CAPÍTULO 4 / TEMA 4

Propiedades de las Raíces

La radicación consiste en la obtención de un número que se ha multiplicado por sí mismo n cantidad de veces bajo el operador de la raíz, por eso también se conoce como “raíz enésima de un número”. De este modo, también podemos decir que la radicación es la operación inversa a la potenciación y, al igual que esta última, presenta propiedades importantes que aprenderás a continuación.

El origen del símbolo radical es incierto. Algunos autores coinciden en que provino de los árabes, mientras que otros afirman que fue introducido en siglo XVI por Christoph Rudolff, cuyo uso es evidenciado en su libro Coss. Muchos otros asocian el origen del signo de la raíz con la letra r, de la palabra latina radix que significa “raíz”.

¿Qué es la radicación?

Es una operación que consiste en hallar números que multiplicados por sí mismos tantas veces como indica el índice de la raíz den como resultado al radicando. Puede verse como la operación inversa a la potenciación.

\boldsymbol{\sqrt[n]{a} = b\; \; \Leftrightarrow \; \; b^{n}=a}

– Ejemplo:

\boldsymbol{\sqrt{81}=9}\: \: \: porque\: \: \: \boldsymbol{9^{2}=9\times 9=81}

\boldsymbol{\sqrt[3]{27} = 3}\; \; porque\; \; \boldsymbol{ 3^{3} = 3\times 3\times 3 =27}

Elementos de una raíz

Toda raíz cuenta con tres elementos:

\huge \boldsymbol{\sqrt[n]{a}=b}

  • Índice (n): orden de la raíz que se aplica al radicando. Indica cuántas veces multiplicamos un número por sí mismo para obtener el radicando.
  • Radicando (a): número sometido a la raíz del orden determinado por el índice.
  • Raíz (b): resultado de la radicación, el cual elevado al orden de la raíz da como resultado el radicando.

principales propiedades de la radicación

Las propiedades de la radicación tienen una gran cantidad de aplicaciones y, del mismo modo que en la potenciación, no se deben aplicar las propiedades a las operaciones de suma y resta, sino solo a las de multiplicación y división.

Propiedades de la radicación
Raíz de cero \boldsymbol{\sqrt[n]{0}=0\; \: \: \: \: \: n\neq 0}
Raíz de la unidad \boldsymbol{\sqrt[n]{1}=1}
Raíz de un producto \boldsymbol{\sqrt[n]{a\times b}=\sqrt[n]{a}\times \sqrt[n]{b}}
Raíz de un cociente \boldsymbol{\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}}
Potencia de una raíz \boldsymbol{\left ( \sqrt[n]{a} \right )^{x}=\sqrt[n]{a^{x}}}
Raíz de una raíz \boldsymbol{\sqrt[n]{\sqrt[m]{a}}=\sqrt[n\times m]{a}}

¿Sabías qué?
La mayoría de los números irracionales pueden ser expresados a partir de una raíz, por ejemplo, \sqrt{2} o \sqrt{3}.

raíz cuadrada de números negativos

La raíz cuadrada de números negativos no tiene solución dentro de los números reales (\boldsymbol{\mathbb{R}}) porque no existe un número (positivo o negativo) que al ser multiplicado por sí mismo resulte en otro negativo. Por ejemplo, la raíz cuadrada de 4 es igual a 2 porque 22 es igual a 4.

\boldsymbol{\sqrt{4}=2}\: \: \: porque \: \: \: \boldsymbol{2^{2}=2\times 2=4}

Pero esta raíz también tiene otra solución negativa:

\boldsymbol{\sqrt{4}=-2} \: \: \: porque\: \: \: \boldsymbol{\left ( -2 \right )^{2}=\left ( -2 \right )\times \left ( -2 \right )=4}

Recuerda que la regla de los signos indica que al multiplicar símbolos iguales el resultado es positivo.

Ahora, ¿cuál será la raíz cuadrada de −4?

\boldsymbol{\sqrt{-4}=} no \: \: existe

La raíz cuadrada de −4 no existe en los números reales porque no hay un número que al multiplicarse por sí mismo resulte en −4.

Sin embargo, esto no significa que no tenga solución posible, sino que pertenece a otro grupo numérico: los números complejos. Los números complejos incluyen una parte imaginaria que sirve para obtener resultados que no pertenecen a los reales.

Soluciones de una raíz

Siempre que el radicando sea negativo, la raíz tendrá solución real solo si el índice es impar, en cambio, si el índice es par, el resultado pertenecerá a los números imaginarios. Esto se debe a la regla de los signos, pues si multiplicamos por sí mismo un número negativo una cantidad de veces par (2, 4, 6, 8,…) el resultado será igualmente positivo.

aplicación de las propiedades de la radicación

Raíz de cero

Toda raíz cuyo radicando sea cero es igual a cero, siempre y cuando su índice sea diferente de dicho número.

\boldsymbol{\sqrt[n]{0}=0\; \: \: \: \: \: n\neq 0}

– Ejemplo:

\sqrt[3]{0}=0

\sqrt[5]{0}=0

Raíz de la unidad

La raíz de la unidad es igual a uno.

\boldsymbol{\sqrt[n]{1}=1}

– Ejemplo:

\sqrt[3]{1}=1

\sqrt{1}=1

Raíz de un producto

La raíz de un producto es igual al producto de las raíces de los factores.

\boldsymbol{\sqrt[n]{a\times b}=\sqrt[n]{a}\times \sqrt[n]{b}}

– Ejemplo:

\sqrt[3]{64\times 8}=\sqrt[3]{64}\times \sqrt[3]{8}=4\times 2=8

\sqrt{9\times 25}=\sqrt{9}\times \sqrt{25}=3\times 5=15

Raíz de un cociente

La raíz de un cociente es igual al cociente de las raíces del dividendo y del divisor.

\boldsymbol{\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}}

– Ejemplo:

\sqrt{\frac{576}{4}}=\frac{\sqrt{576}}{\sqrt{4}}=\frac{24}{2}=12

\sqrt[3]{\frac{64}{8}}=\frac{\sqrt[3]{64}}{\sqrt[3]{8}}=\frac{4}{2}=2

Potencia de una raíz

La potencia de una raíz es igual a la misma raíz con el radicando elevado a dicha potencia.

\boldsymbol{\left ( \sqrt[n]{a} \right )^{x}=\sqrt[n]{a^{x}}}

– Ejemplo:

\left ( \sqrt{4} \right )^{4}=\sqrt{4^{4}}=\sqrt{256}=16

\left ( \sqrt[3]{3} \right )^{9}=\sqrt[3]{3^{9}}=\sqrt[3]{19.683}=27

¡Existe otro método!

La potencia de una raíz es igual al radicando elevado al cociente de las potencias.

\left ( \sqrt{4} \right )^{4}=4^{\frac{4}{2}}=4^{2}=16

\left ( \sqrt[3]{3} \right )^{9}=3^{\frac{9}{3}}=3^{3}=27

Raíz de una raíz

La raíz de una raíz es igual otra raíz con el mismo radicando y cuyo índice es igual al producto de los índices.

\boldsymbol{\sqrt[n]{\sqrt[m]{a}}=\sqrt[n\times m]{a}}

– Ejemplo:

\sqrt{\sqrt[3]{64}}=\sqrt[2\times 3]{64}=\sqrt[6]{64}=2

\sqrt{\sqrt{81}}=\sqrt[2\times 2]{81}=\sqrt[4]{81}=3

Números irracionales

Existen números que no se pueden expresar como el cociente de dos enteros. Estos reciben el nombre de número irracionales y las raíces son un ejemplo de ellos. Uno de los números irracionales más famosos es el número pi (π). A lo largo de la historia el valor de pi ha tenido distintas aproximaciones y se lo usa, entre otras cosas, para el cálculo de superficies y volúmenes de circunferencias y esferas.

Suma y resta de radicales

Podemos sumar y restar radicales siempre y cuando estos sean semejantes, es decir, que tengan el mismo índice y el mismo radicando. Cuando esto sucede, solo sumamos o restamos los coeficientes y mantenemos el radical igual.

\boldsymbol{{\color{Red} b}\sqrt[n]{a}+{\color{Red} c}\sqrt[n]{a}=({\color{Red} b+c})\sqrt[n]{a}}

– Ejemplo:

5\sqrt{8}+\sqrt{8}+2\sqrt{8}=(5+1+2)\sqrt{8}=8\sqrt{8}

3\sqrt{25}+\sqrt{25}+\sqrt[3]{25}=4\sqrt{25}+\sqrt[3]{25}

¡A practicar!

Resuelve estas raíces y aplica las propiedades.

  • \sqrt{4}\times \sqrt{9}
Solución

\sqrt{4}\times \sqrt{9}=\sqrt{4\times 9}=\sqrt{36}=6

  • \frac{\sqrt[4]{64}}{\sqrt[4]{4}}
Solución

\frac{\sqrt[4]{64}}{\sqrt[4]{4}}=\sqrt[4]{\frac{64}{4}}=\sqrt[4]{16}=2

  • \sqrt{\sqrt[4]{256}}

Solución

\sqrt{\sqrt[4]{256}}=\sqrt[2\times 4]{256}=\sqrt[8]{256}=2

  • \sqrt[4]{3}\times \sqrt[4]{27}
Solución

\sqrt[4]{3}\times \sqrt[4]{27}=\sqrt[4]{3\times 27}=\sqrt[4]{81}=3

  • \frac{\sqrt[3]{16}}{\sqrt[3]{2}}
Solución

\frac{\sqrt[3]{16}}{\sqrt[3]{2}}=\sqrt[3]{\frac{16}{2}}=\sqrt[3]{8}=2

  • \sqrt{3}\times \sqrt{12}
Solución

\sqrt{3}\times \sqrt{12}=\sqrt{3\times 12}=\sqrt{36}=6

  • \sqrt{\frac{16}{9}}
Solución

\sqrt{\frac{16}{9}}=\frac{\sqrt{16}}{\sqrt{9}}=\frac{4}{3}

  • \frac{\sqrt{98}}{\sqrt{2}}
Solución

\frac{\sqrt{98}}{\sqrt{2}}=\sqrt{\frac{98}{2}}=\sqrt{49}=7

  • \sqrt{8}\times \sqrt{2}
Solución

\sqrt{8}\times \sqrt{2}=\sqrt{8\times 2}=\sqrt{16}=4

RECURSOS PARA DOCENTES

Artículo “Los números irracionales”

En el artículo podrá encontrar los números irracionales más conocidos y su representación en la recta numérica. Es un buen complemento para afianzar la importancia de la radicación y experimentar sus aplicaciones.

VER

Artículo “Propiedades de las raíces”

Este recurso contiene ejemplos prácticos muy útiles para profundizar sobre las propiedades de la radicación.

VER

CAPÍTULO 2 / TEMA 2

Multiplicación y división

La multiplicación y la división son operaciones básicas de la matemática. La primera consiste básicamente en sumar varias veces un mismo número y la segunda, en cambio, consiste en repartir cantidades. Ambas están muy relacionadas entre sí y su manejo es necesario para resolver otros tipos de problemas.

Elementos de la multiplicación

La multiplicación es una operación en la que se suma tantas veces un número como indica otro número, por ejemplo, 3 x 4 = 12 se puede representar como 3 + 3 + 3 + 3 = 12. El signo usado en la multiplicación es “x” y se lee “por”. Los elementos principales de una multiplicación son:

  • Factores o coeficientes: son los números que se multiplican, estos son multiplicando y multiplicador. El multiplicando es el número a sumar y el multiplicador es el número de veces que se suma al multiplicando. En la multiplicación 3 x 4 = 12, el número 3 es el multiplicando y el 4 corresponde al multiplicador.
  • Producto: es el resultado de la multiplicación de dos o más factores. Hay ocasiones en las que las multiplicaciones son largas y deben realizarse por medio de la suma de productos parciales.

¿Sabías qué?
En la multiplicación además de la equis también suele usarse el punto “·” como símbolo.
La multiplicación tiene la finalidad de calcular el producto o resultado que se obtiene de sumar el multiplicando tantas veces por sí mismo como indique el multiplicador. En estas operaciones, cuando el multiplicador es mayor a una cifra se requieren de productos parciales que se sumarán para obtener el resultado final de la multiplicación.

Propiedades de la multiplicación

Son cuatro propiedades: la conmutativa, la asociativa, la distributiva y la del elemento neutro.

Propiedad conmutativa

Esta propiedad permite que al multiplicar dos números el resultado sea el mismo sin importar el orden de los factores. Por ejemplo:

3 x 10 = 30
10 x 3 = 30

Por lo tanto, 3 x 10 = 10 x 3. Observa:

Propiedad asociativa

Esta propiedad permite que al multiplicar tres o más factores el producto siempre sea el mismo, sin importar como se agrupen estos. Por ejemplo, 2 x 4 x 6 se puede agrupar de estas formas:

(2 x 4) x 6 = x 6 = 48
2 x (4 x 6) = 2 x 24 = 48

Por lo tanto, (2 x 4) x 6 = 2 x (4 x 6). Observa:

Propiedad distributiva

Esta propiedad permite que la suma de dos o más números multiplicada por otro número sea igual a la multiplicación de ese número por cada elemento de la suma. Por ejemplo:

Elemento neutro

El uno es el elemento neutro de la multiplicación, cualquier número multiplicado por él será igual a sí mismo. Por ejemplo:

0 x 1 = 0
3 x 1 = 3
10 x 1 =10
113 x 1 = 113

¿Sabías qué?
La propiedad distributiva también puede aplicarse a números que se restan.

Modelos de multiplicación

Una multiplicación es una suma abreviada y puede ser representada a través del modelo grupal, modelo lineal y modelo geométrico. Estas son diferentes formas de dar sentido a las multiplicaciones y se pueden aplicar en situaciones simples de la vida.

Modelo grupal

En este modelo se construyen secuencias con la misma cantidad de elementos, estos grupos de elementos representan la multiplicación.

Observa la representación del modelo en los siguientes ejemplos:

4 pelotas de tenis = 4
1 vez 4 = 4
1 x 4 = 4


4 + 4 = 8 raquetas de tenis
2 veces 4 = 8
2 x 4 = 8


4 + 4 + 4 = 12 pelotas de baloncesto
3 veces 4 = 12
3 x 4 = 12


¿Sabías qué?
En el modelo grupal, 3 x 4 se lee como “tres veces cuatro”.

Modelo lineal

En este modelo se emplea la semirrecta numérica para representar las multiplicaciones. Se comienza desde cero y se cuenta de acuerdo al número de elementos que tenga el conjunto a estudiar y al número de conjuntos. Por ejemplo:

Un árbol crece 2 metros cada año. ¿Cuántos metros crecerá en 4 años?

Planteado el sistema en la gráfica sería:
4 veces 2 = 8 metros
4 x 2 = 8

Modelo geométrico

En este método se comparan las cuadrículas en columnas y filas para representar una multiplicación. Se colocan tantas filas como indique el primer factor y el número de columnas será igual al segundo factor. Por ejemplo:

La multiplicación 3 x 4 = 12 se representa geométricamente de la siguiente manera:

Si se cuentan cada una de las cuadrículas se obtiene el resultado: 3 x 4 = 12

Pasos para resolver ejercicios con el algoritmo de la multiplicación

  1. Multiplica las unidades del multiplicador por cada una de las cifras del multiplicando y coloca el resultado en la fila de abajo. Será el primer producto parcial.
  2. Multiplica las decenas del multiplicador por cada una de las cifras del multiplicando y coloca el resultado en la fila de abajo pero con la diferencia que se debe desplazar una posición hacia la izquierda. Este será el segundo producto parcial.
  3. Suma los dos productos parciales. El número que obtengas será el total de la multiplicación.

– Resuelve la multiplicación 453 x 24

Por tratarse de una multiplicación con números grandes no sería tan fácil de resolver a través de los modelos grupal, lineal y geométrico. En estos casos debes emplear el algoritmo de la multiplicación y seguir los pasos mencionados anteriormente.

Para iniciar, el multiplicando y el multiplicador tienen que estar uno debajo del otro:

Luego multiplica las unidades del multiplicador por el multiplicando, es decir, multiplica 4 por 453:

Después multiplica las decenas del multiplicador por el multiplicando, es decir, 2 por 453:

Por último, suma los dos productos parciales que se calcularon para obtener el resultado de la multiplicación:

Elementos de la división

La división consiste en repartir grupos de elementos en partes iguales. Sus elementos principales son:

  • Dividendo: es el número que se va a dividir, es decir, la cantidad que se quiere repartir.
  • Divisor: es el número que divide, este indica cuántas veces se va a repartir el dividendo.
  • Cociente: es el resultado de la división.
  • Resto: es la cantidad que sobra de la división o la que no se puede repartir por ser menor que el divisor.

La división también se expresa con el símbolo “÷“, por ejemplo:

 

Método para comprobar una división

En una división se cumple la relación:

Dividendo = (cociente x divisor) + resto

De esta manera es muy fácil comprobar que una división esté correcta, solo se debe multiplicar el cociente que se obtuvo por el divisor y luego sumarle el resto. Si el resultado que se obtiene es igual al número del dividendo, entonces la división es correcta.

¿Sabías qué?
Cuando el resto de una división es igual a cero la división es exacta y cuando no lo es se denomina división inexacta.

Algoritmo de división

Los pasos para resolver una división son los siguientes:

– Resuelve la división 3.654 ÷ 25

  1. Lo primero que hay que hacer es tomar las dos primeras cifras del dividendo, si estas dos cifras forman un número menor que el divisor entonces se toman tres cifras del dividendo. En este caso, las dos primeras cifras son 36 y como es mayor que 25 se puede continuar.
  2. Divide el primer número del dividendo (si tomaste tres cifras, entonces divide los dos primero) entre el primer número del divisor. Coloca el número resultado en el cociente. Como el primer número del dividendo es 3 y el primer número del divisor es 2, el resultado de dividirlo es 1.
  3. Multiplica el número del cociente por el divisor y coloca el resultado debajo de los dos números seleccionados al principio del dividendo. Luego haz la resta y anota el resultado:
  4. Baja la cifra siguiente del dividendo.
    5. Si divides 11 entre 2, el resultado es 5; y cuando multiplicas 5 por 25 se obtiene 125 que no puede restarse con 115. Por esta razón, coloca 4 en el cociente y continúa con los pasos anteriores.
  5. Baja la cifra siguiente del dividendo.
  6. Si divides 15 entre 2, obtienes 6. Colócalo en el cociente y repite los pasos anteriores.
    Como no existen más cifras del dividendo para bajar y el número que se obtuvo de la resta es menor que el divisor, entonces se culmina el ejercicios: 3.654 ÷ 25 = 146 y sobraron 4 unidades sin repartir (resto).
¡A practicar!

1. Resuelve las siguientes multiplicaciones:

a) 296 x 18

Solución
5.328
b) 593 x 29
Solución
17.197
c) 332 x 74
Solución
24.568
d) 375 x 16
Solución
6.000
e) 613 x 59
Solución
36.167

2. Resuelve las siguientes divisiones:

a) 4.739 ÷ 88

Solución
Cociente = 53; Resto = 75
b) 7.049 ÷ 41
Solución
Cociente = 171; Resto = 38
c) 9.370 ÷ 58
Solución
Cociente = 161; Resto = 32
d) 3.830 ÷ 40
Solución
Cociente = 95; Resto = 30
e) 5.378 ÷ 65
Solución
Cociente = 82; Resto = 48

RECURSOS PARA DOCENTES

Artículo “Trucos para aprender las tablas de multiplicar”

El siguiente artículo muestra algunas sugerencias para que el aprendizaje de las tablas de multiplicar sea más sencillo y significativo.

VER

Artículo “La tabla pitagórica”

Este artículo muestra esta útil herramienta en las primeras etapas del aprendizaje de las tablas.

VER

Enciclopedia “Números”

Con esta enciclopedia podrán estudiar los principales sistemas de numeración y las operaciones básicas de las matemáticas.

VER