CAPÍTULO 4 / TEMA 3

El tiempo

El tiempo es una magnitud física que permite llevar un orden de los sucesos. En otras palabras, gracias al tiempo podemos distinguir lo que pasó la semana pasada, ayer u hoy. En la actualidad, para determinar el tiempo usamos sistemas que dividen los días en 24 horas. Por medio de los relojes podemos conocer en qué hora del día estamos.

Lectura del tiempo

El ser humano siempre ha sentido la necesidad de medir el tiempo, ya sea para la duración de acontecimientos o para establecer separaciones de sucesos. Por eso, a lo largo de la historia han existido una serie de calendarios basados principalmente en ciclos lunares o solares.

Algunos calendarios son más precisos que otros, pero todos buscan una sola cosa: tener noción del tiempo.

VER INFOGRAFÍA

Unidades de tiempo

Las unidades de tiempo más comunes son la hora, el minuto y el segundo, donde se cumple que:

  • 1 hora = 60 minutos
  • 1 minuto = 60 segundos

Sin embargo, existen otras unidades para medir el tiempo:

  • 1 día = 24 horas
  • 1 semana = 7 días
  • 1 año común = 365 días
  • 1 año bisiesto = 366 días
  • 1 lustro = 5 años
  • 1 década = 10 años
  • 1 siglo = 100 años
  • 1 milenio = 1.000 años

Los relojes

Son instrumentos usados para medir el tiempo. A lo largo de la historia han pasado de ser relojes solares y de arena, a relojes cada vez más sofisticados como los relojes inteligentes de hoy en día. Los más usados en la actualidad son los relojes analógicos y los digitales.

¿Cómo leer la hora en relojes analógicos?

Una reloj analógico se caracteriza por tener agujas o manecillas que indican las horas, los minutos y los segundos a través de ciertos marcadores y números. Los elementos de un reloj analógico son los siguientes:

  • Las manecillas: son las agujas que marcan las horas, minutos y segundos. La más chica de ellas indica la hora y se denomina horario; la aguja grande más larga indica los minutos y se denomina minutero; la aguja más fina y que va más rápido indica los segundos y se denomina segundero.
  • Marcadores: son las doce partes en las que está dividida la circunferencia del reloj. Estas partes están rotuladas con los números del 1 al 12 y cada una, a su vez, está dividida en cinco subdivisiones más pequeñas marcadas con segmentos de rectas.

¿Sabías qué?
Existen relojes digitales que imitan a los relojes analógicos por contener agujas en pantallas LCD. Debido a su formato también son considerados relojes analógicos.

El horario tarda 12 horas en dar la vuelta completa, de manera que en un día tiene que realizar dos vueltas completas. El minutero tarda 60 minutos que equivalen a 1 hora en dar la vuelta completa, y el segundero tarda 60 segundos en dar una vuelta completa que equivalen a 1 minuto.

Cuando el minutero se encuentra en el número 12 significa que han transcurrido 0 minutos de la hora que marca el horario, por lo tanto, al leer la hora indicada y agregamos la expresión “en punto“. Por ejemplo:

El reloj muestra las ocho en punto.

El reloj muestra las dos en punto.

Como ya vimos, el reloj está dividido en 12 secciones y cada una de ellas está subdivide en cinco, es decir, el reloj está dividido en 60 partes iguales que equivalen a cada minuto contenido en una hora. Quiere decir que si partimos del número 12 y miramos solamente los segmentos donde aparecen marcados los números, notaremos como los minutos se incrementan de cinco en cinco.

En este sentido, si el minutero se encuentra sobre el número 1, significa que han pasado 5 minutos; si se encuentra en el número 2 indica que pasaron 10 minutos y así sucesivamente hasta el número 12 que indica que no ha pasado ningún minuto aún. Para leer la hora en estos casos, decimos la hora marcada por el horario y luego leemos los minutos.

El reloj muestra las ocho y cinco minutos.

El reloj muestra las diez y veinticinco minutos.

¿Sabías qué?
Cuando el horario se encuentra entre dos números, la hora que indica corresponde al número menor de los dos.

Cuando el minutero está en el número 3, 6 y 9, la hora se suele mencionar de manera particular.

– Cuando el minutero está en el 3 indica que han transcurrido 15 minutos, es decir una cuarta parte de lo que dura una hora. Por eso, después de decir la hora agregamos la expresión “…y cuarto”.

El reloj muestra las once y cuarto.

– Cuando el minutero está en el 6 significa que han pasado 30 minutos, es decir, la mitad de una hora, por eso decimos “…y media”.

El reloj muestra las nueve y media.

– Cuando el minutero está en el 9 han pasado 45 minutos lo significa que falta un cuarto de hora (quince minutos) para la hora siguiente. Por eso decimos “un cuarto para…” y luego la hora próxima.

El reloj muestra un cuarto para las siete.

En algunos países en lugar de decir “un cuarto para” se lee la hora próxima y se agrega la expresión “menos cuarto”. En este sentido, el ejemplo anterior se leería como “las siete menos cuarto”.

Para otros casos, se lee la hora mostrada por el horario y luego los minutos indicados por el minutero.

 

¿Cómo leer la hora en relojes digitales?

En el reloj digital no se observan manecillas sino que expresa la hora y los minutos separados por dos puntos. Las primeras dos cifras corresponden a las horas y las dos cifras que se encuentran a la derecha de los dos puntos indican los minutos.

La lectura es similar a la de los relojes analógicos, la diferencia es que la hora y los minutos se observan de manera más directa. Primero leemos la hora y después los minutos

En los casos a los cuales aplique se agregan las expresiones “…en punto”, “…y cuarto”, “…y media” y “un cuarto para…”.

 Son las ocho en punto.

 Son las ocho y cuarto.

 Son las ocho y media.

 Son un cuarto para las nueve.

 Son las ocho y treinta y cinco minutos.

VER INFOGRAFÍA

Las abreviaturas a. m. y p. m.

Son abreviaturas que suelen aparecer en los relojes digitales. La abreviatura a. m. significa que la hora leída corresponde a antes del mediodía, mientras que p. m. se usa para indicar las horas después del mediodía.

Sistema horario de 24 horas

El sistema usado por los relojes analógicos es de 12 horas. Por lo tanto tiene que completar dos ciclos para cubrir un día. El sistema de 24 horas lleva este nombre porque divide al día en las 24 horas totales que lo conforman. Por eso no necesita de las siglas a. m. y p. m. En este sistema las 00:00 horas o 00:00 h corresponden a las 12 a. m., hora desde la cual se empiezan a contar las horas de manera ascendente. En esta convención de tiempo el día se mide de medianoche a medianoche.

Formato 24 horas Formato 12 horas
00:00 h 12:00 a. m.
01:00 h 01:00 a. m.
02:00 h 02:00 a. m.
03:00 h 03:00 a. m.
04:00 h 04:00 a. m.
05:00 h 05:00 a. m.
06:00 h 06:00 a. m.
07:00 h 07:00 a. m.
08:00 h 08:00 a. m.
09:00 h 09:00 a. m.
10:00 h 10:00 a. m.
11:00 h 11:00 a. m.
12:00 h 12:00 m.
13:00 h 01:00 p. m.
14:00 h 02:00 p. m.
15:00 h 03:00 p. m.
16:00 h 04:00 p. m.
17:00 h 05:00 p. m.
18:00 h 06:00 p. m.
19:00 h 07:00 p. m.
20:00 h 08:00 p. m.
21:00 h 09:00 p. m.
22:00 h 10:00 p. m.
23:00 h 11:00 p. m.
El sistema de 24 horas es usado en diversas áreas, de hecho, en algunos países se ha estandarizado como sistema de notación del tiempo. Es común su empleo en el área militar y en el de la astronomía. También suele usarse en áreas como la medicina para llevar registros de la historia clínica de los pacientes. Otros usos se dan en aeropuertos y otras terminales de transportes.

¡A practicar!

1. ¿Qué hora indican los relojes?

a) 

Solución
Son las once y cinco minutos.

b)

Solución
Son las once y media.

c)

Solución
Son las ocho y cuarto.

c)

Solución
Son las tres y media

2. ¿Qué hora observas en estos relojes?

a)

Solución
Son las tres y veinte minutos.

b)

Solución
Son las diez en punto.

c)

Solución
Son las once y cuarto.

3. ¿A qué hora del sistema de 12 horas corresponde?

a) Las ocho y treinta y cinco minutos.

b) Las treinta y cinco para las diecinueve.

c) Las nueve y media.

d) Las seis y treinta y cinco minutos.

Solución
d) Las seis y treinta y cinco minutos.

RECURSOS PARA DOCENTES

Artículo “Medidas de tiempo”

Este artículo describe las principales unidades de tiempo y propone una serie de operaciones que se pueden realizar con unidades de tiempo.

VER

Artículo “Reloj de arena”

El presente artículo destacado describe a este sencillo pero asombroso invento que utilizaban nuestros antepasados para medir el tiempo.

VER

Artículo “Los calendarios”

Este artículo describe el origen de los calendarios y las característica del calendario gregoriano, uno de los más usados hoy en día. También explica otros tipos de calendarios que han sido utilizados por diversas culturas como la maya y la egipcia.

VER

CAPÍTULO 1 / TEMA 4

NÚMEROS ROMANOS

DESDE QUE EXISTE EL SER HUMANO, TAMBIÉN EXISTE LA NECESIDAD DE CONTAR. DISTINTAS CIVILIZACIONES CREARON SUS PROPIOS SISTEMAS DE NUMERACIÓN, ESTE ES EL CASO DE LA CIVILIZACIÓN ROMANA. LOS NÚMEROS ROMANOS SOLO CUENTAN CON SIETE SÍMBOLOS, PERO CON ELLOS PUEDES FORMAR INFINIDAD DE NÚMEROS.

HISTORIA DE LOS NÚMEROS ROMANOS

HACE MUCHOS AÑOS ATRÁS, LOS ROMANOS EMPLEARON UN SISTEMA DE NUMERACIÓN EN EL CUAL SUS SIGNOS ERAN LETRAS: LOS NÚMEROS ROMANOS. CADA LETRA DE ESTE SISTEMA TIENE UN VALOR PROPIO SEA CUAL SEA LA POSICIÓN DEL NÚMERO. EN LA ACTUALIDAD PODEMOS ENCONTRARLOS CAPÍTULOS DE LIBROS O EN ALGÚN RELOJ ANTIGUO.

 

EL SISTEMA DE NUMERACIÓN ROMANO TIENE SUS ORÍGENES EN LOS ETRUSCOS, UN ANTIGUO PUEBLO UBICADO EN LA ACTUAL ITALIA CENTRAL. LOS SÍMBOLOS DE ESTE SISTEMA SURGIERON EN LA ANTIGUA ROMA Y SE MANTUVIERON DURANTE TODO EL IMPERIO ROMANO.

SI BIEN SU USO DISMINUYÓ TRAS LA CAÍDA DEL IMPERIO, AÚN ERAN EMPLEADOS EN MUCHAS OCASIONES. CON EL TIEMPO, EL SISTEMA DE NUMERACIÓN ROMANO FUE SUSTITUIDO POR EL SISTEMA DECIMAL, EL CUAL USAMOS DÍA A DÍA Y CONSTA DE DIEZ CIFRAS: 1, 2, 3, 4, 5, 6, 7, 8, 9 Y 10.

¿QUÉ SON LOS NÚMEROS ROMANOS?

LOS NÚMEROS ROMANOS SON NÚMEROS EXPRESADOS EN LETRAS QUE INDICAN UNA CANTIDAD. ESTE SISTEMA DE NUMERACIÓN SOLO TIENE SIETE SÍMBOLOS:

NÚMERO ROMANO VALOR
I 1
V 5
X 10
L 50
C 100
D 500
M 1.000

¿SABÍAS QUÉ?

EN EL SISTEMA DE NUMERACIÓN ROMANO EL 1 SIEMPRE VALDRÁ UNO 1,  YA SEA QUE LO SUMEMOS O LO RESTEMOS. EN CAMBIO, EN NUESTRO SISTEMA DE NUMERACIÓN DECIMAL, EL UNO 1 PUEDE TENER VALORES DISTINTOS SEGÚN EL LUGAR QUE OCUPE EN EL NÚMERO, POR EJEMPLO, EN 21, EL 1 ES UNIDAD Y VALE 1, PERO EN 15, ESE 1 NO VALE 1, VALE 10.

ESCRITURA Y LECTURA DE LOS NÚMEROS ROMANOS

PARA LEER Y ESCRIBIR NÚMEROS ROMANOS DEBEMOS SEGUIR LAS SIGUIENTES REGLAS:

 

  • LOS SÍMBOLOS SE ESCRIBEN DE IZQUIERDA A DERECHA. SI UN NÚMERO UBICADO A LA DERECHA DE OTRO ES IGUAL O MENOR A ESTE, SE SUMAN.

XVII = 10 + 5 + 1 + 1 = 17

VIII = 5 + 1 + 1 + 1 = 8

 

  • SI UN SÍMBOLO DE MENOR VALOR ESTÁ A LA IZQUIERDA DE UNO DE MAYOR VALOR, ENTONCES SE RESTAN.

IV = 5 − 1 = 4

IX = 10 − 1 = 9

¿SABÍAS QUÉ?

LOS SÍMBOLOS I (1) Y X (10) SÓLO PUEDEN RESTAR A SUS DOS SÍMBOLOS INMEDIATAMENTE SUPERIORES, ES DECIR:

I SÓLO PUEDE RESTAR A V Y X.

X SÓLO PUEDE RESTAR A L Y A C.

  • LOS SÍMBOLOS V (5) Y L (50) SIEMPRE SUMAN Y NUNCA PUEDEN ESTAR A LA IZQUIERDA PARA RESTAR A UN VALOR MAYOR:

XCV = 100 − 10 + 5 = 95

XLV = 50 − 10 + 5 = 45

  • LOS SÍMBOLOS PUEDEN REPETIRSE TRES VECES DE MANERA CONSECUTIVA COMO MÁXIMO. V Y L NO SE REPITEN.

III = 1 + 1 + 1 = 3

XXX = 10 + 10 + 10 = 30

 

  • UN SÍMBOLO QUE RESTA NO PUEDE REPETIRSE DE MANERA CONSECUTIVA.

 

¡A PRACTICAR!

EXPRESA LOS SIGUIENTES NÚMEROS ARÁBIGOS EN NÚMEROS ROMANOS:

  • 58
SOLUCIÓN
LVIII
  • 86
SOLUCIÓN
LXXXVI
  • 73
SOLUCIÓN
LXXIII
  • 61
SOLUCIÓN
LXI
  • 48
SOLUCIÓN
XLVIII
  • 36
SOLUCIÓN
XXXVI

APLICACIÓN DE LA NUMERACIÓN ROMANA

HOY DÍA AÚN USAMOS LOS NÚMEROS ROMANOS EN DIVERSAS CIRCUNSTANCIA. ESTOS SON ALGUNOS EJEMPLOS:

  • PARA DAR LA HORA EN ALGUNOS TIPOS RELOJES.
  • PARA NOMBRAR PAPAS, POR EJEMPLO, EL PAPA BENEDICTO XVI.
  • PARA NOMBRAR REYES, POR EJEMPLO, LA REINA ISABEL II.
  • PARA NOMBRAR SIGLOS, POR EJEMPLO, EL SIGLO XXI.
  • PARA NOMBRAR EVENTOS, POR EJEMPLO, LA V EDICIÓN DEL FESTIVAL DE MÚSICA.

 

A PESAR DE QUE NUESTRO SISTEMA DE NUMERACIÓN DECIMAL ES EL MÁS USADO EN TODO EL MUNDO, EL SISTEMA DE NUMERACIÓN ROMANO TODAVÍA SE APLICA. NOMBRES DE PAPAS, DE REYES, DE SIGLOS Y DE EVENTOS SON SOLO ALGUNOS EJEMPLOS. TAMBIÉN SE LOS PUEDE VER EN TALLADOS O PLACAS CONMEMORATIVAS.

ACTIVIDADES

1. ORDENA LOS SIGUIENTES NÚMEROS ROMANOS DE MENOR A MAYOR:

XIII – LXX – XXIV – IV – VIII – XXXI

SOLUCIÓN
IV (4)- VIII (8)- XIII (13)- XXIV (24)- XXXI (31) – LXX (70)

2. EXPRESAR LOS SIGUIENTES NÚMEROS ROMANOS EN NÚMEROS CARDINALES:

III – IX – XII – XXII – LXXIX – LXV – LIII

SOLUCIÓN
3 – 9 – 12 – 22 – 79 – 65 – 53
RECURSOS PARA DOCENTES

Artículos “Números romanos”

En el siguiente artículo hay más estrategias de enseñanza para ampliar los conocimientos acerca del sistema de numeración romana.

VER

CAPÍTULO 3 / TEMA 1

¿Qué son las fracciones?

Las fracciones, a diferencia de los números enteros, permiten expresar proporciones de algo. Son útiles en la vida cotidiana y se usan con más frecuencia de lo que piensas. Frases como “un cuarto de kilo” o “un tercio de taza” son algunos ejemplos. En matemática son tan relevantes que forman su propio conjunto de números: los racionales. 

Partes de una fracción

Una fracción resulta de dividir un número entero en partes iguales. En matemática es representada por dos números enteros ,denominados términos, que están separados por una línea horizontal, denominada raya de división o raya fraccionaria.

Los números que componen a una fracción se denominan numerador y denominador. El primero está ubicado en la parte superior de la raya de división y el segundo está en la parte inferior de esta. El numerador indica el número de partes que se han tomado de un entero, mientras que el denominador representa el número de partes en que se ha dividido el entero.

 

Podemos expresar las fracciones con una línea divisoria horizontal o diagonal. En este sentido, a la fracción \frac{1}{2} también la podríamos expresar como 1/2.

Para entender el significado de la fracción anterior imaginemos que una pizza representa el “todo”, es decir, sería el entero que queremos dividir, el denominador de una fracción representa el número de partes que se ha dividido el entero, lo que nos permite concluir que la pizza se ha dividido en dos parte. Por otro lado, el numerador representa el número de partes que se ha tomado, en este ejemplo es 1, lo que quiere decir que 1/2 de pizza sería una de las dos porciones de la pizza.

La expresión 1/2 de pizza sería lo mismo que dividir la pizza en dos partes iguales y tomar una de esas partes. En la cocina se emplean fracciones para hablar de unidades de medición como tazas de ingrediente, por ejemplo: 1/2 de taza de harina, 1/3 de taza de agua, etc. Recuerda que el denominador indica cuántas veces se ha dividido algo en partes iguales (una taza, un litro, una naranja…).
¿Sabías qué?
El denominador de una fracción nunca es igual a cero (0).

VER INFOGRAFÍA

Lectura de fracciones

Como ya sabemos, el denominador indica en cuántas partes se dividió un número entero. Cada una de esas partes recibe un nombre, por ejemplo, si dividimos en dos son medios, si dividimos en tres son tercios, si dividimos en cuatro son cuartos y así hasta el número once, a partir de ese número añadimos el sufijo –avos al número: onceavos, doceavos, treceavos y así sucesivamente.

Esta tabla muestra el nombre de cada una de las partes en las que se puede dividir un entero hasta el cien:

Partes que se divide del entero Nombre
2 Medios
3 Tercios
4 Cuartos
5 Quintos
6 Sextos
7 Séptimos
8 Octavos
9 Novenos
10 Décimos
11 Onceavos
12 Doceavos
13 Treceavos
14 Catorceavos
15 Quinceavos
16 Dieciseisavos
17 Diecisieteavos
18 Dieciochoavos
19 Diecinueveavos
20 Veinteavos
30 Treintavos
40 Cuarentavos
50 Cincuentavos
60 Sesentavos
70 Setentavos
80 Ochentavos
90 Noventavos
100 Centavo

Para leer una fracción primero indicamos el número del numerador y luego las partes en las que está dividido el entero de acuerdo a la tabla anterior. Por ejemplo, \frac{}{}\frac{1}{2} se lee como “un medio”. Observemos otros ejemplos:

a) \frac{2}{3} se lee “dos tercios”.

b) \frac{6}{8} se lee “seis octavos”.

c) \frac{15}{30} se lee “quince treintavos”.

d) \frac{12}{23} se lee “doce veintitresavos”.

e) \frac{32}{40} se lee “treinta y dos cuarentavos”.

f) \frac{97}{100} se lee “noventa y siete centavos”.

¿Sabías qué?
Los centavos también son llamados céntimos.

Origen muy antiguo

Las antiguas civilizaciones como la babilónica, la egipcia y la griega usaban las fracciones en sus cálculos. Cada una tenía una manera particular de expresarlas y no fue sino hasta el siglo XIII cuando el matemático italiano Leonardo Fibonacci difundió el uso de la línea horizontal, símbolo que se emplea en la actualidad para separar el numerador y denominador en una fracción.

Relación de las fracciones y la división

Las fracciones representan porciones de un todo, es por ello que de alguna manera están estrechamente relacionadas con la división. De hecho, toda fracción es una división sin resolver, es decir; \frac{a}{b} es equivalente a a\div b. Por lo tanto, \frac{1}{2} es igual a 1\div 2.

En algunas ocasiones podemos expresar operaciones en forma de fracción, pero también podemos hacerlo como división y resolver la misma.

¿Sabías qué?
Existen fracciones que están formadas por una parte entera y una fraccionaria, a ellas se las conoce como fracciones mixtas.

Aplicación en la vida cotidiana de las fracciones

El ser humano siempre ha tenido la necesidad de contar, medir y repartir; razón por la que inventó los números. Las fracciones no están lejos de esta realidad y son usadas para entender porciones de cosas.

Están presentes en recetas de cocinas, en mediciones de telas y de volúmenes de productos (como en las gaseosas de medio litro o 1/2 L). Hay autos donde los indicadores del nivel de gasolina son expresados en fracciones para saber si el tanque está lleno, tiene la mitad o un cuarto de su capacidada.

Incluso, están presentes en algunas monedas como el dólar, donde existe una denominación llamada “centavo de dólar”, es decir, si el valor de un dólar lo pudiéramos dividir en 100 partes iguales, una de esas partes sería el centavo.

En resumen, las fracciones permiten expresar cantidades cotidianas de manera más sencilla.

Además de sus múltiples aplicaciones en los cálculos matemáticos, las fracciones se emplean en situaciones cotidianas de la vida como lo son las mediciones. También se usan en gráficos que permiten comprender datos de manera más simple. Muchos países del mundo las emplean en sus monedas y ciertos dispositivos usan escalas expresadas en fracciones.
¡A practicar!

1. ¿Cómo se leen las siguientes fracciones?

a) \frac{5}{3}

Solución
Cinco tercios.

b) \frac{1}{100}

Solución
Un centavo.

c) \frac{23}{40}

Solución
Veintitrés cuarentavos.

d) \frac{3}{2}

Solución
Tres medios.

e) \frac{2}{5}

Solución
Dos quintos.

f) \frac{12}{11}

Solución
Doce onceavos.

g) \frac{7}{10}

Solución
Siete décimos.

h) \frac{11}{6}

Solución
Once sextos.

i) \frac{13}{4}

Solución
Trece cuartos.

j) \frac{58}{7}

Solución
Cincuenta y ocho séptimos.

2. ¿Cómo se escriben en número estas fracciones?

a) Nueve décimos.

Solución
\frac{9}{10}

b) Catorce novenos.

Solución
\frac{14}{9}

c) Setenta y tres centavos.

Solución
\frac{73}{100}

d) Ochenta y ocho novenos.

Solución
\frac{88}{9}

RECURSOS PARA DOCENTES

Video “Fracciones decimales”

Este video ayuda a entender la relación entre las fracciones y los números decimales así como la manera en transformar una fracción en decimal.

VER

Artículo “La clasificación de los números”

El presente artículo permite indagar más sobre los diferentes tipos de números y sus características principales.

VER

Enciclopedia “Matemáticas Primaria”

En el presente tomo de la Enciclopedia Matemáticas Primaria tendrás acceso a información más detallada sobre las fracciones, así como la posibilidad de obtener diferentes recursos educativos sobre este tema.

VER

CAPÍTULO 1 / TEMA 3

Un vistazo a los números decimales

Hay ocasiones en las que los números enteros no son útiles para expresar ciertas magnitudes; los números decimales, en cambio, permiten indicar una cantidad ubicada entre dos enteros y por este motivo son usados a diario en diversas situaciones, como por ejemplo en los precios de los productos y la lectura de la temperatura del cuerpo.

¿Qué son los números decimales?

Son números formados por una parte entera y otra parte menor que la unidad. Los números decimales generalmente se representan con una coma (,) para indicar la separación entre la parte entera que puede ser igual a cero y la parte menor a la unidad.

Los decimales de un número pueden ser finitos infinitos.

Por ejemplo:

– El número 3,15 es un decimal con un número finito de decimales.

– El número pi es un número con infinitos decimales: 3,1415926535… Al observar sus decimales se puede apreciar que no son periódicos, por lo tanto no siguen un patrón de repetición, a este tipo de números se lo conoce como número irracional.

VER INFOGRAFÍA

¿Sabías qué?
Los puntos suspensivos (…) son usados para indicar que los decimales de un número son infinitos.

Elementos de un decimal

Como ya sabemos, los números decimales están formados por una parte entera y otra menor a la unidad (conocida también como parte decimal), la parte entera se ubica a la izquierda y la parte decimal a la derecha de la coma.

La parte entera puede ser igual a cero, como por ejemplo 0,5, que es la mitad del número 1.

La parte decimal es conocida también como parte fraccionaria, y siempre representa cantidades menores a la unidad.

Los números decimales pueden ser finitos si su parte fraccionaria es finita; o infinitos si su parte fraccionaria es infinita. Los decimales infinitos, a su vez, se clasifican en periódicos y no periódicos. Los periódicos presentan un patrón infinito en sus decimales, como el número 1,333… y los no periódicos no siguen ningún patrón, como en el caso del número pi.

Lectura de decimales

Antes de aprender a leer números decimales es importante conocer los conceptos de décima, centésima y milésima.

  • Décima: es el resultado de dividir la unidad en diez partes iguales. En la tabla de valor posicional se muestra con la letra d minúscula.
  • Centésima: es el resultado de dividir la unidad en cien partes iguales. En la tabla de valor posicional se muestra con la letra c minúscula. La centésima es menor que la décima.
  • Milésima: es el resultado de dividir la unidad en mil partes iguales. En la tabla de valor posicional se muestra con la letra m minúscula. La milésima es menor que la centésima.

La tabla de valor posicional para un número decimal es:

Para leer un número decimal debes seguir estos pasos:

  1. Lee su parte entera de la misma forma como se hace en la lectura de números enteros en el siguiente orden: centena de mil, decena de mil, unidad de mil, centena, decena, unidad.
  2. Agrega la palabra “unidades” o “enteros”.
  3. Coloca una coma.
  4. Lee la parte decimal de la misma manera en la que se leen los enteros y al final nombra el orden decimal que ocupa la última cifra (décimas, centésimas o milésimas).

Por ejemplo, 535,42 se lee: “quinientas treinta y cinco unidades, cuarenta y dos centésimas“.

En el ejemplo anterior, el 2 corresponde a la última cifra y ocupa el orden de las centésimas por eso se agrega dicho orden al final del número.

Si el decimal tiene una parte entera igual a cero solo se nombra la parte decimal de acuerdo al orden de la última cifra. Por ejemplo, 0,579 se lee: “quinientas setenta y nueve milésimas“.

¿Sabías qué?
Cuando un número decimal termina en cero este número puede omitirse sin alterar su valor. Así, 1,50 es igual a 1,5.

Utilidad de los decimales

Gracias a que permiten expresar números menores a la unidad, uno de sus principales usos son en las mediciones, desde la lectura de la temperatura hasta la determinación del tamaño de una bacteria, por ejemplo. Por esta razón, los decimales son indispensables en los cálculos empleados en disciplinas como la arquitectura, la medicina, la ingeniería y muchas otras más.

Para comparar dos números decimales lo primero que se debe hacer es comparar sus partes enteras, la que sea mayor corresponderá al número decimal mayor, por ejemplo: 21,5 es mayor que 9,785 porque 21 es mayor a 9. Cuando dos números decimales tienen igual parte entera se comparan sus partes decimales, por ejemplo: 7,58 es mayor a 7,49 porque 58 es mayor a 49.

¿Se usa punto o coma?

La respuesta es simple: ¡cualquiera de las dos! La diferencia en usar una u otra radica en el lugar en donde te encuentres. La coma y el punto son usados como separadores de los números decimales y ambos son válidos. En gran parte de Europa y América del Sur se emplea la coma, pero algunos países como Estados Unidos, Canadá, México y Reino Unido emplean el punto.

Sumas y restas de decimales

Las sumas y restas de números decimales se hacen del mismo modo que con los números enteros. En estos casos se deben colocar los números que se vayan a sumar o restar uno debajo del otro, de manera tal que las cifras del mismo orden se encuentren en la misma columna, es decir, las centenas con las centenas, las decenas con las decenas, las unidades con las unidades, las décimas con las décimas y así sucesivamente. De igual forma, las comas deben estar ubicadas en la misma columna.

Observa la manera correcta de sumar los números 124,32 + 267,11:

Luego, la suma se realiza como una suma normal sin considerar la coma, al final, la coma en el resultado estará ubicada en la columna correspondiente.

Si las cifras que se suman no tiene la misma cantidad de decimales, se completa con cero la cifra de menor número de decimales. Por ejemplo, 74,874 +41,41 se calcula de la siguiente manera:

En el caso de una resta se cumplen los mismos pasos para restar enteros y las cifras se ubican una debajo de la otra de acuerdo a su valor posicional. Si es necesario se agregan ceros en la parte decimal de forma tal que los números tengan la misma cantidad de decimales.

Por ejemplo, al realizar la resta de 945,5 − 307,182 el procedimiento sería:

Cuando se resuelvan ejercicios con números decimales que tengan la parte entera igual a cero, la suma o resta puede realizarse sin ningún tipo de inconveniente, pero con la previsión de que todas sus cifras estén correctamente ordenadas. Un error común es ubicar las comas de los números en columnas distintas con lo cual el resultado será incorrecto.

 

¡A practicar!

  1. ¿Cómo se leen los siguientes números decimales?
    a) 457,5
    Solución
    Cuatrocientas cincuenta y siete unidades, 5 décimas.
    b) 8,742
    Solución
    Ocho unidades, setecientas cuarenta y dos milésimas.
    c) 0,92
    Solución
    Noventa y dos centésimas.
    d) 100,102
    Solución
    Cien unidades, ciento dos milésimas.
  2. Calcula el resultado de las siguientes sumas:
    a) 178,45 + 278,73
    Solución
    457,18
    b) 14,2 + 29,178
    Solución
    43,378
    c) 402,745 + 61,45
    Solución
    464,195
    d) 652,314 + 174,074
    Solución
    826,388
  3. Calcula el resultado de las siguientes restas:
    a) 279,3 − 142,1
    Solución
    137,2
    b) 542,22 − 419,1
    Solución
    123,12
    c) 547,943 − 390,451
    Solución
    157,492
    d) 482,1 − 125,748
    Solución
    356,352
RECURSOS PARA DOCENTES

Artículo “Números decimales”

El siguiente artículo profundiza la información sobre los números decimales y explica su relación con las fracciones.

VER

Video “Suma y resta de números decimales”

El video muestra ejemplos de sumas y restas de números decimales, así como los elementos a tener en cuenta durante la realización de este tipo de ejercicios.

VER

Tarjetas educativas “Operaciones matemáticas”

Las siguientes tarjetas sirven para mostrar de una manera más didácticas las operaciones matemáticas básicas.

VER