CAPÍTULO 1 / TEMA 7 (REVISIÓN)

SENTIDO NUMÉRICO | REVISIÓN

UNIVERSO DE LOS NÚMEROS

Los números desde su invención han servido para contar cosas y por eso existen diferentes sistemas y tipos de números que permiten un mejor conocimiento de las cantidades. Para comprender el sentido numérico, dentro del universo de los números se utilizan diversas clasificaciones. Un tipo de números son los ordinales que sirven para establecer un orden. Por otro lado, existen los cardinales que indican cantidades numéricas de elementos que pertenecen a un grupo o conjunto. Actualmente, el sistema más usado es el sistema numérico decimal pero no es el único que existe. Otras culturas crearon sistemas de numeración distintos al decimal, como por ejemplo, los mayas y los romanos.

El sistema de numeración binario se utiliza principalmente en la informática. Está conformado solo por dos cifras: el 0 y el 1.

NÚMEROS PRIMOS Y COMPUESTOS

De acuerdo a la cantidad de divisores que poseen los número, los podemos clasificar en primos y compuestos. Los números primos son aquellos que solo son divisibles por el número uno y por sí mismos. En cambio, los números compuestos son aquellos que además de ser divisibles por el uno y por sí mismos, también son divisibles por otro u otros números, es decir, tienen más de dos divisores. Todos los números compuestos pueden expresarse como un producto de factores primos.

Para determinar los factores primos de un número compuesto se emplean los criterios de divisibilidad.

VALOR POSICIONAL

Una de las principales características de nuestro sistema de numeración decimal es que el valor de los dígitos varía de acuerdo a su ubicación dentro del número. Esta característica se denomina valor posicional y aplica tanto en los números enteros como en los fraccionarios. Una herramienta que nos permite observar directamente el valor de cada dígito de acuerdo al lugar que ocupa es la tabla posicional.

Según la posición de cada dígito, los números pueden descomponerse en forma de suma (descomposición aditiva) o de multiplicación (descomposición multiplicativa).

NÚMEROS DECIMALES

Hay números que se ubican entre dos números enteros consecutivos, estos números se denominan números decimales y se caracterizan porque presentan una parte entera y una decimal, que se encuentran separadas por una coma o punto de acuerdo a la convención del país. Los números decimales se clasifican en racionales y en irracionales. Los racionales se pueden representar en forma de fracción, y los irracionales son números infinitos cuya parte decimal no sigue ningún patrón, como sucede en el caso del número pi.

A menudo se pueden aplicar redondeos en las cifras decimales de un número para simplificar los cálculos.

POTENCIAS

La potenciación es una operación compuesta de tres partes fundamentales: el exponente, la base y la potencia. El exponente indica cuántas veces se debe multiplicar la base por si misma. La base es el número que se multiplica por sí mismo las veces que indique el exponente. La potencia es el resultado de la operación de potenciación. Como toda operación matemática, las potencias cumplen con algunas propiedades. Por ejemplo, todo número elevado a 0 es igual a 1. Para resolver potencias se aplican sus propiedades y se realizan multiplicaciones sucesivas de la base.

Cuando el exponente es 1, la potencia es siempre igual a la base.

RAÍZ DE UN NÚMERO

La radicación es la operación inversa a la potenciación y por ello se encuentran estrechamente relacionadas. Esta operación emplea el símbolo (√) denominado radical. Sus elementos principales son el radicando, el índice y la raíz. El radicando es el número al cual se le va a calcular la raíz y se encuentra en la parte inferior del radical. El índice es el número que índica la cantidad de veces en las que debe multiplicarse un número por sí mismo para que el resultado sea igual al radicando, y se ubica en la parte izquierda del radical. La raíz es el resultado de la operación. Para calcular una raíz se debe buscar un número que multiplicado por sí mismo las veces que indique el índice dé como resultado el mismo valor del radicando.

En las raíces cuadradas, el índice 2 no se coloca en el radical: simplemente se denotan como (√).

 

CAPÍTULO 1 / TEMA 6

RAÍZ DE UN NÚMERO

Estrechamente relacionada con la potenciación, existe otra operación matemática denominada “radicación”. Ambas operaciones matemáticas son inversas. La raíz cuadrada y la raíz cúbica son unas de las formas de radicación más conocidas. Este tipo de operaciones se emplea en varios ámbitos, especialmente en la geometría y en otras ciencias.

¿Qué es una raíz?

La raíz es el número que se obtiene como resultado de la operación matemática denominada “radicación”. La potenciación calcula el número o potencia que resulta de multiplicar la base por si misma las veces que indica el exponente. La radicación por su parte, calcula la base a partir del exponente y de la potencia. Por eso se dice que son operaciones inversas.

Elementos de las raíces

Para saber cómo encontrar la raíz de un número, primero debemos conocer todos los elementos de la radicación:

Radical: es el símbolo que se emplea en la radicación y se denota como (√).

Radicando: es el número al que se le va a hallar la raíz. Se ubica en la parte inferior del radical, por lo cual es denominado también cantidad subradical.

Índice: es el número que indica las veces que hay que multiplicar un número por sí mismo para obtener el radicando. Se ubica en la abertura izquierda del radical.

Raíz: es el número que al multiplicarse por si mismo las veces que indica el índice es igual al radicando.

¿Sabías qué?
Cuando el índice de una raíz es 2, se denomina raíz cuadrada. En este caso basta con escribir el símbolo de radical sin el índice.

Lectura de raíces

Para leer expresiones de este tipo se debe tener en cuenta que todo depende del número índice de la raíz.

Cuando el número índice es mayor a tres, se  utilizan números ordinales para leer el valor de la raíz seguido del radicando. Por ejemplo:

\sqrt[6]{64} = raíz sexta de sesenta y cuatro.

\sqrt[4]{625} = raíz cuarta de seiscientos veintiocho.

Si el índice es 2 se lee “raíz cuadrada” y luego se menciona el número del radicando:

\sqrt[]{5} = raíz cuadrada de cinco.

Cuando el índice es 3 se lee “raíz cúbica” y luego se menciona el número del radicando:

\sqrt[3]{27} = raíz cúbica de veintisiete.

¿Cómo se encuentra la raíz?

La raíz de un número se debe calcular al buscar un número que multiplicado por sí mismo la cantidad de veces que exprese el índice dé como resultado el radicando.

Por ejemplo: si el índice es 3 y el radicando es 8, se debe buscar un número que multiplicado 3 veces por si mismo dé como resultado 8. En este caso, sería 2 porque 2 × 2 × 2 = 8. Por lo tanto, la raíz cúbica de 8 es igual a 2.

\sqrt[3]{8}= 2

En el siguiente ejemplo, la raíz cúbica de 64, se obtuvo al buscar un número que multiplicado tres veces por sí mismo dé como resultado 64. En este caso, el resultado es 4 porque 4 × 4 × 4 = 64.

\sqrt[3]{64}= 4

Relación entre potenciación y radicación

Existe una estrecha relación entre la potenciación y la radicación, esto se debe a que ambas operaciones son inversas entre sí.

Si consideramos el ejemplo anterior se podría afirmar que como cuatro elevado al cubo es igual a sesenta y cuatro, a su vez, la raíz cúbica de sesenta y cuatro es cuatro. En el siguiente diagrama podemos observar de forma más clara a esta relación:

Al utilizar la relación que existen entre la potenciación y la radicación podemos definir a esta última como la búsqueda de la base de una potencia cuyo exponente es el índice de la raíz; o, en otras palabras, la búsqueda de un número que elevado al índice dé como resultado el radicando. Esto se aplica de forma habitual en cálculos y fórmulas avanzadas.

 

¿Sabías qué?
No todos los números tienen una raíz exacta. Por ejemplo, \sqrt{2}=1,41421356... 

Cálculo de raíces

Como vimos anteriormente, para encontrar una raíz debemos hacer multiplicaciones de un número por sí mismo según indique el índice. Sin embargo, en la radicación podemos encontrar uno o más cálculos dentro del radicando. Cuando esto sucede, debemos seguir los siguientes pasos.

  1. Resolver las operaciones que están dentro del radicando.
  2. Resolver la raíz

En los siguientes ejemplos veremos el cálculo cuando dentro del radicando existen sumas y restas:

  1. \sqrt{100 + 44}   →  \sqrt{144} = 12
  2. \sqrt{250 - 25}   → \sqrt{225}= 15

Cuando se encuentren otras operaciones además de la suma o resta, se resuelven aquellas primero y luego se resuelven las sumas y restas:

  1. \sqrt[3]{50\times 6 + 43 }  →  \sqrt[3]{300 + 43}  →  \sqrt[3]{343}= 7
  2. \sqrt{270 : 3 + 10}  →  \sqrt{90 + 10}  → \sqrt{100}= 10
Los elementos de la radicación son: el índice, el radicando y la raíz. Esta última se obtiene al buscar un número que multiplicado por sí mismo la cantidad de veces que exprese el índice dé como resultado el radicando. En la radicación podemos encontrar uno o más cálculos dentro del símbolo radical. Cuando esto sucede primero se realizan las operaciones y luego se busca la raíz.

¡A practicar!

1. ¿Cómo se leen las siguientes raíces?

a) \sqrt[3]{1.000} 

b) \sqrt{49}

c) \sqrt[3]{125}

d) \sqrt{144}

e) \sqrt[4]{256}

f) \sqrt[3]{343}

g) \sqrt{121}

RESPUESTAS

a) \sqrt[3]{1.000} = raíz cúbica de mil.

b) \sqrt{49} = raíz cuadrada de cuarenta y nueve.

c) \sqrt[3]{125} = raíz cúbica de ciento veinticinco.

d) \sqrt{144} = raíz cuadrada de ciento cuarenta y cuatro.

e) \sqrt[4]{256} = raíz cuarta de doscientos cincuenta y seis.

f) \sqrt[3]{343} = raíz cúbica de trescientos cuarenta y tres.

g) \sqrt{121} = raíz cuadrada de ciento veintiuno.

 

2. Calcula las siguientes raíces.

a) \sqrt[3]{27}

b) \sqrt{36}

c) \sqrt{16}

RESPUESTAS

a) \sqrt[3]{27}  = 3 → porque 3 x 3 x 3 (o 33) es 27.

b) \sqrt{36} = 6 → porque 6 x 6  (o 62) es 36.

c) \sqrt{16} = 4 → porque 4 x 4 (o 42) es 16.

d) \sqrt{81} = 9 → porque 9 x 9 (o 92) es 81.

e) \sqrt[3]{8} = 2 porque 2 x 2 x 2 (o 23) es 8.

f) \sqrt[3]{64} = 4 → porque 4 x 4 x 4 (o 43) es 64.

g) \sqrt{9} = 3 → porque 3 x 3 (o 32) es 9.

  • Resuelve los cálculos y luego encuentra las raíces:

a) \sqrt{9 - 7 + 2}

b) \sqrt{32\times 2}

c) \sqrt{100 : 5 + 5}

RESPUESTAS

a) \sqrt{9 - 7 + 2}= \sqrt{2 + 2}=\sqrt{4}=2

b) \sqrt{32 \times 2} = \sqrt{64} = 8

c) \sqrt{100 : 5 + 5}= \sqrt{20 + 5}=\sqrt{25}=5

RECURSOS PARA DOCENTES

Artículo destacado “La radicación”

El siguiente artículo explica qué es la radicación, cuáles son sus principales elementos y cómo resolver problemas de este tipo.

VER

Artículo destacado “Propiedades de raíces”

El siguiente artículo te ayudará a conocer en mayor profundidad cuáles son las propiedades de la radicación. Además, contiene algunos ejemplos en donde son aplicadas.

VER

CAPÍTULO 4 / TEMA 4

Propiedades de las Raíces

La radicación consiste en la obtención de un número que se ha multiplicado por sí mismo n cantidad de veces bajo el operador de la raíz, por eso también se conoce como “raíz enésima de un número”. De este modo, también podemos decir que la radicación es la operación inversa a la potenciación y, al igual que esta última, presenta propiedades importantes que aprenderás a continuación.

El origen del símbolo radical es incierto. Algunos autores coinciden en que provino de los árabes, mientras que otros afirman que fue introducido en siglo XVI por Christoph Rudolff, cuyo uso es evidenciado en su libro Coss. Muchos otros asocian el origen del signo de la raíz con la letra r, de la palabra latina radix que significa “raíz”.

¿Qué es la radicación?

Es una operación que consiste en hallar números que multiplicados por sí mismos tantas veces como indica el índice de la raíz den como resultado al radicando. Puede verse como la operación inversa a la potenciación.

\boldsymbol{\sqrt[n]{a} = b\; \; \Leftrightarrow \; \; b^{n}=a}

– Ejemplo:

\boldsymbol{\sqrt{81}=9}\: \: \: porque\: \: \: \boldsymbol{9^{2}=9\times 9=81}

\boldsymbol{\sqrt[3]{27} = 3}\; \; porque\; \; \boldsymbol{ 3^{3} = 3\times 3\times 3 =27}

Elementos de una raíz

Toda raíz cuenta con tres elementos:

\huge \boldsymbol{\sqrt[n]{a}=b}

  • Índice (n): orden de la raíz que se aplica al radicando. Indica cuántas veces multiplicamos un número por sí mismo para obtener el radicando.
  • Radicando (a): número sometido a la raíz del orden determinado por el índice.
  • Raíz (b): resultado de la radicación, el cual elevado al orden de la raíz da como resultado el radicando.

principales propiedades de la radicación

Las propiedades de la radicación tienen una gran cantidad de aplicaciones y, del mismo modo que en la potenciación, no se deben aplicar las propiedades a las operaciones de suma y resta, sino solo a las de multiplicación y división.

Propiedades de la radicación
Raíz de cero \boldsymbol{\sqrt[n]{0}=0\; \: \: \: \: \: n\neq 0}
Raíz de la unidad \boldsymbol{\sqrt[n]{1}=1}
Raíz de un producto \boldsymbol{\sqrt[n]{a\times b}=\sqrt[n]{a}\times \sqrt[n]{b}}
Raíz de un cociente \boldsymbol{\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}}
Potencia de una raíz \boldsymbol{\left ( \sqrt[n]{a} \right )^{x}=\sqrt[n]{a^{x}}}
Raíz de una raíz \boldsymbol{\sqrt[n]{\sqrt[m]{a}}=\sqrt[n\times m]{a}}

¿Sabías qué?
La mayoría de los números irracionales pueden ser expresados a partir de una raíz, por ejemplo, \sqrt{2} o \sqrt{3}.

raíz cuadrada de números negativos

La raíz cuadrada de números negativos no tiene solución dentro de los números reales (\boldsymbol{\mathbb{R}}) porque no existe un número (positivo o negativo) que al ser multiplicado por sí mismo resulte en otro negativo. Por ejemplo, la raíz cuadrada de 4 es igual a 2 porque 22 es igual a 4.

\boldsymbol{\sqrt{4}=2}\: \: \: porque \: \: \: \boldsymbol{2^{2}=2\times 2=4}

Pero esta raíz también tiene otra solución negativa:

\boldsymbol{\sqrt{4}=-2} \: \: \: porque\: \: \: \boldsymbol{\left ( -2 \right )^{2}=\left ( -2 \right )\times \left ( -2 \right )=4}

Recuerda que la regla de los signos indica que al multiplicar símbolos iguales el resultado es positivo.

Ahora, ¿cuál será la raíz cuadrada de −4?

\boldsymbol{\sqrt{-4}=} no \: \: existe

La raíz cuadrada de −4 no existe en los números reales porque no hay un número que al multiplicarse por sí mismo resulte en −4.

Sin embargo, esto no significa que no tenga solución posible, sino que pertenece a otro grupo numérico: los números complejos. Los números complejos incluyen una parte imaginaria que sirve para obtener resultados que no pertenecen a los reales.

Soluciones de una raíz

Siempre que el radicando sea negativo, la raíz tendrá solución real solo si el índice es impar, en cambio, si el índice es par, el resultado pertenecerá a los números imaginarios. Esto se debe a la regla de los signos, pues si multiplicamos por sí mismo un número negativo una cantidad de veces par (2, 4, 6, 8,…) el resultado será igualmente positivo.

aplicación de las propiedades de la radicación

Raíz de cero

Toda raíz cuyo radicando sea cero es igual a cero, siempre y cuando su índice sea diferente de dicho número.

\boldsymbol{\sqrt[n]{0}=0\; \: \: \: \: \: n\neq 0}

– Ejemplo:

\sqrt[3]{0}=0

\sqrt[5]{0}=0

Raíz de la unidad

La raíz de la unidad es igual a uno.

\boldsymbol{\sqrt[n]{1}=1}

– Ejemplo:

\sqrt[3]{1}=1

\sqrt{1}=1

Raíz de un producto

La raíz de un producto es igual al producto de las raíces de los factores.

\boldsymbol{\sqrt[n]{a\times b}=\sqrt[n]{a}\times \sqrt[n]{b}}

– Ejemplo:

\sqrt[3]{64\times 8}=\sqrt[3]{64}\times \sqrt[3]{8}=4\times 2=8

\sqrt{9\times 25}=\sqrt{9}\times \sqrt{25}=3\times 5=15

Raíz de un cociente

La raíz de un cociente es igual al cociente de las raíces del dividendo y del divisor.

\boldsymbol{\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}}

– Ejemplo:

\sqrt{\frac{576}{4}}=\frac{\sqrt{576}}{\sqrt{4}}=\frac{24}{2}=12

\sqrt[3]{\frac{64}{8}}=\frac{\sqrt[3]{64}}{\sqrt[3]{8}}=\frac{4}{2}=2

Potencia de una raíz

La potencia de una raíz es igual a la misma raíz con el radicando elevado a dicha potencia.

\boldsymbol{\left ( \sqrt[n]{a} \right )^{x}=\sqrt[n]{a^{x}}}

– Ejemplo:

\left ( \sqrt{4} \right )^{4}=\sqrt{4^{4}}=\sqrt{256}=16

\left ( \sqrt[3]{3} \right )^{9}=\sqrt[3]{3^{9}}=\sqrt[3]{19.683}=27

¡Existe otro método!

La potencia de una raíz es igual al radicando elevado al cociente de las potencias.

\left ( \sqrt{4} \right )^{4}=4^{\frac{4}{2}}=4^{2}=16

\left ( \sqrt[3]{3} \right )^{9}=3^{\frac{9}{3}}=3^{3}=27

Raíz de una raíz

La raíz de una raíz es igual otra raíz con el mismo radicando y cuyo índice es igual al producto de los índices.

\boldsymbol{\sqrt[n]{\sqrt[m]{a}}=\sqrt[n\times m]{a}}

– Ejemplo:

\sqrt{\sqrt[3]{64}}=\sqrt[2\times 3]{64}=\sqrt[6]{64}=2

\sqrt{\sqrt{81}}=\sqrt[2\times 2]{81}=\sqrt[4]{81}=3

Números irracionales

Existen números que no se pueden expresar como el cociente de dos enteros. Estos reciben el nombre de número irracionales y las raíces son un ejemplo de ellos. Uno de los números irracionales más famosos es el número pi (π). A lo largo de la historia el valor de pi ha tenido distintas aproximaciones y se lo usa, entre otras cosas, para el cálculo de superficies y volúmenes de circunferencias y esferas.

Suma y resta de radicales

Podemos sumar y restar radicales siempre y cuando estos sean semejantes, es decir, que tengan el mismo índice y el mismo radicando. Cuando esto sucede, solo sumamos o restamos los coeficientes y mantenemos el radical igual.

\boldsymbol{{\color{Red} b}\sqrt[n]{a}+{\color{Red} c}\sqrt[n]{a}=({\color{Red} b+c})\sqrt[n]{a}}

– Ejemplo:

5\sqrt{8}+\sqrt{8}+2\sqrt{8}=(5+1+2)\sqrt{8}=8\sqrt{8}

3\sqrt{25}+\sqrt{25}+\sqrt[3]{25}=4\sqrt{25}+\sqrt[3]{25}

¡A practicar!

Resuelve estas raíces y aplica las propiedades.

  • \sqrt{4}\times \sqrt{9}
Solución

\sqrt{4}\times \sqrt{9}=\sqrt{4\times 9}=\sqrt{36}=6

  • \frac{\sqrt[4]{64}}{\sqrt[4]{4}}
Solución

\frac{\sqrt[4]{64}}{\sqrt[4]{4}}=\sqrt[4]{\frac{64}{4}}=\sqrt[4]{16}=2

  • \sqrt{\sqrt[4]{256}}

Solución

\sqrt{\sqrt[4]{256}}=\sqrt[2\times 4]{256}=\sqrt[8]{256}=2

  • \sqrt[4]{3}\times \sqrt[4]{27}
Solución

\sqrt[4]{3}\times \sqrt[4]{27}=\sqrt[4]{3\times 27}=\sqrt[4]{81}=3

  • \frac{\sqrt[3]{16}}{\sqrt[3]{2}}
Solución

\frac{\sqrt[3]{16}}{\sqrt[3]{2}}=\sqrt[3]{\frac{16}{2}}=\sqrt[3]{8}=2

  • \sqrt{3}\times \sqrt{12}
Solución

\sqrt{3}\times \sqrt{12}=\sqrt{3\times 12}=\sqrt{36}=6

  • \sqrt{\frac{16}{9}}
Solución

\sqrt{\frac{16}{9}}=\frac{\sqrt{16}}{\sqrt{9}}=\frac{4}{3}

  • \frac{\sqrt{98}}{\sqrt{2}}
Solución

\frac{\sqrt{98}}{\sqrt{2}}=\sqrt{\frac{98}{2}}=\sqrt{49}=7

  • \sqrt{8}\times \sqrt{2}
Solución

\sqrt{8}\times \sqrt{2}=\sqrt{8\times 2}=\sqrt{16}=4

RECURSOS PARA DOCENTES

Artículo “Los números irracionales”

En el artículo podrá encontrar los números irracionales más conocidos y su representación en la recta numérica. Es un buen complemento para afianzar la importancia de la radicación y experimentar sus aplicaciones.

VER

Artículo “Propiedades de las raíces”

Este recurso contiene ejemplos prácticos muy útiles para profundizar sobre las propiedades de la radicación.

VER

CAPÍTULO 1 / TEMA 7

RAÍZ DE UN NÚMERO

La radicación es la operación inversa de la potenciación. Su cálculo consiste en hallar un número que multiplicado por sí mismo cierta cantidad de veces resulte en otro número determinado. Para poder emplear de manera correcta esta operación es necesario saber sus elementos y propiedades.

Todos los cálculos matemáticos tienen una operación inversa. La suma es la operación inversa de la resta, la división lo es de la multiplicación y la radicación lo es de la potenciación. Posiblemente creas que la radicación es la operación más compleja, pero no es así. Si conoces sus elementos y propiedades podrás resolver cualquier raíz de un número.

¿qué es una raíz?

Es una operación matemática en la que se obtiene un número que se ha multiplicado por sí mismo n veces bajo el operador radical. Esta se encuentra formada por los siguientes elementos:

Donde:

  • Radical (\sqrt{\: \: }): representa el símbolo de la operación de radicación.
  • Índice de la raíz \left ( n \right ): indica el grado de una raíz, lo que se traduce en cuántas veces se multiplicó por sí mismo el resultado de la radicación. El índice de una raíz debe ser diferente de cero.
  • Radicando \left ( a \right ): es el producto de la multiplicación de la raíz según lo indique el índice. El radicando pertenece al conjunto de los números reales.
  • Raíz \left ( b \right ): es el resultado de la radicación.

Condiciones a cumplir

  • n \in \mathbb{N}\:\: ,\, n \geq 2
  • a \in \mathbb{R}
  • Si n es par, a debe ser \geq 0, para que el resultado sea un número real \left ( \mathbb{R} \right ).

¿Cómo se relacionan la potencia y la raíz de un número?

La relación de las operaciones matemáticas potenciación y radicación se refleja así:

  • La base de la potenciación es el resultado o raíz de la radicación.
  • La potencia de la potenciación es el radicando de la radicación.
  • El exponente de la potenciación coincide con el índice de la radicación.

Por lo tanto, podemos expresar a una raíz como un exponente fraccionario, en el cual el denominador de la fracción corresponde al índice de la raíz y el numerador al exponente del radicando.

\boldsymbol{\left ( \sqrt[n]{a}\right )^{m}=\sqrt[n]{a^{m}}={a^{\frac{m}{n}}}}

– Ejemplo:

\sqrt[3]{5^{2}}=5^{\frac{2}{3}}

\sqrt[3]{6}={6^{\frac{1}{3}}}

Origen del término

Antiguos papiros egipcios demuestran que en esta cultura se calculaban raíces. Muchos especialistas asocian el origen del símbolo de la raíz con la letra r de la palabra latina radix, que significa “raíz”. No obstante, este término fue introducido en siglo XVI por Christoph Rudolff, quien lo usó en su libro Coss.

propiedades de las raíces

Raíz de cero

La raíz con radicando 0 es igual a 0, siempre que su índice sea diferente de dicho número.

\boldsymbol{\sqrt[n]{0}=0\: ; n\neq 0}

– Ejemplo:

\sqrt[3]{0}=0

\sqrt[5]{0}=0

Raíz de la unidad

La raíz de 1 siempre será igual a 1.

\boldsymbol{\sqrt[n]{1}=1\: ; n\neq 0}

– Ejemplo:

\sqrt[4]{1}=1

\sqrt[7]{1}=1

Raíz de un producto

La raíz de un producto es igual al producto de las raíces de los factores.

\boldsymbol{\sqrt[n]{a\cdot b}=\sqrt[n]{a}\cdot \sqrt[n]{b}}

– Ejemplo:

\sqrt[3]{27\cdot 125}=\sqrt[3]{27}\cdot \sqrt[3]{125}=3\cdot 5=15

Raíz de un cociente

La raíz de un cociente es igual al cociente de las raíces del dividendo y del divisor.

\boldsymbol{\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}}

– Ejemplo

\sqrt[4]{\frac{81}{16}}=\frac{\sqrt[4]{81}}{\sqrt[4]{16}}=\frac{3}{2}

Raíz de una raíz

La raíz de una raíz es igual a una nueva raíz con el mismo radicando e índices multiplicados.

\boldsymbol{\sqrt[m]{\sqrt[n]{a}}=\sqrt[m\cdot n]{a}}

– Ejemplo:

\sqrt[3]{\sqrt[5]{32.768}}=\sqrt[3\cdot 5]{32.768}=\sqrt[15]{32.768}=2

Potencia de una raíz

La potencia de una raíz es igual a la misma raíz con el radicando elevado a dicha potencia.

\boldsymbol{\left ( \sqrt[n]{a}\right )^{m}=\sqrt[n]{a^{m}}}

– Ejemplo:

\left ( \sqrt[]{5}\right )^{4}=\sqrt[]{5^{4}}=\sqrt[]{625}=25

Los problemas con radicales pueden tener una, dos o ninguna solución, y esto depende principalmente del radicando y del índice de la raíz. Sin embargo, para poder resolverlos de manera correcta se requiere tener conocimiento tanto de sus propiedades como también de la regla de los signos.

Suma y resta de radicales

Los radicales pueden sumarse o restarse siempre y cuando sean semejantes, es decir, que tengan el mismo índice y radicando. En este caso, sumamos o restamos los coeficientes (los números que están fuera de la raíz) y dejamos el mismo índice y radicando.

\boldsymbol{x\sqrt[n]{a}+y\sqrt[n]{a}=(x+y)\sqrt[n]{a}}

\boldsymbol{x\sqrt[n]{a}-y\sqrt[n]{a}=(x-y)\sqrt[n]{a}}

– Ejemplo:

8\sqrt[3]{5}+7\sqrt[3]{5}=15\sqrt[3]{5}

3\sqrt{6}-2\sqrt{6} = (3-2)\sqrt{6}=\sqrt{6}

cálculo de raíces

En la actualidad existen herramientas que te ayudan a realizar las operaciones matemáticas de manera fácil y rápida, como por ejemplo la calculadora. Con una calculadora, podemos determinar la raíz de un número sin problemas, pero, ¿qué hacer si no tenemos una calculadora? Para ello, es bueno saber los pasos para calcular la raíz cuadrada de cualquier número.

Para calcular la raíz cuadrada de un número como 682.273 seguimos estos pasos:

1. Agrupamos el número en cifras de dos en dos desde la derecha a la izquierda.

2. Buscamos un número que elevado al cuadrado se aproxime a las dos primeras cifras de la izquierda. De este modo, colocamos el 8, pues 82 = 8 × 8 = 64 que se aproxima a 68.

3. Realizamos la resta entre las dos primeras cifras y el resultado de 82 = 64. Luego bajamos las dos cifras siguientes (22).

4. Tomamos el primer resultado de la raíz que es 8 y lo multiplicamos por 2: 8 × 2 = 16. Lo colocamos debajo.

5. El número multiplicado por dos lo usamos para dividir a los dos primeros números del resto anterior (422). Como 42/16 = 2,625, colocamos el número entero (2) después de 16 para formar una nueva cifra: 162. Ahora multiplicamos este nuevo resultado por 2: 162× 2.

6. Utilizamos el resultado de la multiplicación para restarlo a 422. Añadimos el 2 a la raíz.

7. Repetimos el procedimiento. Bajamos las dos cifras siguientes (76) junto al último resto (98) para formar 9.876. Multiplicamos por 2 la raíz hasta ahora obtenida (82 × 2) y la colocamos como nuevo cociente (164).

8. Del mismo modo, el número multiplicado por dos lo utilizamos para dividir a los tres primeros números del resto anterior (9.876), lo que nos da 987/164 = 6,018. De esta división, solo tomamos el número entero (6), que usaremos para colocarlo detrás del (164) para formar una nueva cifra (1.646) y, al mismo tiempo, para multiplicar esta nueva cifra (1646 × 6).

9. El resultado de la multiplicación se utiliza para restarlo al resto anterior (9.876) y el número entero utilizado para hacer esta multiplicación se coloca en la raíz (82) y queda así:

Entonces, \sqrt{682.276}=\boldsymbol{826}

¡A practicar!

1. Aplica las propiedades de las raíces para resolver los siguientes ejercicios:

  • \sqrt[3]{\frac{216}{27}}=

Solución

\sqrt[3]{\frac{216}{27}}=\frac{\sqrt[3]{216}}{\sqrt[3]{27}}=\frac{6}{3}=2

  • \sqrt[3]{\sqrt[2]{4^{6}\times 3^{12}}}=

Solución

\sqrt[3]{\sqrt[2]{4^{6}\times 3^{12}}}=\sqrt[6]{4^{6}\times 3^{12}}=4^{\frac{6}{6}}\times 3^{\frac{12}{6}}=4^{1}\times 3^{2}=4\times3 \times3= 36

  • \frac{\sqrt[3]{27\cdot 125}}{\sqrt[4]{625\cdot 6561}}=
Solución

\frac{\sqrt[3]{27\times 125}}{\sqrt[4]{625\times 6561}}=\frac{\sqrt[3]{27}\times \sqrt[3]{125}}{\sqrt[4]{625}\times \sqrt[4]{6561}}=\frac{3\times 5}{5\times 9}=\frac{1}{3}

  • \frac{9\sqrt[3]{27}+18\sqrt[3]{27}}{2\sqrt[3]{27}+\sqrt[3]{27}}=
Solución

\frac{9\sqrt[3]{27}+18\sqrt[3]{27}}{2\sqrt[3]{27}+\sqrt[3]{27}}= \frac{(9+18)\sqrt[3]{27}}{(2+1)\sqrt[3]{27}}= \frac{(27)\sqrt[3]{27}}{(3)\sqrt[3]{27}}= 9

2. Resuelve las siguientes raíces sin utilizar la calculadora:

\sqrt[]{262.144}=

Solución

\sqrt[]{262.144}=512

\sqrt[]{527.076}=

Solución

\sqrt[]{527.076}= 726

\sqrt[]{2.334.784}=

Solución

\sqrt[]{2.334.784}=1.528

RECURSOS PARA DOCENTES

Artículo “La radicación”

Con este artículo, podrá ampliar los conocimiento respecto a la radicación y sus propiedades.

VER

Artículo “Cálculo de una raíz cuadrada”

Este recurso le permitirá tener mayor información sobre cómo realizar el cálculo de una raíz cuadrada.

VER