CAPÍTULO 1 / TEMA 3

SERIES Y RELACIONES

UNA SERIE ES UNA SUCESIÓN DE ELEMENTOS O NÚMEROS QUE SIGUEN UNA REGLA O PATRÓN. CREAMOS SERIES CADA VEZ QUE ORGANIZAMOS NUESTROS CRAYONES POR COLOR, HACEMOS FILA EN LA ESCUELA POR ESTATURA, O CONTAMOS CON NUESTROS DEDOS. COMO VES, LAS SERIES ESTÁN EN CADA ASPECTO DE NUESTRO DÍA A DÍA.

SERIES Y PATRONES

OBSERVA ESTA IMAGEN, ¿QUÉ FIGURAS VES?, ¿TIENEN UN ORDEN PARTICULAR?

HAY CÍRCULOS Y TRIÁNGULOS. SÍ TIENEN UN ORDEN: HAY UN CÍRCULO AZUL Y LUEGO UN TRIÁNGULO AMARILLO, DESPUÉS VIENE OTRO CÍRCULO AZUL Y OTRO TRIÁNGULO AMARILLO. ESTE ES UN EJEMPLO DE SERIE.

UNA SERIE ES UNA SECUENCIA DE ELEMENTOS QUE SIGUEN UNA REGLA QUE LLAMAMOS PATRÓN.

 

– EJEMPLO:

OBSERVA ESTA SERIE, ¿CUÁL ES EL PATRÓN?

PARA IDENTIFICAR EL PATRÓN VEMOS FIGURA POR FIGURA:

  • PRIMERO: SOL
  • SEGUNDO: CÍRCULO
  • TERCERO: TRIÁNGULO

DESPUÉS SE REPITEN LAS MISMAS FIGURAS, ASÍ QUE EL PATRÓN ES SOL-CÍRCULO-TRIÁNGULO.

 

– OTRO EJEMPLO:

OBSERVA ESTA IMAGEN, ¿CUÁL ES EL PATRÓN?

EL PATRÓN ES CUADRADO-TRIÁNGULO-CÍRCULO.

SERIES NUMÉRICAS

LAS SERIES NO SOLO SE PUEDEN HACER CON OBJETOS Y FIGURAS, TAMBIÉN LAS PODEMOS CREAR CON NÚMEROS. DE HECHO, CADA VEZ QUE CONTAMOS DE 1 EN 1 HACEMOS UNA SERIE NUMÉRICA CON UN PATRÓN IGUAL A +1, PUES CADA NÚMERO ES UNA UNIDAD MAYOR AL ANTERIOR.

SERIES ASCENDENTES Y DESCENDENTES

LAS SERIES PUEDEN IR DE MAYOR A MENOR O DE MENOR A MAYOR.

SERIES ASCENDENTES

CUANDO EN LA SERIE UBICAMOS ELEMENTOS CON PATRONES QUE VAN DE MENOR A MAYOR, DECIMOS LA QUE LA SERIE ES ASCENDENTE. POR EJEMPLO:

ESTA ES UNA SERIE DE FIGURAS GEOMÉTRICAS. LA PRIMERA TIENE 3 LADOS, LA SEGUNDA TIENE 4 LADOS, LAS TERCERA TIENE 5 LADOS Y LA CUARTA FIGURA TIENE 6 LADOS. ASÍ QUE EL PATRÓN ES + 1 LADO.

 

TAMBIÉN SUCEDE CON LOS NÚMEROS, POR EJEMPLO:

1   2   3   4   5   6   7   8   9   10   11   12   13   14   15

ESTA ES UNA SERIE NUMÉRICA ASCENDENTE PORQUE CADA NÚMERO ES MAYOR AL ANTERIOR Y EL PATRÓN ES + 1.

SERIE DESCENDENTE

CUANDO EN LA SERIE UBICAMOS ELEMENTOS CON PATRONES QUE VAN DE MAYOR A MENOR, DECIMOS LA QUE LA SERIE ES DESCENDENTE. POR EJEMPLO:

ESTA ES UNA SERIE DE RECTÁNGULOS EN LOS QUE CADA UNO ES MÁS PEQUEÑO EN TAMAÑO QUE EL ANTERIOR. EL SEGUNDO DE IZQUIERDA A DERECHA ES MÁS PEQUEÑO QUE EL ANTERIOR, EL TERCERO MÁS PEQUEÑO QUE LOS ANTERIORES, Y ASÍ SUCESIVAMENTE.

 

TAMBIÉN HAY SERIES NUMÉRICAS DESCENDENTES, POR EJEMPLO:

15   14   13   12   11   10   9   8   7   6   5   4   3   2   1

ESTA ES UNA SERIE NUMÉRICA DESCENDENTE PORQUE CADA NÚMERO ES MENOR AL ANTERIOR Y EL PATRÓN ES − 1.

¡ES TU TURNO!

OBSERVA ESTAS SERIES, ¿CUÁL ES EL PATRÓN?

SOLUCIÓN
PATRÓN: CÍRCULO AZUL-CÍRCULO ROJO

 

SOLUCIÓN
PATRÓN: TRIÁNGULO-SOL-CUADRADO
TODOS LOS NÚMEROS TIENEN UN ORDEN, Y EN SU FUNCIÓN DE REPRESENTAR CANTIDADES, HAY UNOS QUE SON MAYORES QUE OTROS. SI TENEMOS QUE AGRUPAR FIGURAS, NOS DAMOS CUENTA QUE 4 ES MAYOR QUE 2; 5 ES MAYOR QUE 2; 3 ES MENOR QUE 4; O 3 ES MENOR QUE 5. ESTAS RELACIONES LAS MOSTRAMOS CON SIGNOS DE RELACIÓN COMO MENOR QUE “<” O MAYOR QUE “>”.

RELACIONES DE MENOR Y MAYOR QUE

OBSERVA ESTA IMAGEN, ¿CUÁL ÁRBOL TIENE MAYOR ALTURA?

EL ÁRBOL DE LA DERECHA TIENE UNA ALTURA MAYOR QUE EL DE LA IZQUIERDA.

LO MISMO SUCEDE CON LOS NÚMEROS Y PARA ESO USAMOS LOS SIGNOS DE RELACIÓN < Y >.

MENOR QUE “< “

CON ESTE SÍMBOLO < INDICAMOS QUE EL NÚMERO DE LA IZQUIERDA ES MENOR QUE EL DE LA DERECHA. POR EJEMPLO:

  • 3 < 5 SE LEE “TRES ES MENOR QUE CINCO”.
  • 8 < 10 SE LEE “OCHO ES MENOR QUE DIEZ”.
  • 1 < 9 SE LEE “UNO ES MENOR QUE NUEVE”.

MAYOR “>”

CON ESTE SÍMBOLO < INDICAMOS QUE EL NÚMERO DE LA IZQUIERDA ES MAYOR QUE EL DE LA DERECHA. POR EJEMPLO:

  • 7 > 1 SE LEE “SIETE ES MAYOR QUE UNO”.
  • 10 > 8 SE LEE “DIEZ ES MAYOR QUE OCHO”.
  • 5 > 4 SE LEE “CINCO ES MAYOR QUE CUATRO”.

USO DE ORDINALES PARA LA UBICACIÓN DE OBJETOS

LOS NÚMEROS ORDINALES SIRVEN PARA SABER LA POSICIÓN Y ORDEN DE LOS ELEMENTOS EN UN CONJUNTO. PUEDEN SER FEMENINOS Y MASCULINOS Y SE REPRESENTAN CON UN SÍMBOLO DEL LADO DERECHO. OBSERVA LA SIGUIENTE TABLA CON LOS PRIMEROS DIEZ NÚMERO ORDINALES:

MASCULINO FEMENINO
1.º PRIMERO 1.ª PRIMERA
2.º SEGUNDO 2.ª SEGUNDA
3.º TERCERO 3.ª TERCERA
4.º CUARTO 4.ª CUARTA
5.º QUINTO 5.ª QUINTA
6.º SEXTO 6.ª SEXTA
7.º SÉPTIMO 7.ª SÉPTIMA
8.º OCTAVO 8.ª OCTAVA
9.º NOVENO 9.ª NOVENA
10.º DÉCIMO 10.ª DÉCIMA

– EJEMPLO:

ESTOS NIÑOS ESTÁN ORGANIZADOS SEGÚN SU ESTATURA, ¿REPRESENTAN UNA SERIE?

SÍ, ES UNA SERIE DESCENDENTE PORQUE VAN DE MAYOR A MENOR. JUAN ES EL PRIMERO Y EL MÁS ALTO; DIEGO ES EL DÉCIMO Y EL MÁS BAJO.

¡ES TU TURNO!

OBSERVA LA IMAGEN Y ESCRIBE EL ORDEN DE LAS PERSONAS.

SOLUCIÓN
  • EL LUGAR DE JUAN ES EL PRIMERO
  • EL LUGAR DE LOLO ES EL SEGUNDO.
  • EL LUGAR DE ANA ES EL TERCERO.
  • EL LUGAR DE SOFÍA ES EL CUARTO.
  • EL LUGAR DE NICO ES EL QUINTO.
  • EL LUGAR DE MAXI ES EL SEXTO.
  • EL LUGAR DE REINA ES EL SÉPTIMO.
  • EL LUGAR DE PABLO ES EL OCTAVO.
  • EL LUGAR DE LUNA ES EL NOVENO.
  • EL LUGAR DE DIEGO ES EL DÉCIMO.

 

¡A PRACTICAR!

1. COMPLETA LOS PATRONES.

SOLUCIÓN

 

2. COMPLETA LA SERIE NUMÉRICA. ¿CUÁL ES EL PATRÓN?

SOLUCIÓN

EL PATRÓN ES + 1.

 

3. COLOCA EL SIGNO > O < SEGÚN CORRESPONDA.

  • 10 ____ 5
SOLUCIÓN
10 > 5
  • 14 ____ 6
SOLUCIÓN
14 > 6
  • 16 ____ 11
SOLUCIÓN
16 > 11
  • 7 ____ 10
SOLUCIÓN
7 < 10 
  • 7 ____ 20
SOLUCIÓN
7 < 20
  • 11 ____ 10
SOLUCIÓN
11 > 10
  • 4 ____ 2
SOLUCIÓN
4 > 2
  • 11 ____ 9
SOLUCIÓN
11 > 9
RECURSOS PARA DOCENTES

Artículo “Comparar y ordenar números”

Este artículo detalla cómo comprar y ordenar números por medio de los símbolos de relación.

VER

CAPÍTULO 1 / TEMA 5

SeCUENCIAS

Al contar los números naturales, ya sea de 1 en 1, 2 en 2, o de 5 en 5, se aplican secuencias de números ordenados que se rigen por ciertas reglas, de manera que cumplen con un orden establecido. Una de las más conocidas es la sucesión de Fibonacci, pero las secuencias pueden ser de varios tipos: finitas o infinas, ascendentes o descendentes.

SeCUENCIAS con figuras

Una secuencia es un conjunto de elementos que están relacionadas entre sí y que se encuentran ordenadas según un criterio.

En las secuencias ordenadas en función de un patrón de figuras, se observa que los objetos están organizados de acuerdo a uno o más atributos. Algunos ejemplos son:

  • Por tamaño:

  • Por color:

  • Por forma:

  • También pueden contener imágenes y patrones más complejos:

El orden de una secuencia numérica no siempre es el mismo, por ejemplo, los elementos pueden estar ordenados de forma ascendente, de manera alternada o de manera decreciente.

Partes de una secuencia numérica

Una de las primeras secuencias que la mayoría de las personas aprende es la secuencia de los números naturales y se expresa de la siguiente forma: \mathbb{N} = {1, 2, 3, 4 ,…} en donde cada uno de los números denominados elementos, se encuentran ordenados de 1 en 1. Los tres puntos suspensivos al final de la secuencia indican que los números continúan.

Las secuencias pueden ser infinitas, como pasa con los números naturales, que siguen la secuencia de manera ilimitada, y también pueden ser finitas como sucede con la secuencia de las vocales: {a, e, i, o, u}.

¿Sabías qué?
Las secuencias numéricas permiten desarrollar el razonamiento matemático.

Secuencias ascendentes y descendentes

– Secuencias ascendentes

Las secuencias numéricas tienen una regla que permite determinar el valor de cada término o elemento de la misma. Por ejemplo, cuando se cuentan los números de 2 en 2, en realidad se incrementan 2 números por cada elemento, es decir, la regla en este caso sería sumar 2 a cada elemento:

En la imagen se puede observar como cada elemento de la secuencia se incrementa por 2, esto significa que es una secuencia ascendente porque todos sus elementos van en aumento, por lo tanto, cada número es mayor que el anterior. Si a 2 se le suma 2, el resultado es 4 y si a este número se le suma 2 el resultado es 6, y así sucesivamente. En este caso, la secuencia numérica se representa como: {2, 4, 6, 8, …}.

– Secuencia descendente

Las secuencias descendentes, en cambio, se desarrollan en forma regresiva y cada número es menor que el anterior. En la siguiente imagen se puede observar un ejemplo de secuencia descendente:

La regla en esta secuencia descendente es restar 3 a cada número, de manera que es fácil calcular el número a continuación del 9, para ello realizamos la regla: 9 – 3 = 6, así, el número siguiente a 9 en esta secuencia es 6.

¿Sabías qué?
Hay secuencias ascendentes cuya regla consiste en multiplicar un número a cada elemento y secuencias descendentes donde se divide un número a cada elemento.

Números de Fibonacci

Son conocidos también como secuencia de Fibonacci. Su nombre proviene de quien la describió por primera vez en Europa: el matemático italiano Leonardo Fibonacci. Es una secuencia en la cual el número siguiente se obtiene al sumar los dos números anteriores a este y se detalla a continuación {1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89 ,…}. En la secuencia se puede observar que, por ejemplo, los dos números anteriores al 13 son el 5 y el 8, que al sumarlos dan como resultado al número siguiente: 5 + 8 = 13. Esto se cumple para todos los números de la secuencia.

VER INFOGRAFÍA

Divisiones y restas sucesivas

Antes de comenzar con este tema es importante recordar que multiplicar es lo mismo que sumar muchas veces el mismo número, por ejemplo:

4 x 3 = 12   es igual a   4 + 4 + 4= 12

Esto se debe a que la multiplicación está muy relacionada con la adición. Algo similar sucede con la división, la cual guarda relación con la resta. Por ejemplo, si se tiene la división 12 ÷ 3, hay que restarle 3 a 12 tantas veces como sea posible:

Al observar la imagen se razona que 12 fue restado 4 veces por el número 3. De esta manera se tiene que 12 ÷ 3 = 4.

Pasos para dividir a través de restas sucesivas

Las divisiones pueden realizarse a través de restas sucesivas de la siguiente manera:

  1. Resta el divisor al dividendo tantas veces como sea posible. Hazlo hasta que el resultado sea 0 o un número menor al divisor.
  2. Se cuenta el número de veces que se restó el divisor.
  3. El cociente de la división será igual al número de veces que se restó el divisor y el resto será igual al último número que dio como resultado la resta.

Otro ejemplo:

– Resuelve la división 30 ÷ 5

Se resuelve a través de los pasos anteriores, para simplificar se sugiere utilizar una tabla similar a esta:

El resultado es 30 ÷ 5 = 6, y se trata de una división exacta porque el resto es igual a 0.

A continuación se muestra otro ejemplo de división pero en este caso es inexacta:

En el ejercicio anterior 27 ÷ 4 = 6 pero existe un resto igual a 3, como 3 es menor que el divisor no se puede continuar las restas en este método.

Ejercicios

  1. Completa las siguientes oraciones:
    a. En las secuencias ________ todos sus elementos van en aumento.
    Solución
    ascendentes
    b. La secuencia {25, 20, 15, 10 , …} es una secuencia ______.
    Solución
    descendente
    c. Las divisiones pueden calcularse con el método de ______.
    Solución
    restas sucesivas
  2. Completa las siguientes secuencias numéricas:
    a. {50, 40, ___, 20, …}
    Solución
    30
    b. {12, ___, 8, 6, …}
    Solución
    10
    c) {15, 30, ___, 60, 75, …}
    Solución
    45
    d) { ___, 5.000, 4.000, 3.000, 2.000, …}
    Solución
    6.000
  3. Resuelve las siguientes divisiones a través de restas sucesivas
    a. 20 ÷ 5
    b. 24 ÷ 6
    c. 16 ÷ 5
    d. 20 ÷ 3
    Solución
RECURSOS PARA DOCENTES

Artículo “Sucesiones y series”

El siguiente artículo explica la diferencia entre una serie y una sucesión:

VER

Video “Aprendiendo restas por descomposición” 

El video muestra cómo realizar restas por descomposición que el docente puede emplear para relacionar la secuencias de sistema decimal con las secuencias numéricas estudiadas.

VER