Cuadrilátero Nombre Características
Trapezoide – Ninguno de sus lados consecutivos es igual.

 

Diagonales de los cuadriláteros

Las diagonales son los segmentos de rectas que unen el vértice de un ángulo con el vértice del ángulo opuesto no consecutivo. Todos los cuadriláteros tienen dos diagonales, pero sus características varían de acuerdo al tipo.

Paralelogramos

Las diagonales se cortan en el punto medio de ambas.

De acuerdo al tipo de paralelogramo las diagonales presentan estas características:

  • Cuadrado: sus diagonales son iguales y se cortan en ángulo recto.
  • Rombo: sus diagonales no son iguales pero se cortan en ángulo recto.
  • Rectángulo: sus diagonales tienen la misma longitud pero se cortan en un ángulo oblicuo.
  • Romboide: sus diagonales no son iguales y se cortan en un ángulo oblicuo.

 

Trapecios

Solo en los trapecios isósceles las diagonales son iguales, en los demás casos ambas diagonales son diferentes. En este tipo de figuras las diagonales siempre se cortan en un ángulo oblicuo.

Trapezoide

Los trapezoides presentan diagonales diferentes y oblicuas.

Disciplinas como la arquitectura, la ingeniería y las artes emplean las formas geométricas dentro de sus actividades. Conocer la geometría de las cosas permite tener una mejor visión de nuestro entorno y realizar comparaciones de manera más sencilla. De igual forma, muchas veces la geometría permite resolver problemas matemáticos de forma más simple.

¿Dónde podemos observar cuadriláteros?

Si prestamos atención a nuestro entorno seguramente vamos a ver más cuadriláteros de los que imaginábamos: las baldosas del piso, el techo de la casa, las puertas y ventanas… Incontables objetos tienen forma de cuadriláteros.

Conocer los cuadriláteros tiene muchas aplicaciones. Por ejemplo, si deseamos encontrar el punto medio de un objeto cuadrado como un cartón, basta con trazar dos diagonales y ubicar su punto de intersección.

El baloncesto es un deporte muy popular que emplea un tablero en forma de cuadrilátero, específicamente un rectángulo que mide por lo general 1,80 m de ancho y 1,05 m de alto. En su parte interna se encuentra otro rectángulo que permite calcular el tiro y de esta forma lograr que la pelota caiga sobre la canasta que se encuentra en su parte inferior.

¡A practicar!

  1. Responde las siguientes preguntas.

a) ¿Cuántas diagonales tienen los cuadriláteros?

Solución
Dos diagonales.

b) ¿Qué tipo de trapecio tiene dos ángulos rectos?

Solución
Trapecio rectángulo.

c) ¿Qué tipo de paralelogramo tiene las dos diagonales diferentes pero se cortan en ángulo recto?

Solución
El rombo.

d) ¿Qué cuadrilátero no presenta ningún lado paralelo?

Solución
El trapezoide.

2. Identifica si las siguientes figuras corresponden a un paralelogramo, trapecio o trapezoide.

a)

Solución
Trapezoide.

b) 

Solución
Paralelogramo.

c) 

Solución
Paralelogramo.

d)

Solución
Trapecio.

e) 

Solución
Paralelogramo.

f) 

Solución
Trapecio.

g) 

Solución
Paralelogramo.

h) 

Solución
Trapecio.

 

RECURSOS PARA DOCENTES

Artículo “Cuadriláteros”

Este artículo destacado describe los tipos de cuadriláteros y sus diferentes tipos y subtipos. También explica la importancia de reconocerlos y sus aplicaciones en la geometría y la publicidad.

VER

Infografía “Polígonos rectángulos”

Esta infografía permite comprender de manera ilustrada qué son los rectángulos y sus propiedades. También se enfoca en cómo construir este tipo de figura geométrica.

VER

Enciclopedia “Matemática en primaria”

En este tomo se explican las características de elementos básicos de la geometría, como las rectas y los ángulos.

VER