CAPÍTULO 5 / REVISIÓN

geometría

áreas y perímetros

El cálculo de áreas y perímetros de figuras geométricas se hace a partir de la longitud de sus lados. El área de los rectángulos se calcula como la multiplicación de la base por la altura, y la de los triángulos se define como la multiplicación de la base por la altura dividido por dos. Cuando se calculan los perímetros se recurre a la sumatoria de la longitud de los lados, independientemente de la figura que sea.

Las figuras pueden ser simples o compuestas. Sin embargo, el cálculo del perímetro se realiza de la misma manera a través de la suma de las longitudes del contorno de la figura.

triángulos

Los triángulos son clasificados respecto a sus lados como equiláteros, isósceles y escalenos; y respecto a sus ángulos como acutángulos, rectángulos y obtusángulos. La suma de los ángulos internos de un triángulo es siempre igual a 180º. Los triángulos congruentes son aquellos que son isométricos entre sí, es decir, poseen las mismas dimensiones.

Para la construcción de los triángulos se puede usar el compás. En primer lugar, se traza un segmento con la longitud de los lados, luego se trazan dos arcos y desde el punto de intersección se trazan dos rectas hasta los extremos del segmento inicial.

plano, punto y segmento

Un plano es un conjunto infinito de puntos y segmentos dispuestos de manera bidimensional. Para formar un plano se precisan tres puntos, una recta y un punto o dos rectas no coincidentes. Para ubicar un punto se utiliza un sistema de coordenadas denominado eje cartesiano, en el cual se deben considerar los valores de X e Y. En el sistema de coordenadas, se pueden distinguir cuatro cuadrantes delimitados por los ejes.

Para ubicar un punto se intersecta un eje vertical en el valor de X y un eje horizontal en el valor de Y del punto.

Circunferencia

La circunferencia es una figura geométrica que mantiene todos sus puntos equidistantes de su centro.  Para calcular el área de una circunferencia se recurre a la siguiente fórmula \inline A = \pi \times r^{2}. Donde r es el radio, y π corresponde al número pi. Para la construcción de circunferencias se utiliza un compás: se realiza un segmento con la longitud del radio y a partir de allí se genera el arco completo.

El número pi es un número irracional que se obtiene al dividir la longitud de la circunferencia por su diámetro.

Transformaciones isométricas

La ampliación y la reducción son transformaciones en las dimensiones de las figuras geométricas sin alterar las propiedades de la figura original. Las transformaciones isométricas como la rotación y la traslación permiten variar la posición de la figura en el plano sin alterar sus dimensiones. Hay figuras geométricas que poseen uno o más ejes de simetría en donde cada uno de sus puntos opuestos se encuentran a una misma distancia entre sí.

Las reducciones son usadas generalmente en los planos para expresar longitudes a una menor escala.

PRISMAS Y PIRÁMIDES

Los prismas son figuras geométricas tridimensionales formadas por dos caras o bases iguales y paralelas que se encuentran unidas por paralelogramos. Las pirámides presentan una base en la que todas sus caras son triángulos que se encuentran unidos en un vértice. Para su construcción se realiza primero la base y luego la base paralela (en el caso de un prisma) o el vértice (en el caso de una pirámide) a una determinada altura. Por último, se unen las bases por paralelogramos o triángulos según corresponda al tipo de figura.

La Gran Pirámide de Guiza es una pirámide rectangular y fue construida hace 4.600 años.

CAPÍTULO 5 / TEMA 6

PRISMAS Y PIRÁMIDES

Los primas y las pirámides son cuerpos geométricos que se caracterizan porque todas sus caras son polígonos. Se diferencian porque los prismas tienen dos de sus caras paraleles e iguales mientras que las pirámides tienen una base que puede ser cualquier polígono y sus caras son triángulos.

TIPOS

Ya sea para el caso de prismas o pirámides, existen ciertas clasificaciones que los diferencian entre sí y al mismo tiempo tienen ciertas semejanzas. A continuación, veremos qué son estas figuras geométricas y cuáles son sus tipos.

Prismas

Un prisma es una proyección de dos caras paralelas iguales que están unidas por paralelogramos. Estas caras se denominan bases y tienen una determinada cantidad de lados. La forma de estas bases es la que dará la clasificación a los prismas correspondientes.

Tipos de prismas

Los prismas son tan diversos como figuras geométricas existen. El nombre de un prisma viene dado por la figura geométrica que conforma sus bases. Por ejemplo: si la base es un triángulo el nombre de la figura será prisma triangular.

Pirámides

Una pirámide está compuesta por una base y triángulos que se comparten un lado con ella. Todos los triángulos coinciden en un punto en común, denominado vértice.

Tipos de pirámides

En las pirámides al igual que en los prismas, su nombre viene determinado por la figura que conforma su base. Por ejemplo: si la base es un cuadrado, el nombre de la figura será pirámide cuadrangular.

VER INFOGRAFÍA

Esta no es la única clasificación de estos cuerpos geométricos: cada uno reciben una segunda clasificación. Esta depende del ángulo que tiene la base con respecto a las caras; por este motivo, estos cuerpos geométricos pueden ser rectos y oblicuos. Por ejemplo:

Un prisma, si sus ángulos son rectos, se denominará como prisma recto; en cambio, cuando sus ángulos no lo sean, se clasificará como prisma oblicuo. Las pirámides se denominan rectas cuando todas sus caras son triángulos isósceles iguales y la altura cae al punto medio de la base. Las pirámides oblicuas son aquellas en las que no todas sus caras son triángulos isósceles.

elementos principales

Los elementos principales de un prisma y una pirámide son similares entre sí. Solo se diferencian en que la pirámide tiene un vértice. Por lo tanto, los elementos principales de cada una de las figuras geométricas son:

Elementos de un prisma: bases, aristas y caras.

Elementos de una pirámide: base, aristas, caras y vértice.

En este ejemplo, podemos ver todos los elementos característicos de una pirámide. En el caso de los prismas, los elementos son los mismos, con la excepción del vértice, que no está presente.

construcción

Para la construcción de prismas y pirámides lo principal es la base. Esta cara tiene una cantidad de lados que será la misma cantidad que tenga el prisma o pirámide que resulta de su proyección. Por lo tanto, la construcción consta de los siguientes pasos:

Paso 1: construcción de la base.

Paso 2: construcción de la otra base (en prismas) o el vértice (en pirámides) a la altura correspondiente.

Paso 3: unión entre las bases con paralelogramos (en prismas) o entre la base y el vértice (en pirámides).

Construcción de prismas

Construcción de pirámides

reconocimiento de objetos en forma de prisma y pirámides

Para el reconocimiento de prismas y pirámides debemos utilizar el conocimiento previo de los elementos que forman cada una de estas figuras geométricas. Por lo tanto, procederemos a las siguientes definiciones:

Reconocimiento de prismas: se deben observar dos caras unidas entre sí por paralelogramos.

Reconocimiento de pirámides: se debe observar una base y un vértice unidos entre sí por triángulos.

La Gran Pirámide de Giza se encuentra en la meseta de Giza, Egipto. Se construyó hace 4.600 años por orden del faraón Keops por eso también se la conoce como pirámide de Keops. Se trata de una maravilla del Mundo Antiguo y tiene una altura de 138 metros. Sus dimensiones para la época en la que se construyó aún sorprenden a los arquéologos y es la única de las Siete Maravillas originales que aún existe.

ubicación de la altura

La ubicación de la altura en el caso de estas figuras geométricas tiene también cierta similitud. En los prismas la altura está determinada por las aristas; sin embargo, puede calcularse como la distancia entre el centro de las bases. En el caso de las pirámides, puede calcularse como la distancia entre el vértice y el centro de la base.

¡A practicar!

1. Determina si las siguientes figuras son prismas o pirámides, y nombrarlas.

a)

RESPUESTAS
La figura geométrica es un prisma. El nombre es prisma pentagonal ya que sus bases son pentágonos.

b)

RESPUESTAS
La figura geométrica es una pirámide. El nombre es pirámide hexagonal ya que su base es un hexágono.

RECURSOS PARA DOCENTES

Artículo “Prismas”

En el siguiente artículo destacado se explican con mayor profundidad el concepto de prisma, sus elementos, sus tipos y  se proporcionan algunos ejercicios de aplicación.

VER

Video “Dibujar una pirámide”

En este video se observa una animación de los elementos que componen una pirámide y del procedimiento a seguir para dibujarla.

VER

CAPÍTULO 5 / TEMA 6

Aplicación de la geometría

La geometría se encuentra inmersa dentro de diferentes ciencias y situaciones de la vida. Muchos desarrollos de la actualidad no se habrían logrado sin los aportes de la geometría. La astronomía, la computación y la cartografía son algunos de los muchos campos donde la geometría es empleada. 

Cálculo de área de una superficie

Para el cálculo de superficies usamos las fórmulas de área de las principales figuras geométricas. Las principales fórmulas son las siguientes:

Nombre Figura Área
Cuadrado \boldsymbol{A = l^{2}}

 

Donde:

A = área

l = lado

Rectángulo \boldsymbol{A = a\times b}

 

Donde:

A = área

a = altura

b = base

Triángulo \boldsymbol{A = \frac{b\times h}{2}}

 

Donde:

A = área

b = base

h = altura

Rombo \boldsymbol{A = \frac{D\times d}{2}}

 

Donde:

A = área

D = diagonal mayor

d = diagonal menor

Paralelogramo \boldsymbol{A = b\times h}

 

Donde:

A = área

b = base

h = altura

Trapecio \boldsymbol{A = \left (\frac{a+ b}{2} \right )\times h}

 

Donde:

a = base menor

b = base mayor

h = altura

Círculo \boldsymbol{A = \pi \times r^{2}}

 

Donde:

A = área

π = número pi

r = radio

Polígono regular \boldsymbol{A = \frac{n\times b\times Ap}{2}}

 

Donde:

A = área

n = número de lados regulares

b = longitud de un lado

Ap = apotema

Las figuras compuestas

Una figura compuesta es aquella que está formada por dos o más figuras geométricas más simples. Para calcular el área de estas figuras se suelen calcular las áreas de las figuras más simples por separado y la sumatoria de estas será el área total de la figura. Por otra parte, para el cálculo de perímetro suelen usarse ecuaciones trigonométricas, y teoremas como el de Pitágoras para calcular las longitudes de los lados de la figura.

Ejercicios

– Una cancha de fútbol mide 105 metros de largo y 68 metros de ancho. ¿Cuántos metros cuadrados de césped artificial se necesitarían para cubrir toda la cancha?

Es un problema de área porque al calcular los metros cuadrados de césped artificial que se necesitan, se calcula la superficie. Como todos sabemos, una cancha de fútbol tiene una forma rectangular, por lo tanto se debe aplicar la fórmula del rectángulo:

A = a\times b
A = 105\, m\times 68\, m
A = \mathbf{7.140\, m^{2}}

Por lo tanto, para cubrir toda la cancha se necesitarían 7.140 m2 de césped artificial.


– La siguiente figura muestra el plano de una casa. ¿Cuántos metros cuadrados de cerámica se necesitan para cubrir el piso?

El piso de la casa forma una figura compuesta. Por lo tanto, antes de resolver el problema debemos separarlo en formas geométricas más simples:

La figura 1 corresponde a un rectángulo y la figura 2 a un cuadrado (ya que sus cuatro lados miden lo mismo). El área total del piso será igual a:

A_{t} = A_{1}+A_{2}

Donde:

At = área total del piso

A1 = área de la figura 1

A2 = área de la figura 2

Por lo tanto, para calcular el problema tenemos que resolver las áreas por separado:

En la figura 1 se cumple que:

A_{1} = a\times b

A_{1} = 13\, m\times 5\, m

A_{1} = 65\, m^{2}

En la figura 2 se cumple que:

A_{2} = l^{2}

A_{2} = (10\, m)^{2}

A_{2} = 100\, m^{2}

Al reemplazar los valores de A1 y A2 se tiene que:

A_{t} = 65\, m^{2}+100\, m^{2}

A_{t} = \mathbf{165\, m^{2}}

Por lo tanto, el piso de la casa necesita 165 m2 de cerámica para cubrirlo.

¿Sabías qué?
La hectárea (ha) es una medida de área que equivale a 10.000 m2.

Cálculo de volumen de un cuerpo

Todo cuerpo ocupa un lugar en el espacio. Se denomina volumen. Como ya sabemos, los principales cuerpos geométricos se calculan a través de fórmulas:

Nombre Figura Fórmula de volumen
Cubo \boldsymbol{V=l^{3}}

 

 

Donde:

V = volumen

l = lado

Prisma \boldsymbol{V = A_{b}\times h}

 

 

Donde:

V = volumen

Ab = área basal

h = altura

Pirámide \boldsymbol{V = \frac{A_{b}\times h}{3}}

 

 

Donde:

V = volumen

Ab = área basal

h = altura

Cilindro \boldsymbol{V =\pi \times r^{2}\times h}

 

 

Donde:

V = volumen

π = número pi (3,14…)

r = radio

h = altura

Cono \boldsymbol{V =\frac{\pi \times r^{2}\times h}{3}}

 

 

Donde:

V = volumen

π = número pi (3,14…)

r = radio

h = altura

Esfera \boldsymbol{V =\frac{4}{3}\times \pi \times r^{3}}

 

 

Donde:

V = volumen

π = número pi (3,14…)

r = radio

En el caso de las pirámides y los primas, las formas de sus bases pueden ser diferentes.

Estas ecuaciones pueden aplicarse a figuras similares para resolver diferentes problemas.

Ejercicios

– Calcula el volumen de la Gran Pirámide de Guiza, cuya base es un cuadrado de aproximadamente 230 m cada lado y de altura mide aproximadamente 186 m.

La fórmula para calcular el volumen de una pirámide es la siguiente:

V = \frac{A_{b}\times h}{3}

Lo primero es calcular el valor de Ab que es el área de la base. En este caso, su base es un cuadrado de 230 metros de cada lado. Por lo tanto:

A_{b} = l^{2}

A_{b} = (230\, m)^{2}

A_{b} = 52.900 \, m^{2}

Reemplazamos el valor del área de la base y el de la altura (que es 186 m) en la fórmula:

V = \frac{52.900\, m^{2}\times 186\, m}{3}

V = \frac{9.839.400\, m^{3}}{3}

V = \mathbf{3.279.800\, m^{3}}

El volumen aproximado de la pirámide de Guiza es de 3.279.800 m3 (si se considera la pirámide como un cuerpo rígido sin cámaras interiores).


– Calcula el volumen de una canica de 2 centímetros de diámetro.

La forma de una canica es igual a la de una esfera por lo tanto se utiliza la siguiente ecuación:

V =\frac{4}{3}\times \pi \times r^{3}

El problema nos dice que el diámetro de la canica es de 2 cm, pero la fórmula está expresada en función del radio. Como ya sabemos, el radio es la mitad del diámetro, por lo tanto, el radio de la canica es de 1 cm.

V =\frac{4}{3}\times \3,14 \times (1\, cm)^{3}

V =\frac{4}{3}\times \3,14 \times 1\, cm^{3}

V =\mathbf{4,18\, cm^{3}}

La leyenda de la corona

Hay una leyenda popular que cuenta cómo el rey Hieron II de Siracusa le encomendó al reconocido matemático griego Arquímedes que comprobara si la corona que había mandado a hacer era de oro puro o no. Arquímedes pasó mucho tiempo sin resolver el misterio y estaba frustrado hasta que un día, al meterse a la bañera, se percató que el agua que se desplazaba tenía el mismo volumen de su cuerpo. Enseguida dio un salto al tiempo que decía la frase “¡Eureka!”.

Posteriormente le demostró al rey que el volumen desplazado por la corona debía ser el mismo que el desplazado por un lingote de oro puro de la misma masa. Cuando realizó el experimento, la cantidad de agua desplazada no fue la misma y concluyó que la corona no era de oro puro.

Otros usos

Desde su aparición, la geometría ha permitido al ser humano destacarse en varios campos como la arquitectura, la escultura, la pintura y, por su puesto, en las ciencias aplicadas como la física o la química. Disciplinas como la ingeniería aplican la geometría para el cálculo de ángulo y otras medidas. La química emplea la geometría para entender las estructuras moleculares, la agrupación de los átomos y la forma de los cristales de algunos compuestos, entre otros usos.

En el ámbito de la cartografía y la agronomía, se aplica la geometría para determinar áreas, calcular perímetros y planos de terrenos. La astronomía y la computación son otras áreas que emplean conocimientos geométricos.

La geometría y la arquitectura

La arquitectura clásica no habría podido lograr obras de singular belleza o armonía sin hacer uso de conocimientos geométricos. En la actualidad, los arquitectos emplean la geometría para lograr estructuras que se vean bien estéticamente, que permitan un ahorro de materiales y un mejor aprovechamiento de los espacios.

¡A practicar!

1. Una fábrica de quesos compró una granja de 14.300 m2. ¿Cuáles son las medidas de la granja?

a) 150 m × 100 m
b) 130 m × 110 m
c) 40 m × 10 m
d) 280 m × 100 m

Solución
b) 130 m × 110 m

2. Un tablero de ajedrez mide 44 cm de alto y 44 cm de ancho, ¿cuál es el área del tablero?

a) 88 cm2
b) 1.936 cm2
c) 4.404 cm2
d) 3.854 cm2

Solución
b) 1.936 cm2

3. Una empresa inmobiliaria trabaja con propiedades que no superan los 20.000 m2. ¿Cuál de las siguientes propiedades no cumple con este requisito de la empresa inmobiliaria?

a) Casa de playa de 155 m de ancho por 84 m de alto.
b) Departamento en la ciudad de 18 m de ancho por 14 m de alto.
c) Cabaña en la montaña de 320 m de ancho por 124 m de alto.
d) Chalet de 24 m de ancho por 20 m de alto.

Solución
c) Cabaña en la montaña de 320 m de ancho por 124 m de alto. El área de esta propiedad es de 39.680 m2, por lo tanto, supera los 20.000 m2 aceptados por la inmobiliaria.

4. Una pelota de fútbol tiene 22 cm de diámetro, ¿cuál es su volumen?

a) 2026,34 cm3
b) 44 cm3
c) 220 cm3
d) 5.572,45 cm3

Solución
d) 5.572,45 cm3

5. Una lata de tomates es cilíndrica y tiene una altura de 9 cm y un radio de 3 cm, ¿cuál es su volumen?

a) 384,35 cm3
b) 127,17 cm3
c) 954.44 cm3
d) 506,58 cm3

Solución
c) 254.34 cm3

RECURSOS PARA DOCENTES

Artículo “Los números ocultos en el universo”

El artículo trata de mostrar cómo la mayoría de los fenómenos del universo pueden explicarse a través de los números. También explica algunas formas geométricas que podemos encontrar en nuestro planeta.

VER

Enciclopedia “Nana y Enriqueta en el país de las matemáticas”

En este tomo, se platean los principales elementos de la geometría de una manera didáctica y sencilla. También se dan ejemplos y aplicaciones de la geometría.

VER

Artículo “Superficies de figuras geométricas”

El artículo plantea el cálculo de superficie de las principales figuras geométricas. También resuelve una serie de ejercicios y muestra al final algunos problemas propuestos.

VER

CAPÍTULO 5 / TEMA 4

Cuerpos geométricos

Uno de los objetos de estudio de la geometría son los cuerpos geométricos. Una pelota de fútbol, un cono de helado o un dado son algunos objetos cotidianos que podemos asociar con estos cuerpos, los cuales se caracterizan por ocupar volumen en el espacio y estar formados con figuras geométricas.

Principales cuerpos geométricos

Los cuerpos geométricos son infinitos y cada uno posee características propias. Los más comunes son el cubo, el prisma, la pirámide, el cilindro, el cono y la esfera. Ellos se clasifican en poliedros y cuerpos redondos.

  • Los poliedros son cuerpos geométricos. Todas sus caras son planas. Estos, a su vez, pueden ser regulares si sus caras son todas iguales o irregulares cuando son diferentes. Un ejemplo de poliedro es el cubo.
  • Los cuerpos redondos son cuerpos geométricos con al menos una cara curva, como sucede con el cilindro.

VER INFOGRAFÍA

¿Sabías qué?
Al cubo también se lo denomina hexaedro regular.

Elementos de los cuerpos geométricos

En la mayoría de los cuerpos geométricos se pueden identificar los siguientes elementos.

  • Cara: corresponde a cada una de las superficies planas que delimitan al cuerpo geométrico. Pueden ser caras basales, las que sirven de apoyo (base) al cuerpo en el plano, o caras laterales, que corresponden a las de los costados.
  • Vértice: es el punto en el que se juntan tres o más caras.
  • Arista: es el segmento de línea que se forma cuando dos caras se juntan.
La esfera y sus curiosidades

La esfera es un cuerpo geométrico que no posee ni caras, ni aristas ni vértice. Y se caracteriza porque todos los puntos de su superficie están a la misma distancia del centro.

Volumen de cuerpos geométricos

De acuerdo a su tipo, cada cuerpo geométrico tiene características propias que permiten calcular su volumen a través de fórmulas.

Nombre Figura Fórmula de volumen
Cubo \boldsymbol{V=l^{3}}

 

Donde:

V = volumen

l = lado

Prisma \boldsymbol{V = A_{b}\times h}

 

Donde:

V = volumen
Ab = área basal

h = altura

Pirámide \boldsymbol{V = \frac{A_{b}\times h}{3}}

 

Donde:

V = volumen

Ab = área basal

h = altura

Cilindro \boldsymbol{V =\pi \times r^{2}\times h}

 

Donde:

V = volumen

π = número pi (3,14…)

r = radio

h = altura

Cono \boldsymbol{V =\frac{\pi \times r^{2}\times h}{3}}

 

Donde:

V = volumen

π = número pi (3,14…)

r = radio

h = altura

Esfera \boldsymbol{V =\frac{4}{3}\times \pi \times r^{3}}

 

Donde:

V = volumen

π = número pi (3,14…)

r = radio

h = altura

VER INFOGRAFÍA

– Calcula el volumen de este cubo.

Un cubo se caracteriza porque todos sus lados miden lo mismo, de manera que al conocer solo la medida de un lado se puede aplicar la fórmula:

V=l^{3}

V=(3\, cm)^{3}

V=\mathbf{27\, cm^{3}}

Calcula el volumen del siguiente cilindro.

Según la fórmula, los únicos datos que se necesitan son el radio del cilindro y su altura. De la imagen se obtienen los datos:

V =\pi \times r^{2}\times h

V =\pi \times (2\, cm)^{2}\times 6\, cm

En este caso observa que el radio está elevado al cuadrado, por lo tanto, al resolver esa potencia las unidades también se verán afectadas, por lo que quedarán centímetros cuadrados:

V =\pi \times 4\, cm^{2}\times 6\, cm

El número pi (π) es un número irracional, por lo cual es infinito. Para efectos de estos cálculos, usaremos solamente 2 de sus decimales, es decir, lo aproximamos a 3,14.

V =3,14 \times 4\, cm^{2}\times 6\, cm

Al resolver este producto se obtiene el volumen del cilindro.

V =\mathbf{75,36\, cm^{3}}

¿Sabías qué?
Cuando se usan múltiplos o submúltiplos del metro, el volumen siempre se expresa en unidades cúbicas: m3, cm3, mm3, km3, etc.
Los prismas son poliedros cuyos lados laterales son paralelogramos y con dos caras paralelas e iguales denominadas bases. Reciben su nombre de acuerdo a la forma de su base, por ejemplo, si su base es un triángulo, se denomina prisma triangular, si es un pentágono se denomina prisma pentagonal y así sucesivamente. Un paralelepípedo es un prisma cuya base es un paralelogramo.

Construcción de cuerpos geométricos

Los cuerpos geométricos tienen volumen y, por lo tanto, se pueden representar en tres dimensiones: largo, alto y ancho. Las imágenes a continuación son patrones que puedes usar para construir los cuerpos geométricos más comunes:

Cubo

Prisma rectangular

Pirámide

Cilindro

Cono

La construcción de cuerpos geométricos, además de su gran utilidad al momento de representar a estas figuras, permite trasladar estos conocimientos a otras áreas como la arquitectura y la ingeniería, en las cuales se realizan diseños a escalas. Conocer las diferentes fórmulas de cálculo y volumen de las figuras es fundamental para realizar operaciones más avanzadas.

¡A practicar!

1. Calcula el volumen de los siguientes cuerpos geométricos.

a)

      *La base es un rectángulo.

Solución
V = 133,33 cm3

b)

Solución
V = 64 cm3

c)

Solución
V = 904,32 cm3

d) 

Solución
V = 33,49 cm3

e)

Solución
V = 96 cm3

f)

Solución
V = 62,8 cm3

RECURSOS PARA DOCENTES

Artículo “Poliedros irregulares”

El artículo explica qué es un poliedro y qué caracteriza a los irregulares. También hace una breve explicación de los sólidos platónicos y muestra algunos ejemplos.

VER

Infografía “Cuerpos redondos”

La infografía explica de manera sencilla qué es un cuerpo redondo, sus características y su presencia en la vida cotidiana.

VER

Artículo “Volumen de figuras geométricas”

En este artículo destacado se explica qué es el volumen y cómo calcularlo en los diferentes cuerpos geométricos. También se plantean una serie de problemas resueltos y de ejercicios planteados.

VER

CAPÍTULO 5 / TEMA 6

POLIEDROS

La palabra “poliedro” proviene del griego y significa “que tiene muchas caras o planos”. Con este nombre se designa a aquellos cuerpos geométricos que están formados por polígonos y encierran un volumen. Cada una de las caras de un poliedro es un polígono (un triángulo, un cuadrado, un rombo, etc.) y se caracterizan por tener un mínimo de cuatro caras.

Solemos pensar que un balón de fútbol es una esfera, sin embargo, esto no es así. Un balón de fútbol es un poliedro que al ser hinchado con aire adopta una forma cercana a la esfera. A este tipo de poliedro se lo conoce como icosaedro truncado y combina 20 hexágonos regulares y 12 pentágonos regulares. Tiene 32 caras, 90 aristas y 60 vértices.

ELEMENTOS DE LOS POLIEDROS

Los poliedros son cuerpos geométricos tridimensionales con caras planas y que encierran un volumen. Es decir que un poliedro es una porción acotada de espacio limitada por distintos polígonos, a diferencia de los polígonos, que son porciones del plano limitadas por segmentos.

Los poliedros están constituidos por los siguientes elementos:

Bases Caras Aristas Vértices
Son las caras sobre las cuales se apoya el poliedro. Son las superficies planas que delimitan el espacio interno del poliedro. Son las líneas que componen el cuerpo de un poliedro. Son los puntos de encuentro entre tres o más aristas del poliedro.

TIPOS DE POLIEDROS

Poliedros regulares

Los poliedros regulares son aquellos cuyas caras están compuestas por el mismo polígono regular. Estos son conocidos también como sólidos platónicos.

Nombre del poliedro Forma del poliedro Número de caras Polígonos que forman sus caras
Tetraedro 4 Triángulos equiláteros
Cubo 6 Cuadrados
Octaedro 8 Triángulos equiláteros
Dodecaedro 12 Pentágonos regulares
Icosaedro 20 Triángulos equiláteros

¿Sabías qué?
Se les llama sólidos platónicos porque Platón, filósofo griego del siglo IV a. C., en su diálogo el Timeo explicó la construcción del universo por asociación de cada uno de los poliedros regulares con los elementos fundamentales: agua, aire, tierra y fuego.
El nombre que recibe cada poliedro depende del número de caras que presente. Se utilizan para ello prefijos numerales de origen griego y la terminación –aedro (que significa “plano o cara”). Por ejemplo, el cubo también se llama hexaedro porque tiene 6 caras. No obstante, muchos poliedros tienen sus nombres propios, como el prisma o la pirámide.

Poliedros irregulares

Los poliedros irregulares pueden presentar diferentes formas. En estos poliedros, el número de caras no presenta límites como ocurre con los poliedros regulares. Los poliedros irregulares más comunes son los prismas, las pirámides y todas sus variedades

  • Prismas: son poliedros limitados por dos bases que son polígonos iguales y por caras laterales que son paralelogramos. Ellos se nombran de acuerdo al polígono de la base. Así puedes encontrar:
Prisma triangular Prisma cuadrangular Prisma pentagonal Prisma hexagonal
Triángulos como bases. Cuadrados como bases. Pentágonos como bases. Hexágonos como bases.

VER INFOGRAFÍA

  • Pirámides: son poliedros que tienen una sola base conformada por un polígono y por caras laterales de triángulos con un vértice común. Al igual que los prismas, se nombran por el polígono de la base.
Pirámide triangular Pirámide cuadrangular Pirámide pentagonal Pirámide hexagonal
Triángulo como base. Cuadrado como base. Pentágono como base. Hexágono como base.

¡Construyamos poliedros!

Los poliedros son cuerpos geométricos, esto quiere decir que son tridimensionales y puedes construirlos fácilmente con pocos materiales.

Para construir un cubo necesitarás:

  • Tijeras.
  • Regla.
  • Cartón o un papel duro.
  • Pegamento.

Copia esta plantilla en el papel. Luego recortalo y realizar pliegues en las líneas. Los cuadrados quedarán como caras del poliedro y las pequeñas solapas servirán para unir la figura. En esas solapas debes colocar pegamento, para unirlas con las caras correspondientes. Quedará formado un cubo, similar al de la imagen. Será útil, por ejemplo, para hacer tus propios dados.

Para construir un tetraedro sigue los mismos pasos. Esta es la plantilla:

 

Para construir un octaedro sigue los mismos pasos. Esta es la plantilla:

 

Para construir un dodecaedro sigue los mismos pasos. Esta es la plantilla:

 

Para construir un icosaedro sigue los mismos pasos. Esta es la plantilla:

Poliedros en la vida cotidiana

En la vida cotidiana puedes encontrar continuamente poliedros. A lo largo de la historia, dos ejemplos de ellos se han vuelto mundialmente reconocidos: el cubo de Rubik y las pirámides de Egipto. Estas últimas son poliedros piramidales triangulares, cuya base es un polígono cualquiera y sus caras son triángulos con un vértice común.

RECURSOS PARA DOCENTES

Artículo “Poliedro irregulares”

En este artículo encontrarás el desarrollo teórico para ahondar en las características propias de los poliedros irregulares.

VER